首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Here we describe a comparative study of phenotypic properties of hepatic cells in situ and in vitro. We analyzed the expression levels and distribution patterns of ABC transporters MRP2 and MDR1, pan-cytokeratin, cytokeratin 18, albumin, alpha-fetoprotein and the specific hepatocyte marker OCH1E5 in the fetal and adult rat as well as human liver tissue and in human fetal hepatocytes of WRL 68 cell line using peroxidase immunohistochemistry or immunofluorescence. Transporters MRP2 and MDR1 were expressed in all examined liver tissues, except rat ED13 embryo. The immunopositivity of these proteins was localized to the canalicular membrane of differentiating and mature hepatocytes but in the later developmental stages and in the adult liver tissues it was also found in the apical membrane of cholangiocytes. In WRL 68 cells, MRP2 and MDR1 immunoreactivity appeared after 5-6 days of cultivation and both transporters were fully expressed in the plasmalemma and in the cytoplasm 9 days after the passage. In conclusion, we observed only moderate variances reflecting diverse ontogenetic phases between the fetal and adult liver tissue. To study functions of hepatocytes in vitro, WRL 68 cells have to differentiate prior to the examination. Our findings indicate that WRL 68 cells can undergo differentiation in vitro and their antigenic profile closely resembles hepatocytes in the human liver.  相似文献   

2.
In order to develop an in vitro model allowing investigation of the long-term effects of hormones and other agents on peroxisomes in liver cells, we measured the activity of a series of peroxisomal enzyme activities in HepG2 cells, a proliferating cell line derived from a human hepatoblastoma. The results obtained show that although in absolute terms peroxisomal enzyme activities are lower in HepG2 cells as compared to human liver, relative activities were comparable in HepG2 and human liver, respectively. Furthermore, it is shown that peroxisomes can easily be isolated from HepG2 cells using density gradient centrifugation. It is concluded that HepG2 cells represent a good model system to study the characteristic (long-term) regulation and control of metabolism of human liver peroxisomes.  相似文献   

3.
The neutral red in vitro cytotoxicity assay was adapted for use with the human hepatocellular tumor cell line HepG2 to detect the cytotoxic potencies of polynuclear aromatic hydrocarbons (PAHs). Using benzo[a]pyrene (B[a]P) as the representative PAH, it was determined that a 3-day exposure was the most suitable for detecting cytotoxic potency and that preexposure to S g/ ml Arochlor enhanced the sensitivity of the HepG2 cells to the toxicant. Such enhanced sensitivity probably reflected increased metabolic conversion of the B[a]P to active metabolites after culturing the cells in the presence of Arochlor. This was shown by a 3-fold increase in the activity of 7-ethoxycoumarin deethylase, an indicator of mixed-function oxygenase activity. Furthermore, a reduction in sensitivity to B[a]P occurred when the cells were cultured in the presence of -napthoflavone, an inhibitor of aryl hydrocarbon hydroxylase activity. When Arochlor-induced cells were transferred to medium lacking Arochlor, the level of 7-ethoxycoumarin deethylase quickly declined to basal levels. Arochlor-induced cells were also able to detect the cytotoxic potencies of benzo[k]fluoranthene, benzo[b]-fluoranthene, chrysene, benzo[a]anthracene pyrene, phenanthrene, and fluoranthene, whereas fluorene, anthracene, acenaphthene, and acenaphthylene were not cytotoxic.Abbreviations AHH aryl hydrocarbon hydroxylase - 7-EDase 7-ethoxycoumarin O-deethylase - 3-MC 3-methylcholanthrene - MFO mixed function oxidase - NR neutral red - PAH polycyclic aromatic hydrocarbon  相似文献   

4.
Drug-induced liver injury (DILI) is a leading cause of discontinuation of new drug approval or withdrawal of marketed medicine based on safety due to organ vulnerability. The aim of this research is to investigate the potential abilities of four different in vitro cell models (L-02, HepG2, HepaRG, and hiHeps cell lines) in assessing marketed drugs labeled with apparently different types of liver injury. A total of 17 drugs with versatile pharmacological profiles were chosen, of which, 14 drugs are recognized as DILI agents and 3 drugs are DILI irrelevant. Preliminary cellular screening assays indicated that the HepaRG cell line had an advantage over other cell lines in predicting drugs associated with DILI in vitro as it had the highest Youden’s index (71.4 %). A multi-parametric screening assay showed that oxidative stress, mitochondrial damage, and disorders of neutral lipid metabolism were changed notably in the HepaRG cell line after DILI-related drugs exposure, accounting for its high sensitivity in comparison with other three cell lines. In addition, aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and malate dehydrogenase (MDH) all correlated with the cytotoxic effects of diclofenac sodium (p?<?0.05), buspirone hydrochloride (p?<?0.01), and danazol (p?<?0.01) in the HepaRG cell line. We conclude that the HepaRG cell line is a superior in vitro cell model to other three cell lines for evaluating drugs with DILI potential.  相似文献   

5.

Background  

Cell lines are widely used to monitor drug pharmacokinetics and pharmacodynamics and to investigate a number of biochemical mechanisms. However, little is known about the genetic profile of these in vitro models.  相似文献   

6.
Colin D  Lancon A  Delmas D  Lizard G  Abrossinow J  Kahn E  Jannin B  Latruffe N 《Biochimie》2008,90(11-12):1674-1684
Resveratrol is a well known polyphenol largely produced in grapevine. It is a strong antioxidant and a free radical scavenger. It exhibits several beneficial effects for health including cancer. Resveratrol antioxidant activity is essential in the prevention of chemical-induced cancer by inhibiting initiation step of carcinogenesis process but it is also considered to inhibit cancer promotion and progression steps. While the effects of resveratrol on cancer cells are widely described, the data available on the antiproliferative potential of resveratrol derivatives remain weak. Nevertheless, resveratrol analogs could exhibit stronger potentials than the parent molecule. So, we compared the cellular effects of trans-resveratrol, trans-epsilon-viniferin and their respective acetate derivatives, as well as a polyphenol mixture extracted from grapevine shoots, called vineatrol. We studied their abilities to interfere with cell proliferation, their uptake and their effects on parameters of cellular state in human hepatoma cells (HepG2). Cell growth experiments show that resveratrol triacetate presents a slightly better antiproliferative potential than resveratrol. The dimer epsilon-viniferin,as well as its pentaacetate analog, is less powerful than resveratrol, although a similar uptake kinetics in cells. Interestingly, among the tested polyphenols, vineatrol is the most potent solution, indicating a possible synergistic effect of both resveratrol and epsilon-viniferin. We took advantage of the fluorescence properties of these compounds to evidence cellular uptake by using flow cytometry. In addition, by competition assay, we demonstrate that resveratrol triacetate enters in hepatic HepG2 cells by the same way as resveratrol. By autofluorescence in situ measurement we observed that resveratrol and related compounds induce deep changes in cells activity. These changes occur mainly by increasing NADPH cell content and the number of green fluorescent cytoplasmic granular structures which may be related to an induction of detoxifying enzyme mechanisms.  相似文献   

7.
In the present study, we characterized an evolutionarily conserved non-transmembrane ATP-binding cassette protein: hABCF3. Subcellular immunofluorescence staining demonstrated that hABCF3 localizes preferentially in cytoplasm, unlike its paralog protein hABCF1, which localizes in both cytoplasm and nucleus. Quantitative realtime PCR analysis revealed that hABCF3 is expressed in all tissues examined, with high expression level in heart, liver, and pancreas. Interestingly, ectopic hABCF3 promoted proliferation of human liver cancer cell lines. Moreover, knock down of hABCF3 protein expression by siRNA inhibited cell proliferation. In addition, we identified TPD52L2 (Tumor Protein D52-like 2) as a hABCF3 interacting protein via yeast two-hybrid. This interaction was further confirmed by in vivo co-immunoprecipitation and co-localization assays. Furthermore, we identified the interactional region of hABCF3 to be the first 200 amino acids uncharacterized region. Notably, the truncated version of hABCF3, which lacks the TPD52L2 binding region, remarkably impaired hABCF3-mediated cell proliferation. Taken together, these findings suggest that hABCF3 positively regulates cell proliferation, at least partially through the interaction with a tumor protein D52 protein family member: TPD52L2.  相似文献   

8.
INTRODUCTION: Hepatic stellate cell (HSC) activation is a key event in wound healing as well as in fibrosis development in the liver. Previously we developed a technique to induce HSC activation in slices from rat liver. Although this model provides a physiologic, multicellular milieu that is not present in current in vitro models it might still be of limited predictive value for the human situation due to species-differences. Therefore, we now aimed to evaluate the applicability of human liver slices for the study of HSC activation. METHOD: Liver slices (8 mm diameter, 250 microm thickness) were generated from human liver tissue and incubated for 3 or 16 h with 0-15 microl of carbon tetrachloride (CCl4) after which ATP-content and expression levels of HSC (activation) markers was determined. RESULTS: Human liver slices remained viable during incubation as shown by constant ATP levels. Incubation with CCl(4) caused a dose-dependent decrease in viability and an increase in mRNA expression of the early HSC activation markers HSP47 and alphaB-crystallin, but not the late markers for HSC activation, alphaSMA and pro-collagen 1a1. Synaptophysin mRNA expression remained constant during incubation with or without CCl4, indicating a constant number of HSC in the liver slices. CONCLUSION: We developed a technique to induce early toxicity-induced HSC activation in human liver slices. This in vitro model provides a multicellular, physiologic milieu to study mechanisms underlying toxicity-induced HSC activation in human liver tissue.  相似文献   

9.
A series of synthetic aporphine derivatives structurally related to domesticine and nantenine (ring A, N6 and ring C truncated analogs), was evaluated in MTS cytotoxicity assays against the human colon cancer cell lines, HCT-116 and Caco-2. In general, the C1 position of ring A is tolerant of alkoxy substituents as well as a benzoyl ester functionality. Other modifications evaluated resulted in a decrease in cytotoxic activity. The most potent compounds identified had IC50 values in the range 23-38 μM, comparable to the known cytotoxic agent, etoposide.  相似文献   

10.
11.
12.
Biochemical indicators and in vitro models, if they mimic in vivo responses, offer potentially sensitive tools for inclusion in toxicity assessment programs. The purpose of this study was to determine whether the HepG2 cell line would mimic known in vivo or in vitro (or both) responses of mammalian systems when confronted with cadmium (Cd2+). Uptake and compartmentalization of Cd2+, metallothionein (MT) compartmentalization, and glutathione (GSH) depletion were examined. In addition, several cytotoxic and stress effects, e.g., viability (neutral red [NR] uptake, 3-[4,5-dimethylthiozole-2-yl]-2,5,-biphenyl tetrazolium bromide [MTT] dye conversion, and live/dead [L/D]), membrane damage (lactate dehydrogenase leakage), metabolic activity (adenosine triphosphate levels), and detoxification capabilities (GSH content, cytochrome P4501A1/2 [EROD (ethoxyresorufin-o-deethylase)] activity, and MT induction), were measured in both naive (no previous exposure) and Cd2+ preexposed cells. Cadmium uptake increased during a 24-h period. Metallothionein induction occurred in response to both Cd2+ and ZnCl2; however, Cd2+ was the more potent inducer. Both Cd2+ and MT were localized primarily in the cytoplasmic compartment. All biochemical responses, except EROD, showed concentration- response relationships, after 24-h exposure to Cd2+ (ranges 0-3 ppm [26.7 microM]). Cadmium effects were reduced in preexposed cells, indicating adaptive tolerance or increased resistance had occurred. Twenty-four-hour LC50, dose causing death of 50% of the test subjects, values were 0.97, 0.69, and 0.80 ppm (8.7, 6.2, and 7.2 microM) for naive cells and 1.45, 1.21, and 1.39 ppm (12.9, 10.7, and 12.3 microM) for preexposed cells based on the NR, MTT, and L/D assays, respectively. These data indicate that this carcinoma cell line is a useful in vitro model for cadmium toxicity studies.  相似文献   

13.
Hydroxyurea is considered an antineoplastic drug, which also plays an important role in the treatment of sickle cell anemia patients. We evaluated and compared the clastogenic and cytotoxic effects of hydroxyurea, using chromosomal aberrations and mitotic index, respectively, as endpoints. In vitro short-term cultures of lymphocytes were exposed to several concentrations of this drug, at various cell cycle phases. There was a significant increase in the cytotoxicity of hydroxyurea at G1 and G1/S as well in the G2 phase of the cell cycle. Hydroxyurea did not significantly increase chromosome aberrations. There was an S-dependent cytotoxic effect of hydroxyurea, which is expected based on the known activity of hydroxyurea as an inhibitor of ribonucleotide reductase.  相似文献   

14.
Oxidative stress is a major pathogenetic event occurring in several liver disorders and is a major cause of liver damage due to Ischemia/Reperfusion (I/R) during liver transplantation. While several markers of chronic oxidative stress are well known, early protein targets of oxidative injury are not well defined. In order to identify these proteins, we used a differential proteomics approach to HepG2 human liver cells treated for 10 min with 500 microM H(2)O(2). This dose was sufficient to induce a slight decrease of total GSH and total protein thiol content without affecting cell viability. By performing Differential Proteomic analysis, by means of two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry, we identified four proteins which resulted sensitive to H(2)O(2) treatment. The main changes were due to post-translational modifications of native polypeptides. Three of these proteins belong to the Peroxiredoxin family of hydroperoxide scavengers, namely PrxI, PrxII and PrxVI, that showed changes in their pI as result of overoxidation. Mass mapping experiments demonstrated the specific modification of peroxiredoxins active site thiol into sulphinic and/or sulphonic acid, thus explaining the increase in negative charge measured for these proteins. The oxidation kinetic of all peroxiredoxins was extremely rapid and sensitive, occurring at H(2)O(2) doses unable to affect the common markers of cellular oxidative stress. Recovery experiments demonstrated a quite different behaviour between 1-Cys and 2-Cys containing Prxs as their retroreduction features is concerned, thus suggesting a functional difference between different class of Prxs. The in vivo relevance of our study is demonstrated by the finding that overoxidation of PrxI occurs during I/R upon liver transplantation and is dependent on the time of warm ischemia. Our present data could be of relevance in setting up more standardized procedures to preserve organs for transplantations.  相似文献   

15.
5-(2-Ethyl-phenyl)-3-(3-methoxy-phenyl)-1H-[1,2,4]triazole (DL-111-IT) and related compounds were extensively studied as anti-gestational agents and some of these molecules were also described as inhibitors of ornithine decarboxylase. Polyamine depletion has been frequently related to the induction of apoptosis and consequently we investigated DL-111-IT and analogs for this effect in myeloid (HL60), neuroblastic (SK-N-MC) and epithelial (BeWo) human tumor cell lines, by means of electron microscopy and DNA electrophoresis. HL60 and SK-N-MC appeared notably sensitive to apoptosis, whereas BeWo responsiveness was variable and frequently associated with necrosis. Our results indicate that the contragestational effect of DL-111-IT and analogs is associated with apoptotic deletion of chorionic tissue and that these molecules, due to their effect on human tumor cell lines, can be considered as antiblastic lead compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号