首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The S locus, which controls the self-incompatibility response in Brassica, has been shown to contain at least two genes. SLG encodes a secreted S locus glycoprotein whilst SRK encodes a putative S locus receptor kinase. SRK has been shown potentially to encode a functional kinase and genetic evidence indicates that this gene is essential for the self-incompatibility response. Here the characterization of the SRK and SLG genes of a Brassica line homozygous for the S3 haplotype is described. A 120 kDa glycoprotein was identified in stigmas and several lines of evidence indicated that this protein is encoded by the SRK3 gene. First, the 120 kDa glycoprotein was recognized by antibodies raised against peptides based on the SRK3 gene sequence. Secondly, this protein is polymorphic and, in an F2 population segregating for the S3 haplotype, was expressed only in plants possessing the S3 haplotype. Thirdly, the 120 kDa protein was expressed specifically in stigmas. Finally, the 120 kDa protein was only extracted from stigmas in the presence of detergent indicating that it is anchored in the membrane. SRK has been predicted to encode a transmembrane glycoprotein based on the deduced amino acid sequence. Located on the membrane, SRK is in a position to interface between an extracellular recognition event between pollen and pistil and an intracellular signal transduction pathway which initiates the self-incompatibility response.  相似文献   

2.
3.
The yeast two-hybrid system was used to further characterize the interactions between the Brassica S receptor kinase (SRK) and three putative substrates, ARC1 and the two thioredoxin h proteins, THL1 and THL2. Interactions were generally detectable with kinase domains of both Class I and Class II SRKs. Chimeric constructs were made between the SRK910 kinase domain and the non-interacting Arabidopsis RLK5 kinase domain. Only one chimeric construct, SRR2, interacted with THL1 and THL2, while none of the chimeras were able to interact with ARC1. SRR2 is largely made up of RLK5 kinase domain with the N-terminal end being derived from the SRK910 kinase domain and was the only chimeric construct that retained kinase activity. Deletion or substitution of a conserved cysteine at the N-terminal end of the SRK910 kinase domain resulted in loss of interaction with THL1 and THL2, while the addition of this cysteine to a related receptor kinase, SFR1, conferred the ability to interact with the thioredoxin h proteins. In addition, substitution of the cysteines in the THL1 active site abolished the interaction. Lastly, the two Arabidopsis thioredoxin h clones most closely related to THL1 and THL2 were found to interact with the SRK kinase domains. Thus, the nature of the interaction of the thioredoxin h clones with SRK involves the reducing activity of these proteins and is restricted to the class of thioredoxin h proteins which have the variant CPPC active site.  相似文献   

4.
An S-receptor kinase (SRK) gene associated with self-incompatibility in a Brassica napus subsp. oleifera line has been characterized. The SRK-A14 cDNA shows the highest levels of homology in the 5 end to the SLG-A14 cDNA present at the same locus. RNA blot analysis shows that the SRK-A14 gene is expressed predominantly in the pistil, and at lower levels in the anthers. The predicted amino acid sequences from the extracellular domain of the SRK-A14 gene and three other SRK genes were compared. The different SRK extracellular domains were for the most part very similar, with the exception of two variable regions containing a high level of amino acid alterations. These extracellular domains also contain a region of similarity to the immunoglobulin domains present in members of the immunoglobulin superfamily. These findings may define regions of the SRK protein that are necessary for interactions between SRK and other proteins.  相似文献   

5.
6.
An S-receptor kinase (SRK) gene associated with self-incompatibility in a Brassica napus subsp. oleifera line has been characterized. The SRK-A14 cDNA shows the highest levels of homology in the 5′ end to the SLG-A14 cDNA present at the same locus. RNA blot analysis shows that the SRK-A14 gene is expressed predominantly in the pistil, and at lower levels in the anthers. The predicted amino acid sequences from the extracellular domain of the SRK-A14 gene and three other SRK genes were compared. The different SRK extracellular domains were for the most part very similar, with the exception of two variable regions containing a high level of amino acid alterations. These extracellular domains also contain a region of similarity to the immunoglobulin domains present in members of the immunoglobulin superfamily. These findings may define regions of the SRK protein that are necessary for interactions between SRK and other proteins.  相似文献   

7.
8.
9.
10.
Two self-incompatibility genes in Brassica, SLG and SRK (SLG encodes a glycoprotein; SRK encodes a receptor-like kinase), are included in the S multigene family. Products of members of the S multigene family have an SLG-like domain (S domain) in common, which may function as a receptor. In this study, three clustered members of the S multigene family, BcRK1, BcRL1 and BcSL1, were characterized. BcRK1 is a putative functional receptor kinase gene expressed in leaves, flower buds and stigmas, while BcRL1 and BcSL1 are considered to be pseudogenes because deletions causing frameshifts were identified in these sequences. Sequence and expression pattern of BcRK1 were most similar to those of the Arabidopsis receptor-like kinase gene ARK1, indicating that BcRK1 might have a function similar to that of ARK1, in processes such as cell expansion or plant growth. Interestingly, the region containing BcRK1, BcRL1 and BcSL1 is genetically linked to the S locus and the physical distance between SLG, SRK and the three S-related genes was estimated to be less than 610 kb. Thus the genes associated with self-incompatibility exist within a cluster of S-like genes in the genome of Brassica. Received: 15 April 1997 / Accepted: 13 June 1997  相似文献   

11.
12.
13.
In Brassica self-incompatibility, the recognition of self/nonself pollen grains, is controlled by the S-locus, which encodes three highly polymorphic proteins: S-locus receptor kinase (SRK), S-locus protein 11 (SP11; also designated S-locus Cys-rich protein), and S-locus glycoprotein (SLG). SP11, located in the pollen coat, determines pollen S-haplotype specificity, whereas SRK, located on the plasma membrane of stigmatic papilla cells, determines stigmatic S-haplotype specificity. SLG shares significant sequence similarity with the extracellular domain of SRK and is abundant in the stigmatic cell wall, but its function is controversial. We previously showed that SP11 binds directly to its cognate SRK with high affinity (K(d) = 0.7 nM) and induces its autophosphorylation. We also found that an SLG-like, 60-kD protein on the stigmatic membrane forms a high-affinity binding site for SP11. Here, we show that the 60-kD stigmatic membrane protein is a truncated form of SRK containing the extracellular domain, transmembrane domain, and part of the juxtamembrane domain. A transiently expressed, membrane-anchored form of SRK exhibits high-affinity binding to SP11, whereas the soluble SRK (eSRK) lacking the transmembrane domain exhibits no high-affinity binding, as is the case with SLG. The different binding affinities of the membrane-anchored SRK and soluble eSRK or SLG will be significant for the specific perception of SP11 by SRK.  相似文献   

14.
The nucleotide sequences of ten SP11 and nine SRK alleles in Raphanus sativus were determined, and deduced amino acid sequences were compared with those of Brassica SP11 and SRK. The amino acid sequence identity of class-I SP11s in R. sativus was about 30% on average, the highest being 52.2%, while that of the S domain of class-I SRK was 77.0% on average and ranged from 70.8% to 83.9%. These values were comparable to those of SP11 and SRK in Brassica oleracea and B. rapa. SP11 of R. sativus S-21 was found to be highly similar to SP11 of B. rapa S-9 (89.5% amino acid identity), and SRK of R. sativus S-21 was similar to SRK of B. rapa S-9 (91.0%). SP11 and SRK of R. sativus S-19 were also similar to SP11 and SRK of B. oleracea S-20, respectively. These similarities of both SP11 and SRK alleles between R. sativus and Brassica suggest that these S haplotype pairs originated from the same ancestral S haplotypes.  相似文献   

15.
16.
Self-incompatibility (SI) in Brassica is controlled by the S locus. The specificity of the SI response is controlled on the stigma side by the S receptor kinase (SRK) and on the pollen side by the SCR (S locus cysteine-rich) protein, but other proteins might be involved in the process of self-pollen rejection. In this study, we show that the AtPP gene linked to the S locus of Brassica napus is expressed in the stigmas of SI lines. AtPP has a developmental pattern of expression similar to the SRK gene. The AtPP protein has similarity with members of an Arabidopsis protein family and with an S-adenosyl-L-methionine:salicylic acid carboxyl methyltransferase, which is a plant defense-related protein of Clarkia breweri representing a new class of methyltransferases. A member of the AtPP gene family is present in the homeolog region of the S locus in Arabidopsis. Therefore, this gene might have co-evolved with S genes from an ancestral S locus of Brassicaceae. Possible functions of the AtPP protein in the self-recognition process are discussed. Received: 9 October 2000 / Revision accepted: 23 April 2001  相似文献   

17.
While the molecular basis of sporophytic self-incompatibility (SSI) has been investigated extensively in the Brassicaceae, almost nothing is known about the molecular regulation of SSI in other families, such as the Asteraceae. In species of Brassica and in Arabidopsis lyrata, a stigma-specific serine-threonine receptor kinase (SRK) and its cognate ligand, a pollen coating-borne cysteine-rich protein (SCR/SP11), determine the female and male sides of the SSI response, respectively. Here we have used RT-PCR with degenerate primers to conserved regions of SRK to amplify three SRK-like gene fragments expressed in stigmas of Senecio squalidus (Asteraceae). The Senecio S-receptor-like kinase (SSRLK) sequences share ~43% amino acid sequence identity with Brassica SRK3 but higher amino acid sequence identity (~50%) with two Solanum bulbocastanum receptor-like kinase genes of unknown function. Despite expression in stigmas, all three SSRLKs were expressed at varying levels in floral and vegetative tissues. No allelic polymorphism was detected for the three SSRLKs in two S homozygous lines of S. squalidus or three other lines of S. squalidus carrying different S alleles. A full-length cDNA clone was obtained for SSRLK1 and its predicted amino acid sequence revealed significant structural differences to Brassica SRKs, most notably a major N-terminal truncation of 169 amino acids and the presence of just 8 conserved cysteine residues within the putative receptor domain instead of 12. Together, the sequence characteristics and expression characteristics of SSRLKs suggest that they are unlikely to be directly involved in the SSI response of S. squalidus. These findings are discussed in terms of the evolution of the SRK multigene family and the molecular basis of SSI in S. squalidus and the Asteraceae.  相似文献   

18.
19.
Self-incompatibility in Brassica is controlled by a single, highly polymorphic locus that extends over several hundred kilobases and includes several expressed genes. Two stigma proteins, the S locus receptor kinase (SRK) and the S locus glycoprotein (SLG), are encoded by genes located at the S locus and are thought to be involved in the recognition of self-pollen by the stigma. We report here that two different SLG genes, SLGA and SLGB, are located at the S locus in the class II, pollen-recessive S15 haplotype. Both genes are interrupted by a single intron; however, SLGA encodes both soluble and membrane-anchored forms of SLG, whereas SLGB encodes only soluble SLG proteins. Thus, including SRK, the S locus in the S15 haplotype contains at least three members of the S gene family. The protein products of these three genes have been characterized, and each SLG glycoform was assigned to an SLG gene. Evidence is presented that the S2 and S5 haplotypes carry only one or the other of the SLG genes, indicating either that they are redundant or that they are not required for the self-incompatibility response.  相似文献   

20.
Radish, belonging to the family Brassicaceae, has a self-incompatibility which is controlled by multiple alleles on the S locus. To employ the self-incompatibility in an F1 breeding system, identification of S haplotypes is necessary. Since collection of S haplotypes and determination of nucleotide sequences of SLG, SRK, and SCR alleles in cultivated radish have been conducted by different groups independently, the same or similar sequences with different S haplotype names and different sequences with the same S haplotype names have been registered in public databases, resulting in confusion of S haplotype names for researchers and breeders. In the present study, we developed S homozygous lines from radish F1 hybrid cultivars in Japan and determined the nucleotide sequences of SCR, the S domain and the kinase domain of SRK, and the SLG of a large number of S haplotypes. Comparing these sequences with our previously published sequences, the haplotypes were ordered into 23 different S haplotypes. The sequences of the 23 S haplotypes were compared with S haplotype sequences registered by different groups, and we suggested a unification of these S haplotypes. Furthermore, dot-blot hybridization using SRK allele-specific probes was examined for developing a standard method for S haplotype identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号