首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Native Americans have been divided into three linguistic groups: the reasonably well-defined Eskaleut and Nadene of northern North America and the highly heterogeneous Amerind of North, Central, and South America. The heterogeneity of the Amerinds has been proposed to be the result of either multiple independent migrations or a single ancient migration with extensive in situ radiation. To investigate the origin and interrelationship of the American Indians, we examined the mitochondrial DNA (mtDNA) variation in 87 Amerinds (Pima, Maya, and Ticuna of North, Central, and South America, respectively), 80 Nadene (Dogrib and Tlingit of northwest North America and Navajo of the southwest North America), and 153 Asians from 7 diverse populations. American Indian mtDNAs were found to be directly descended from five founding Asian mtDNAs and to cluster into four lineages, each characterized by a different rare Asian mtDNA marker. Lineage A is defined by a HaeIII site gain at np 663, lineage B by a 9-bp deletion between the COII and tRNA(Lys) genes, lineage C by a HincII site loss at np 13259, and lineage D by an AluI site loss at np 5176. The North, Central, and South America Amerinds were found to harbor all four lineages, demonstrating that the Amerinds originated from a common ancestral genetic stock. The genetic variation of three of the four Amerind lineages (A, C, and D) was similar with a mean value of 0.084%, whereas the sequence variation in the fourth lineage (B) was much lower, raising the possibility of an independent arrival. By contrast, the Nadene mtDNAs were predominantly from lineage A, with 27% of them having a Nadene-specific RsaI site loss at np 16329. The accumulated Nadene variation was only 0.021%. These results demonstrate that the Amerind mtDNAs arose from one or maybe two Asian migrations that were distinct from the migration of the Nadene and that the Amerind populations are about four times older than the Nadene.  相似文献   

2.
Mitochondrial DNA of Yakuts has been compared to those of other Asian populations that belong to the Turkic, Mongolic, and Manchu-Tungusic linguistic groups. Haplogroups C and D proved to be the most frequent ones in Yakuts. In contrast to other Asian populations, subcluster D5a is major in Yakuts. The results have demonstrated that Yakuts are close to Tuvinians and Altaians in maternal lineage.  相似文献   

3.
Tarskaia LA  Melton P 《Genetika》2006,42(12):1703-1711
Mitochondrial DNA of Yakuts has been compared to those of other Asian populations that belong to the Turkic, Mongolic, and Manchu-Tungusic linguistic groups. Haplogroups C and D proved to be the most frequent ones in Yakuts. In contrast to other Asian populations, subcluster D5a is major in Yakuts. The results have demonstrated that Yakuts are close to Tuvinians and Altaians in maternal lineage.  相似文献   

4.
云南18个民族Y染色体双等位基因单倍型频率的主成分分析   总被引:10,自引:2,他引:8  
世居云南的少数民族中。壮、傣、水、布依、布朗、德昂、佤、彝、白、怒、哈尼、傈僳、拉祜、纳西、景颇、阿昌、基诺和独龙18个民族是由“羌”、“濮”、“越”3大部落群体演化而来,是云南的土著居民。利用PCR-RFLP方法对这18个土著民族进行Y染色体上13个双等位基因位点进行基因分型。结果显示,不同历史族源的民族群体在Y染色体双等位基因单倍型分布上具有一定的差异:在百越后裔民族群体中以单倍型H11、H12为主要分布;在氐羌后裔民族中以单倍型H5、H6和H8为主要分布;在百濮后裔民族群体中主要单倍型分布为H6、H8和H11。进一步主成分分析表明,百越后裔民族群体和氐羌后裔民族在主成分图上聚为两组,提示父系基因库有不同的来源,与历史记载相印证。  相似文献   

5.

Background

The geographical position of Maharashtra state makes it rather essential to study the dispersal of modern humans in South Asia. Several hypotheses have been proposed to explain the cultural, linguistic and geographical affinity of the populations living in Maharashtra state with other South Asian populations. The genetic origin of populations living in this state is poorly understood and hitherto been described at low molecular resolution level.

Methodology/Principal Findings

To address this issue, we have analyzed the mitochondrial DNA (mtDNA) of 185 individuals and NRY (non-recombining region of Y chromosome) of 98 individuals belonging to two major tribal populations of Maharashtra, and compared their molecular variations with that of 54 South Asian contemporary populations of adjacent states. Inter and intra population comparisons reveal that the maternal gene pool of Maharashtra state populations is composed of mainly South Asian haplogroups with traces of east and west Eurasian haplogroups, while the paternal haplogroups comprise the South Asian as well as signature of near eastern specific haplogroup J2a.

Conclusions/Significance

Our analysis suggests that Indian populations, including Maharashtra state, are largely derived from Paleolithic ancient settlers; however, a more recent (∼10 Ky older) detectable paternal gene flow from west Asia is well reflected in the present study. These findings reveal movement of populations to Maharashtra through the western coast rather than mainland where Western Ghats-Vindhya Mountains and Narmada-Tapti rivers might have acted as a natural barrier. Comparing the Maharastrian populations with other South Asian populations reveals that they have a closer affinity with the South Indian than with the Central Indian populations.  相似文献   

6.
Mesoamerica, defined as the broad linguistic and cultural area from middle southern Mexico to Costa Rica, might have played a pivotal role during the colonization of the American continent. The Mesoamerican isthmus has constituted an important geographic barrier that has severely restricted gene flow between North and South America in pre-historical times. Although the Native American component has been already described in admixed Mexican populations, few studies have been carried out in native Mexican populations. In this study, we present mitochondrial DNA (mtDNA) sequence data for the first hypervariable region (HVR-I) in 477 unrelated individuals belonging to 11 different native populations from Mexico. Almost all of the Native Mexican mtDNAs could be classified into the four pan-Amerindian haplogroups (A2, B2, C1, and D1); only two of them could be allocated to the rare Native American lineage D4h3. Their haplogroup phylogenies are clearly star-like, as expected from relatively young populations that have experienced diverse episodes of genetic drift (e.g., extensive isolation, genetic drift, and founder effects) and posterior population expansions. In agreement with this observation, Native Mexican populations show a high degree of heterogeneity in their patterns of haplogroup frequencies. Haplogroup X2a was absent in our samples, supporting previous observations where this clade was only detected in the American northernmost areas. The search for identical sequences in the American continent shows that, although Native Mexican populations seem to show a closer relationship to North American populations, they cannot be related to a single geographical region within the continent. Finally, we did not find significant population structure in the maternal lineages when considering the four main and distinct linguistic groups represented in our Mexican samples (Oto-Manguean, Uto-Aztecan, Tarascan, and Mayan), suggesting that genetic divergence predates linguistic diversification in Mexico.  相似文献   

7.
Mitochondrial DNA (mtDNA) polymorphisms in the D-loop region and the intergenic COII/tRNA(Lys) 9-bp deletion were examined in 180 individuals from all nine aboriginal Taiwanese groups: Atayal, Saisiat, Bunun, Tsou, Rukai, Paiwan, Ami, Puyuma, and Yami. A comparison of 563-bp sequences showed that there were 61 different sequence types, of which 42 types were specific to respective aboriginal groups. D-loop sequence variation and phylogenetic analysis enabled the 180 aboriginal lineages to be classified into eight monophyletic clusters (designated C1-C8). Phylogeographic analysis revealed that two (C2 and C4) of the eight clusters were new characteristic clusters of aboriginal Taiwanese and accounted for 8.3% and 13.9% of the aboriginal lineages, respectively. From the estimated coalescent times for the two unique clusters, the mtDNA lineages leading to such clusters were inferred to have been introduced into Taiwan approximately 11,000-26,000 years ago, suggesting ancient immigrations of the two mtDNA lineages. Genetic distances, based on net nucleotide diversities between populations, revealed three distinct clusters that were comprised of northern mountain (Atayal and Saisiat), southern mountain (Rukai and Paiwan), and middle mountain/east coast (Bunun, Tsou, Ami, Puyuma, and Yami) groups, respectively. Furthermore, phylogenetic analysis of 16 human populations (including six other Asian populations and one African population) confirmed that the three clusters for aboriginal Taiwanese had remained largely intact. Each of the clusters (north, south, and middle-east coast) was characterized by a high frequency of a particular lineage (C4, C2, and 9-bp deletion, respectively). This may result from random genetic drift among the aboriginal groups after a single introduction of all the mtDNA lineages into Taiwan, but another plausible explanation is that at least three genetically distinct ancestral populations have contributed to the maternal gene pool of aboriginal Taiwanese.  相似文献   

8.
Linguistic and genetic studies on Roma populations inhabited in Europe have unequivocally traced these populations to the Indian subcontinent. However, the exact parental population group and time of the out-of-India dispersal have remained disputed. In the absence of archaeological records and with only scanty historical documentation of the Roma, comparative linguistic studies were the first to identify their Indian origin. Recently, molecular studies on the basis of disease-causing mutations and haploid DNA markers (i.e. mtDNA and Y-chromosome) supported the linguistic view. The presence of Indian-specific Y-chromosome haplogroup H1a1a-M82 and mtDNA haplogroups M5a1, M18 and M35b among Roma has corroborated that their South Asian origins and later admixture with Near Eastern and European populations. However, previous studies have left unanswered questions about the exact parental population groups in South Asia. Here we present a detailed phylogeographical study of Y-chromosomal haplogroup H1a1a-M82 in a data set of more than 10,000 global samples to discern a more precise ancestral source of European Romani populations. The phylogeographical patterns and diversity estimates indicate an early origin of this haplogroup in the Indian subcontinent and its further expansion to other regions. Tellingly, the short tandem repeat (STR) based network of H1a1a-M82 lineages displayed the closest connection of Romani haplotypes with the traditional scheduled caste and scheduled tribe population groups of northwestern India.  相似文献   

9.
Six enzyme polymorphisms have been studied in European and Asian populations, using kinship as an index of genetic differentiation. Four clusters of populations are apparent, corresponding to four geographical regions. The differences between such groups account for a large fraction of genetic diversity, while minor differences are apparent between populations belonging to the same continent or subcontinent. The kinship as bioassayed from three loci (GLO, ESD, 6-PGD) correlates significantly with space, showing an exponential decline with the increase of distance between populations.  相似文献   

10.
Recent analyses of mitochondrial genomes from Native Americans have brought the overall number of recognized maternal founding lineages from just four to a current count of 15. However, because of their relative low frequency, almost nothing is known for some of these lineages. This leaves a considerable void in understanding the events that led to the colonization of the Americas following the Last Glacial Maximum (LGM). In this study, we identified and completely sequenced 14 mitochondrial DNAs belonging to one extremely rare Native American lineage known as haplogroup C4c. Its age and geographical distribution raise the possibility that C4c marked the Paleo-Indian group(s) that entered North America from Beringia through the ice-free corridor between the Laurentide and Cordilleran ice sheets. The similarities in ages andgeographical distributions for C4c and the previously analyzed X2a lineage provide support to the scenario of a dual origin for Paleo-Indians. Taking into account that C4c is deeply rooted in the Asian portion of the mtDNA phylogeny and is indubitably of Asian origin, the finding that C4c and X2a are characterized by parallel genetic histories definitively dismisses the controversial hypothesis of an Atlantic glacial entry route into North America.  相似文献   

11.
The musk shrew (Suncus murinus) is a small mammalian species belonging to Insectivora. It is widely distributed in Asia. To identify the genetic relationship among wild musk shrew populations and examine its migration route, we investigated the populations of Cambodia and Bhutan by using mitochondrial DNA restriction fragment length polymorphism analysis and compared them with other Asian populations previously described. Four haplotypes were detected in Cambodia and eight in Bhutan. A total of 53 haplotypes were detected in Asia and were classified largely into two groups, the Continental and Island types, based on a minimum spanning network. From the distribution of mtDNA types in wild musk shrews, three major population groups are identified in Asia: South Asia, Southeast Asia, and Malay. It is suggested that the Malay population group was a mix of South and Southeast Asian population groups and that this was a contact area of the two groups. In addition, other contact areas between the South and Southeast Asian groups exist in Myanmar, but unlike the Malay, the Myanmar area was the border of these groups.  相似文献   

12.
South America is home to one of the most culturally diverse present-day native populations. However, the dispersion pattern, genetic substructure, and demographic complexity within South America are still poorly understood. Based on genome-wide data of 58 native populations, we provide a comprehensive scenario of South American indigenous groups considering the genomic, environmental, and linguistic data. Clear patterns of genetic structure were inferred among the South American natives, presenting at least four primary genetic clusters in the Amazonian and savanna regions and three clusters in the Andes and Pacific coast. We detected a cline of genetic variation along a west-east axis, contradicting a hard Andes-Amazon divide. This longitudinal genetic variation seemed to have been shaped by both serial population bottlenecks and isolation by distance. Results indicated that present-day South American substructures recapitulate ancient macroregional ancestries and western Amazonia groups show genetic evidence of cultural exchanges that led to language replacement in precontact times. Finally, demographic inferences pointed to a higher resilience of the western South American groups regarding population collapses caused by the European invasion and indicated precontact population reductions and demic expansions in South America.  相似文献   

13.
On the basis of GM and KM typing and language, approximately 28,000 Amerindians were divided into 4 groups of populations: non-Nadene South American (8 groups), non-Nadene North American (7 groups), Nadene (4 groups), and Eskaleuts (6 groups). These groups were compared to four groups of Asian populations. The distribution of GM haplotypes differed significantly among and within these groups as measured by chi-square analysis. Furthermore, as reflected in a maximum linkage cluster analysis, Amerindian populations in general cluster along geographic divisions, with Eskaleuts and Nadenes clustering with the Asian populations and non-Nadene North American and non-Nadene South American populations forming two additional clusters. Based on GM haplotype data and other genetic polymorphisms, the divisions appear to reflect populations that entered the New World at different times. It appears that the South American non-Nadene populations are the oldest, characterized by the haplotypes GM*A G and GM*X G, whereas later North American non-Nadene populations are characterized by high frequencies of GM*A G and low frequencies of GM*X G and GM*A T. In contrast, Eskaleuts appear to have only GM*A G and GM*A T. The Nadene speakers have GM*X G and GM*A T in higher and approximately equal frequencies. Maximum linkage cluster analysis places the Alaskan Athapaskans closest to northwestern Siberian populations and the Eskaleuts closest to the Chukchi, their closest Asian neighbor. These analyses, when combined with other data, suggest that, in the peopling of the New World, at least four separate migrant groups crossed Beringia at various times. It appears likely that the South American non-Nadene entered the New World before 17,000 years B.P. and that the North American non-Nadene entered in the immediate postglacial period, with the Eskaleut and Nadene arriving at a later date.  相似文献   

14.
This study sought to assess mitochondrial DNA (mtDNA) diversity and phylogeographic structure of chickens from five agro‐ecological zones of Zimbabwe. Furthermore, chickens from Zimbabwe were compared with populations from other geographical regions (Malawi, Sudan and Germany) and other management systems (broiler and layer purebred lines). Finally, haplotypes of these animals were aligned to chicken sequences, taken from GenBank, that reflected populations of presumed centres of domestication. A 455‐bp fragment of the mtDNA D‐loop region was sequenced in 283 chickens of 14 populations. Thirty‐two variable sites that defined 34 haplotypes were observed. In Zimbabwean chickens, diversity within ecotypes accounted for 96.8% of the variation, indicating little differentiation between ecotypes. The 34 haplotypes clustered into three clades that corresponded to (i) Zimbabwean and Malawian chickens, (ii) broiler and layer purebred lines and Northwest European chickens, and (iii) a mixture of chickens from Zimbabwe, Sudan, Northwest Europe and the purebred lines. Diversity among clades explained more than 80% of the total variation. Results indicated the existence of two distinct maternal lineages evenly distributed among the five Zimbabwean chicken ecotypes. For one of these lineages, chickens from Zimbabwe and Malawi shared major haplotypes with chicken populations that have a Southeast Asian background. The second maternal lineage, probably from the Indian subcontinent, was common to the five Zimbabwean chicken ecotypes, Sudanese and Northwest European chickens as well as purebred broiler and layer chicken lines. A third maternal lineage excluded Zimbabwean and other African chickens and clustered with haplotypes presumably originating from South China.  相似文献   

15.
The mtDNA polymorphism was analyzed in eight ethnic groups (N = 979) of the Volga-Ural region. Most mtDNA variants belonged to haplogroups H, U, T, J, W, I, R, and N1 characteristic of West Eurasian populations. The most frequent were haplogroups H (12-42%) and U (18-44%). East Eurasian mtDNA types (A, B, Y, F, M, N9) were also observed. Genetic diversity was higher in Turkic than in Finno-Ugric populations. The frequency of mtDNA types characteristic of Siberian and Central Asian populations substantially increased in the ethnic groups living closer to the Urals, a boundary between Europe and Asia. Geographic distances, rather than linguistic barriers, were assumed to play the major role in distribution of mtDNA types in the Volga-Ural region. Thus, as concerns the maternal lineage, the Finno-Ugric populations of the region proved to be more similar to their Turkic neighbors rather than to linguistically related Balto-Finnish ethnic groups.  相似文献   

16.
The mtDNA composition of two Muslim sects from the northern Indian province of Uttar Pradesh, the Sunni and Shia, have been delineated using sequence information from hypervariable regions 1 and 2 (HVI and HVII, respectively) as well as coding region polymorphisms. A comparison of this data to that from Middle Eastern, Central Asian, North East African, and other Indian groups reveals that, at the mtDNA haplogroup level, both of these Indo-Sunni and Indo-Shia populations are more similar to each other and other Indian groups than to those from the other regions. In addition, these two Muslim sects exhibit a conspicuous absence of West Asian mtDNA haplogroups suggesting that their maternal lineages are of Indian origin. Furthermore, it is noteworthy that the maternal lineage data indicates differences between the Sunni and Shia collections of Uttar Pradesh with respect to the relative distributions of Indian-specific M sub-haplogroups (Indo Shia > Indo Sunni) and the R haplogroup (Indo Sunni > Indo Shia), a disparity that does not appear to be related to social status or geographic regions within India. Finally, the mtDNA data integrated with the Y-chromosome results from an earlier study, which indicated a major Indian genetic (Y-chromosomal) contribution as well, suggests a scenario of Hindu to Islamic conversion in these two populations. However, given the substantial level of the African/Middle Eastern YAP lineage in the Indo-Shia versus its absence in the Indo-Sunni, it is likely that this conversion was somewhat gender biased in favor of females in the Indo-Shia.  相似文献   

17.
Mitochondrial DNA haplotype studies have been useful in unraveling the origins of Native Americans. Such studies are based on restriction site and intergenic deletion/insertion polymorphisms, which define four main haplotype groups common to Asian and American populations. Several studies have characterized these lineages in North, Central, and South American Amerindian, as well as Na Dene and Aleutian populations. Siberian, Central Asian, and Southeast Asian populations have also been analyzed, in the hope of fully depicting the route(s) of migration between Asia and America. Colombia, a key route of migration between North and South America, has until now not been studied. To resolve the current lack of information about Colombian Amerindian populations, we have investigated the presence of the founder haplogroups in 25 different ethnic groups from all over the country. The present research is part of an interdisciplinary program, Expedición Humana, fostered by the Universidad Javeriana and Dr. J. E. Bernal V. The results show the presence of the four founder A-D Amerindian lineages, with varied distributions in the different populations, as well as the presence of other haplotypes in frequencies ranging from 3% to 26%. These include some unique or private polymorphisms, and also indicate the probable presence of other Asian and a few non-Amerindian lineages. A spatial structure is apparent for haplogroups A and D, and to a lesser extent for haplogroup C. While haplogroup A and D frequencies in Colombian populations from the northwestern side of the Andes resemble those seen in Central American Amerindians more than those seen in South American populations, their frequencies on the southeastern side more closely resemble the bulk of South American frequencies so far reported, raising the question as to whether they reflect more than one migration route into South America. High frequencies of the B lineage are also characteristic of some populations. Our observations may be explained by historical events during the pre-Columbian dispersion of the first settlers and, later, by disruptions caused by the European colonization.  相似文献   

18.
Thailand and Laos, located in the center of Mainland Southeast Asia (MSEA), harbor diverse ethnolinguistic groups encompassing all five language families of MSEA: Tai-Kadai (TK), Austroasiatic (AA), Sino-Tibetan (ST), Hmong-Mien (HM), and Austronesian (AN). Previous genetic studies of Thai/Lao populations have focused almost exclusively on uniparental markers and there is a paucity of genome-wide studies. We therefore generated genome-wide SNP data for 33 ethnolinguistic groups, belonging to the five MSEA language families from Thailand and Laos, and analyzed these together with data from modern Asian populations and SEA ancient samples. Overall, we find genetic structure according to language family, albeit with heterogeneity in the AA-, HM-, and ST-speaking groups, and in the hill tribes, that reflects both population interactions and genetic drift. For the TK speaking groups, we find localized genetic structure that is driven by different levels of interaction with other groups in the same geographic region. Several Thai groups exhibit admixture from South Asia, which we date to ∼600–1000 years ago, corresponding to a time of intensive international trade networks that had a major cultural impact on Thailand. An AN group from Southern Thailand shows both South Asian admixture as well as overall affinities with AA-speaking groups in the region, suggesting an impact of cultural diffusion. Overall, we provide the first detailed insights into the genetic profiles of Thai/Lao ethnolinguistic groups, which should be helpful for reconstructing human genetic history in MSEA and selecting populations for participation in ongoing whole genome sequence and biomedical studies.  相似文献   

19.
Previous genetic, anthropological and linguistic studies have shown that Roma (Gypsies) constitute a founder population dispersed throughout Europe whose origins might be traced to the Indian subcontinent. Linguistic and anthropological evidence point to Indo-Aryan ethnic groups from North-western India as the ancestral parental population of Roma. Recently, a strong genetic hint supporting this theory came from a study of a private mutation causing primary congenital glaucoma. In the present study, complete mitochondrial control sequences of Iberian Roma and previously published maternal lineages of other European Roma were analyzed in order to establish the genetic affinities among Roma groups, determine the degree of admixture with neighbouring populations, infer the migration routes followed since the first arrival to Europe, and survey the origin of Roma within the Indian subcontinent. Our results show that the maternal lineage composition in the Roma groups follows a pattern of different migration routes, with several founder effects, and low effective population sizes along their dispersal. Our data allowed the confirmation of a North/West migration route shared by Polish, Lithuanian and Iberian Roma. Additionally, eleven Roma founder lineages were identified and degrees of admixture with host populations were estimated. Finally, the comparison with an extensive database of Indian sequences allowed us to identify the Punjab state, in North-western India, as the putative ancestral homeland of the European Roma, in agreement with previous linguistic and anthropological studies.  相似文献   

20.
We report the distribution of the APOB signal peptide polymorphism in 5 native populations of South America: 2 samples of Mataco and 1 sample each of Pilagá and Toba from the Argentinian Chaco and 1 sample of Ache from the Paraguay forest. A randomly selected subsample of a previously studied sample from the Cayapa of Ecuador (Scacchi et al. 1997) was reanalyzed to investigate probable differences attributable to sampling, laboratory techniques, or interobserver error. The polymorphism observed in the signal peptide region of the APOB gene among native populations of South America exhibits the same range of variation found among geographic continental populations, confirming the high genetic heterogeneity of South Amerindians. Extremes in the allele prevalences were found among the Mataco and Ache, populations not far apart geographically. The small differences in genotype and allele frequencies between the subsample of the Cayapa analyzed here and the original Cayapa sample and between the 2 Mataco samples were not statistically significant and most likely were due to sampling error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号