首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Coaggregation is believed to facilitate the integration of new bacterial species into polymicrobial communities. The aim of this study was to investigate coaggregation between and among human oral and enteric bacteria. Stationary phase cultures of 10 oral and 10 enteric species, chosen on the basis of numerical and ecological significance in their respective environments together with their ease of cultivation, were tested using a quantitative spectrophotometric coaggregation assay in all possible pairwise combinations to provide quantitative coaggregation scores. While 40% of possible partnerships coaggregated strongly for oral strains, strong interactions between oral and gut strains were considerably less common (4% incidence). Coaggregation scores were also weak between members of the intestinal microbiota (7% incidence), apart from Bacteroides fragilis with Clostridium perfringens, and Bifidobacterium adolescentis with C. perfringens. Oral and intestinal bacteria did not strongly interact, apart from B. adolescentis with Fusobacterium nucleatum, Actinomyces naeslundii with C. perfringens and F. nucleatum with Lactobacillus paracasei. Heating and sugar-addition experiments indicated that similar to oral microorganisms, interactions within intestinal bacteria and between intestinal and oral strains were mediated by lectin-carbohydrate interactions.  相似文献   

2.
The aim of this in vitro study was to evaluate the effects of nicotine, cotinine, and caffeine on the viability of some oral bacterial species. It also evaluated the ability of these bacteria to metabolize those substances. Single-species biofilms of Streptococcus gordonii, Porphyromonas gingivalis, or Fusobacterium nucleatum and dual-species biofilms of S. gordonii -- F. nucleatum and F. nucleatum -- P. gingivalis were grown on hydroxyapatite discs. Seven species were studied as planktonic cells, including Streptococcus oralis, Streptococcus mitis, Propionibacterium acnes, Actinomyces naeslundii, and the species mentioned above. The viability of planktonic cells and biofilms was analyzed by susceptibility tests and time-kill assays, respectively, against different concentrations of nicotine, cotinine, and caffeine. High-performance liquid chromatography was performed to quantify nicotine, cotinine, and caffeine concentrations in the culture media after the assays. Susceptibility tests and viability assays showed that nicotine, cotinine, and caffeine cannot reduce or stimulate bacterial growth. High-performance liquid chromatography results showed that nicotine, cotinine, and caffeine concentrations were not altered after bacteria exposure. These findings indicate that nicotine, cotinine, and caffeine, in the concentrations used, cannot affect significantly the growth of these oral bacterial strains. Moreover, these species do not seem to metabolize these substances.  相似文献   

3.
The primary habitats of oral veillonellae are the tongue, dental plaque, and the buccal mucosa. Isolates were obtained from each habitat and tested for coaggregation with a battery of other oral bacterial strains. All 59 tongue isolates tested for coaggregation were Veillonella atypica or Veillonella dispar. All but one of them coaggregated with strains of Streptococcus salivarius, a predominant inhabitant of the tongue surface but not subgingival dental plaque. These tongue isolates were unable to coaggregate with most normal members of the subgingival flora such as Actinomyces viscosus, Actinomyces naeslundii, Actinomyces israelii, and Streptococcus sanguis. In contrast, 24 of 29 Veillonella isolates, of which 20 were Veillonella parvula from subgingival dental plaque samples, coaggregated strongly with the three species of Actinomyces, S. sanguis, and other bacteria usually present in subgingival plaque, but they did not coaggregate with S. salivarius. The majority of isolates from the buccal mucosa (42 of 55) has coaggregation properties like those from the tongue. These results indicate that the three human oral Veillonella species are distributed on oral surfaces that are also occupied by their coaggregation partners and thus provide strong evidence that coaggregation plays a critical role in the bacterial ecology of the oral cavity.  相似文献   

4.
The primary habitats of oral veillonellae are the tongue, dental plaque, and the buccal mucosa. Isolates were obtained from each habitat and tested for coaggregation with a battery of other oral bacterial strains. All 59 tongue isolates tested for coaggregation were Veillonella atypica or Veillonella dispar. All but one of them coaggregated with strains of Streptococcus salivarius, a predominant inhabitant of the tongue surface but not subgingival dental plaque. These tongue isolates were unable to coaggregate with most normal members of the subgingival flora such as Actinomyces viscosus, Actinomyces naeslundii, Actinomyces israelii, and Streptococcus sanguis. In contrast, 24 of 29 Veillonella isolates, of which 20 were Veillonella parvula from subgingival dental plaque samples, coaggregated strongly with the three species of Actinomyces, S. sanguis, and other bacteria usually present in subgingival plaque, but they did not coaggregate with S. salivarius. The majority of isolates from the buccal mucosa (42 of 55) has coaggregation properties like those from the tongue. These results indicate that the three human oral Veillonella species are distributed on oral surfaces that are also occupied by their coaggregation partners and thus provide strong evidence that coaggregation plays a critical role in the bacterial ecology of the oral cavity.  相似文献   

5.
Abstract Using a visual coaggregation assay, 43% (6 of 14) of Prevotella nigrescens and 50% (4 of 8) of Prevotella intermedia strains coaggregated with Actinomyces naeslundii strains which represented the six Actinomyces coaggregation groups (A to F). For both species, coaggregation occurred most frequently with A. naeslundii strains from coaggregation groups C, D and E. No coaggregation was observed with Actinomyces israelii , Actinomyces odontolyticus or six oral Streptococcus species. Coaggregation was not inhibited by lactose, saliva or serum. Pretreatment of Prevotella strains with heat, SDS and proteinase K abolished coaggregation when the treated cells were added to untreated Actinomyces strains. The same pretreatment of the Actinomyces strains had no effect on their ability to coaggregate with untreated Prevotella strains. Pretreatment of all coaggregating P. nigrescens strains with trypsin abolished coaggregation, whereas the coaggregation ability of the P. intermedia and Actinomyces strains was resistant to trypsin pretreatment. Pretreatment of the strains of both Prevotella species and the Actinomyces with periodate abolished coaggregation in all cases. These results suggest that the Prevotella strains each possess a protein coaggregation adhesin, which for the P. intermedia strains is resistant to trypsin, that interacts with a non-protein receptor on the A. naeslundii strains.  相似文献   

6.
Fibrillar and fimbriate strains of Streptococcus salivarius were compared for their ability to adhere to buccal epithelial cells and saliva-coated hydroxyapatite beads, and for their ability to coaggregate with Veillonella strains. The fibrillar Lancefield group K strains adhered statistically significantly better to both buccal epithelial cells and saliva-coated hydroxyapatite beads than the fimbriate strains, which lacked the Lancefield group K antigen. After 1 h the fibrillar strains coaggregated statistically significantly better than the fimbriate strains with V. parvula strain V1, but after 24 h, coaggregation both of fibrillar and of fimbriate strains reached approximately 90%. Freshly isolated Veillonella strains all coaggregated with the S. salivarius strains, but the percentage coaggregation varied considerably after 1 h depending on the Veillonella strain. Coaggregation was independent of the presence of Ca2+. S. salivarius strain HB-V5, a mutant of strain HB that had lost the Veillonella-binding protein, coaggregated weakly with V. parvula strain V1, but coaggregated very well with other wild-type veillonellae, suggesting the presence of an alternative mechanism for Veillonella-binding for strain HB. Fibrillar strains were, therefore, more adhesive to oral surfaces and coaggregated with veillonellae after 1 h better than the fimbriate S. salivarius strains. Both fibrillar and fimbriate strains were highly hydrophobic in the hexadecane-buffer partition assay.  相似文献   

7.
In dental plaque alpha-haemolytic streptococci, including Streptococcus gordonii, are considered beneficial for oral health. These organisms produce hydrogen peroxide (H(2)O(2)) at concentrations sufficient to kill many oral bacteria. Streptococci do not produce catalase yet tolerate H(2)O(2). We recently demonstrated that coaggregation with Actinomyces naeslundii stabilizes arginine biosynthesis in S. gordonii. Protein arginine residues are sensitive to oxidation by H(2)O(2). Here, the ability of A. naeslundii to protect S. gordonii against self-produced H(2)O(2) was investigated. Coaggregation with A. naeslundii enabled S. gordonii to grow in the absence of arginine, and promoted survival of S. gordonii following growth with or without added arginine. Arginine-replete S. gordonii monocultures contained 20-30 microM H(2)O(2) throughout exponential growth. Actinomyces naeslundii did not produce H(2)O(2) but synthesized catalase, removed H(2)O(2) from coaggregate cultures and decreased protein oxidation in S. gordonii. On solid medium, S. gordonii inhibited growth of A. naeslundii; exogenous catalase overcame this inhibition. In coaggregate cultures, A. naeslundii cell numbers were >90% lower than in monocultures after 24 h. These results indicate that coaggregation with A. naeslundii protects S. gordonii from oxidative damage. However, high cell densities of S. gordonii inhibit A. naeslundii. Therefore, H(2)O(2) may drive these organisms towards an ecologically balanced community in natural dental plaque.  相似文献   

8.
The Mfa1 protein of Porphyromonas gingivalis is the structural subunit of the short fimbriae and mediates coadhesion between P. gingivalis and Streptococcus gordonii. We utilized a promoter-lacZ reporter construct to examine the regulation of mfa1 expression in consortia with common oral plaque bacteria. Promoter activity of mfa1 was inhibited by S. gordonii, Streptococcus sanguinis and Streptococcus mitis. In contrast, Streptococcus mutans, Streptococcus cristatus, Actinomyces naeslundii, Actinobacillus actinomycetemcomitans and Fusobacterium nucleatum did not affect mfa1 expression. Expression of SspA/B, the streptococcal receptor for Mfa1, was not required for regulation of mfa1 promoter activity. Proteinaceous molecule(s) in oral streptococci may be responsible for regulation of Mfa1 expression. Porphyromonas gingivalis is capable of detecting heterologous organisms, and responds to selected organisms by specific gene regulation.  相似文献   

9.
分离并鉴定了329例成人牙周炎龈下优势厌氧菌群,并对不同病程中的菌群变迁、厌氧菌的药物敏感性进行了分析.成人牙周炎龈下标本中厌氧菌阳性检出率为97.9%,其中以牙龈紫质单胞菌检出率最高(38.5%),具核梭杆菌次之(18.9%).随着牙周病变程度的加重,牙龈紫质单胞菌、具核梭杆菌、产黑色素普氏菌、星群厌氧链球菌、厌氧消化链球菌的检出率增高(P<0.05),小韦荣球菌的检出率下降(P<0.01),表明前5种厌氧菌在AP发病过程中有重要作用,小韦荣球菌与之无关.替硝唑、甲硝唑和克林霉素对438株革兰氏阴性厌氧菌的MIC90分别为1~8,2~8和4~16 mg/L,对278株革兰氏阳性厌氧菌的MIC90分别为16~32,16~64和4~16 mg/L,表明替硝唑和甲硝唑体外抗革兰氏阴性厌氧菌效果优于克林霉素,抗革兰氏阳性厌氧菌作用不如克林霉素.  相似文献   

10.
Adherence of pathogenic bacteria is often an essential first step in the infectious process. The ability of bacteria to adhere to one another, or to coaggregate, may be an important factor in their ability to colonize and function as pathogens in the periodontal pocket. Previously, a strong and specific coaggregation was demonstrated between two putative periodontal pathogens, Fusobacterium nucleatum and Porphyromonas gingivalis. The interaction appeared to be mediated by a protein adhesin on the F. nucleatum cells and a carbohydrate receptor on the P. gingivalis cells. In this investigation, we have localized the adhesin activity of F. nucleatum T18 to the outer membrane on the basis of the ability of F. nucleatum T18 vesicles to coaggregate with whole cells of P. gingivalis T22 and the ability of the outer membrane fraction of F. nucleatum T18 to inhibit coaggregation between whole cells of F. nucleatum T18 and P. gingivalis T22. Proteolytic pretreatment of the F. nucleatum T18 outer membrane fraction resulted in a loss of coaggregation inhibition, confirming the proteinaceous nature of the adhesin. The F. nucleatum T18 outer membrane fraction was found to be enriched for several proteins, including a 42-kDa major outer membrane protein which appeared to be exposed on the bacterial cell surface. Fab fragments prepared from antiserum raised to the 42-kDa outer membrane protein were found to partially but specifically block coaggregation. These data support the conclusion that the 42-kDa major outer membrane protein of F. nucleatum T18 plays a role in mediating coaggregation with P. gingivalis T22.  相似文献   

11.
Abstract A 14-year-old female patient, admitted for a closer examination of liver tumour (hepatocellular adenoma), was diagnosed as having a congenital absence of the portal vein. The blood ammonia level (approximately 120 μg dl−1) in the superior mesenteric vein was markedly low compared to the normal value of 300–350 μg dl−1 in the portal vein. The decreased ammonia concentration and urease activity of the patient's faeces were demonstrated. The dominant intestinal flora in the faeces of the patient, before operation, was Bifidobacterium sp., Bifidobacterium breve, Bifidobacterium lonqum, Lactobacillus plantarum , and after the operation Bacteroides vulgatus, Veillonella parvula, Peptococcus magnus Bifidobacterium longum . In contrast, Bifidobacterium bifidum, Bacteroides ureolyticus, Bacteroides ovatus and Bacteroides distasonis, B. ovatus, Bifidobacterium adolescentis were dominant flora in the faeces of two healthy volunteers, respectively. Among microorganisms isolated from the patient, Morganella morganii, Candida sp., Eubacterium aerofacience and Eubacterium rectale were strongly positive in urease activity in vitro; Streptococcus mitior, Staphylococcus intermedius, Micrococcus kristinae, Selenomonas ruminantum, Bacteroides ureolyticus and Lactobacillus casei ss. pseudoplantarum from the healthy volunteers. These results imply the homeostatic regulation system of faecal ammonia concentration by urease-producing microorganisms in the patient.  相似文献   

12.
A defining characteristic of the suspected periodontal pathogen Fusobacterium nucleatum is its ability to adhere to a plethora of oral bacteria. This distinguishing feature is suggested to play an important role in oral biofilm formation and pathogenesis, with fusobacteria proposed to serve as central 'bridging organisms' in the architecture of the oral biofilm bringing together species which would not interact otherwise. Previous studies indicate that these bacterial interactions are mediated by galactose- or arginine-inhibitable adhesins although genetic evidence for the role and nature of these proposed adhesins remains elusive. To characterize these adhesins at the molecular level, the genetically transformable F. nucleatum strain ATCC 23726 was screened for adherence properties, and arginine-inhibitable adhesion was evident, while galactose-inhibitable adhesion was not detected. Six potential arginine-binding proteins were isolated from the membrane fraction of F. nucleatum ATCC 23726 and identified via mass spectroscopy as members of the outer membrane family of proteins in F. nucleatum . Inactivation of the genes encoding these six candidates for arginine-inhibitable adhesion and two additional homologues revealed that only a mutant derivative carrying an insertion in Fn1526 (now designated as radD ) demonstrated significantly decreased co-aggregation with representatives of the Gram-positive 'early oral colonizers'. Lack of the 350 kDa outer membrane protein encoded by radD resulted in the failure to form the extensive structured biofilm observed with the parent strain when grown in the presence of Streptococcus sanguinis ATCC 10556. These findings indicate that radD is responsible for arginine-inhibitable adherence of F. nucleatum and provides definitive molecular evidence that F. nucleatum adhesins play a vital role in inter-species adherence and multispecies biofilm formation.  相似文献   

13.
Vesicles from the outer membrane of Porphyromonas gingivalis have the ability to aggregate a wide range of Streptococcus spp., Fusobacterium nucleatum, Actinomyces naeslundii, and Actinomyces viscosus. We found that in the presence of P. gingivalis vesicles, Staphylococcus aureus coaggregated with Streptococcus spp., and the mycelium-type Candida albicans, but not the yeast type. Autoaggregation of S. aureus in the presence of P. gingivalis vesicles is inhibited by L-arginine, L-lysine, and L-cysteine. Both the methicillin-sensitive (MSSA) and -resistant (MRSA) strains of S. aureus were able to coaggregate with Streptococcus spp., A. naeslundii, and A. viscosus when they were treated with P. gingivalis vesicles. P. gingivalis vesicle-treated mycelium-type C. albicans coaggregated with S. aureus, but the yeast-type did not. These results indicate that strains of S. aureus, including MRSA, could adhere to oral biofilms in dental plaque on the tooth surface or in the gingival crevice when P. gingivalis is present.  相似文献   

14.
Multiplex FISH analysis of a six-species bacterial biofilm   总被引:7,自引:0,他引:7  
Established procedures use different and seemingly incompatible experimental protocols for fluorescent in situ hybridization (FISH) with Gram-negative and Gram-positive bacteria. The aim of this study was to develop a procedure, based on FISH and confocal laser scanning microscopy (CLSM), for the analysis of the spatial organization of in vitro biofilms containing both Gram-negative and Gram-positive oral bacteria. Biofilms composed of the six oral species Actinomyces naeslundii, Candida albicans, Fusobacterium nucleatum, Streptococcus oralis, Streptococcus sobrinus, and Veillonella dispar were grown anaerobically for 64.5 h at 37 degrees C on hydroxyapatite disks preconditioned with saliva. Conditions for the simultaneous in situ hybridization of both Gram-negative and Gram-positive bacteria were sought by systematic variation of fixation and exposure to lysozyme. After fixation and permeabilization biofilms were labeled by FISH with 16S rRNA-targeted oligonucleotide probes ANA103 (for the detection of A. naeslundii), EUK116 (C. albicans), FUS664 (F. nucleatum), MIT447 and MIT588 (S. oralis), SOB174 (S. sobrinus), and VEI217 (V. dispar). Probes were used as 6-FAM, Cy3 or Cy5 conjugates, resulting in green, orange-red or deep-red fluorescence of target cells, respectively. Thus, with two independent triple-hybridizations with three probes carrying different fluorescence-tags, all six species could be visualized. Results show that the simultaneous investigation by FISH of complex biofilms composed of multiple bacterial species with differential Gram-staining properties is possible. In combination with the optical sectioning properties of CLSM the technique holds great promise for the analysis of spatial alterations in biofilm composition in response to environmental challenges.  相似文献   

15.
Coaggregation of Porphyromonas gingivalis and Prevotella intermedia.   总被引:1,自引:0,他引:1  
Porphyromonas gingivalis cells coaggregated with Prevotella intermedia cells. The coaggregation was inhibited with L-arginine, L-lysine, Nalpha-p-tosyl-L-lysine chloromethyl ketone, trypsin inhibitor, and leupeptin. Heat- and proteinase K-treated P. gingivalis cells showed no coaggregation with P. intermedia cells, whereas heat and proteinase K treatments of P. intermedia cells did not affect the coaggregation. The vesicles from P. gingivalis culture supernatant aggregated with P. intermedia cells, and this aggregation was also inhibited by addition of L-arginine or L-lysine and by heat treatment of the vesicles. The rgpA rgpB, rgpA kgp, rgpA rgpB kgp, and rgpA kgp hagA mutants of P. gingivalis did not coaggregate with P. intermedia. On the other hand, the fimA mutant lacking the FimA fimbriae showed coaggregation with P. intermedia as well as the wild type parent. These results strongly imply that a heat-labile and proteinous factor on the cell surface of P gingivalis, most likely the gingipain-adhesin complex, is involved in coaggregation of P. gingivalis and P. intermedia.  相似文献   

16.
Oral bacterial biofilms trigger chronic inflammatory responses in the host that can result in the tissue destructive events of periodontitis. However, the characteristics of the capacity of specific host cell types to respond to these biofilms remain ill-defined. This report describes the use of a novel model of bacterial biofilms to stimulate oral epithelial cells and profile select cytokines and chemokines that contribute to the local inflammatory environment in the periodontium. Monoinfection biofilms were developed with Streptococcus sanguinis, Streptococcus oralis, Streptococcus gordonii, Actinomyces naeslundii, Fusobacterium nucleatum, and Porphyromonas gingivalis on rigid gas-permeable contact lenses. Biofilms, as well as planktonic cultures of these same bacterial species, were incubated under anaerobic conditions with a human oral epithelial cell line, OKF4, for up to 24h. Gro-1α, IL1α, IL-6, IL-8, TGFα, Fractalkine, MIP-1α, and IP-10 were shown to be produced in response to a range of the planktonic or biofilm forms of these species. P. gingivalis biofilms significantly inhibited the production of all of these cytokines and chemokines, except MIP-1α. Generally, the biofilms of all species inhibited Gro-1α, TGFα, and Fractalkine production, while F. nucleatum biofilms stimulated significant increases in IL-1α, IL-6, IL-8, and IP-10. A. naeslundii biofilms induced elevated levels of IL-6, IL-8 and IP-10. The oral streptococcal species in biofilms or planktonic forms were poor stimulants for any of these mediators from the epithelial cells. The results of these studies demonstrate that oral bacteria in biofilms elicit a substantially different profile of responses compared to planktonic bacteria of the same species. Moreover, certain oral species are highly stimulatory when in biofilms and interact with host cell receptors to trigger pathways of responses that appear quite divergent from individual bacteria.  相似文献   

17.
Growth stimulation of Treponema denticola by periodontal microorganisms   总被引:2,自引:0,他引:2  
Previous experiments have indicated that enrichment of subgingival plaque in human serum can lead to the accumulation of Treponema denticola. T. denticola depends on bacterial interactions for its growth in serum. Aim of the present study was to identify specific microorganisms involved in the growth stimulation of T. denticola. To this end, strains isolated from previous plaque enrichment cultures were tested for growth stimulation in co-cultures with T. denticola. In addition, growth of T. denticola was tested in culture filtrates of the same strains, Bacteroides intermedius, Eubacterium nodatum, Veillonella parvula and Fusobacterium nucleatum were found to enhance growth of T. denticola in co-cultures. A continuous co-culture of T. denticola, F. nucleatum and B. intermedius in human serum gave very high levels of T. denticola, up to 3.10(9).ml-1. Mechanisms involved in growth stimulation may include the ability of B. intermedius and E. nodatum to cleave the protein-core of serum (glyco-)proteins, making these molecules accessible for degradation by T. denticola. In addition, E. nodatum was found to produce a low-molecular weight growth-factor for T. denticola, that was heat-stable and acid as well as alkaline resistant. V. parvula may provide peptidase activities complementary to those of T. denticola. The nature of the growth enhancing activity of F. nucleatum is yet unknown. The data support the dependency of T. denticola on other bacterial species for growth in the periodontal pocket.  相似文献   

18.
To characterize the ability of bifidobacteria to affect the production of macrophage-derived cytokines, a murine macrophage-like cell line, J774.1, was cultured in the presence of 27 strains of heat-inactivated bifidobacteria. Bifidobacterium adolescentis and B. longum, known as adult-type bifidobacteria, induced significantly more pro-inflammatory cytokine secretion, IL-12 and TNF-alpha, by J774.1 cells, than did the infant-type bifidobacteria, B. bifidum, B. breve, and B. infantis (P<0.01). In contrast, B. adolescentis did not stimulate the production of anti-inflammatory IL-10 from J774.1 cells as the other tested bacteria did. The results suggest that the adult-type bifidobacteria, especially B. adolescentis, may be more potent to amplify but less able to down-regulate the inflammatory response.  相似文献   

19.
Streptococcus salivarius HB and four adhesion deficient mutants, HB-7, HB-V5, HB-V51 and HB-B, were grown in continuous culture in a defined medium under glucose limitation over a range of growth rates from 0.1 to 1.1 h-1. The ability to coaggregate with Veillonella parvula V1 cells and the ability to adhere to buccal epithelial cells did not alter with increasing growth rate. Cell surface hydrophobicity decreased markedly with increasing growth rate for the non-fibrillar non-adhesive mutant HB-B but not for the other four strains which all carry different combinations of fibril classes. The thickness of the ruthenium red staining layer (RRL) also varied with growth rate for strain HB-B, ranging from 19.5 +/- 3.8 nm at high growth rate to a minimum of 12.3 +/- 4.8 nm at low growth rate. Low cell surface hydrophobicity correlated with a thicker RRL for strain HB-B. Strains HB-V5 and HB-7 also showed a significant increase in RRL thickness at high growth rates although to a lesser degree than HB-B. SDS-PAGE revealed a large number of protein bands common to all strains at all growth rates, with the major common protein occurring at 15.6 kDa. Protein bands at 70, 56, 40.5 and 39 kDa appeared stronger at high growth rates than at low. A protein band at 82 kDa showed strongly only at low growth rates. Therefore, adhesion and coaggregation are not phenotypically variable with increasing growth rate but RRL thickness, hydrophobicity and cell surface proteins may be phenotypically variable depending on the strain.  相似文献   

20.
Oral biofilms comprise complex multispecies consortia aided by specific inter- and intraspecies interactions occurring among commensals and pathogenic bacterial species. Oral biofilms are primary initiating factors of periodontal disease, although complex multifactorial biological influences, including host cell responses, contribute to the individual outcome of the disease. To provide a system to study initial stages of interaction between oral biofilms and the host cells that contribute to the disease process, we developed a novel in vitro model system to grow biofilms on rigid gas-permeable contact lenses (RGPLs), which enable oxygen to permeate through the lens material. Bacterial species belonging to early- and late-colonizing groups were successfully established as single- or three-species biofilms, with each group comprising Streptococcus gordonii, Streptococcus oralis, and Streptococcus sanguinis; S. gordonii, Actinomyces naeslundii, and Fusobacterium nucleatum; or S. gordonii, F. nucleatum, and Porphyromonas gingivalis. Quantification of biofilm numbers by quantitative PCR (qPCR) revealed substantial differences in the magnitude of bacterial numbers in single-species and multispecies biofilms. We evaluated cell-permeable conventional nucleic acid stains acridine orange, hexidium iodide, and Hoechst 33258 and novel SYTO red, blue, and green fluorochromes for their effect on bacterial viability and fluorescence yield to allow visualization of the aggregates of individual bacterial species by confocal laser scanning microscopy (CLSM). Substantial differences in the quantity and distribution of the species in the multispecies biofilms were identified. The specific features of these biofilms may help us better understand the role of various bacteria in local challenge of oral tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号