首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
A new strategy for the purification of rabbit reticulocyte haem-controlled eIF-2 alpha kinase is described, based on the fact that this kinase can be self-phosphorylated in several sites. Incubation of partially purified kinase with ATP changes its behaviour on anion exchangers sufficiently to separate it from almost all contaminating proteins.  相似文献   

2.
Helenalin, a sesquiterpene lactone which reacts primarily with exposed sulfhydryl groups, was shown to be an effective inhibitor of protein synthesis in rabbit reticulocyte lysates. Optimal inhibition required a 30 min preincubation in the absence of any added thiol compound. β-Mercaptoethanol was more effective than reduced glutathione in protecting enzyme sulfhydryl groups from inactivation by helenalin. Using partially fractionated systems, it was possible to show that helenalin had no effect on the elongation reactions or on the formation of the ternary initiation complex. However, the conversion of the ternary complex to the 48 S initiation complex was strongly inhibited. In this assay, only the initiation factor(s) were sensitive to helenalin. Using an assay system which requires all the initiation factors for optimal activity it was possible to show that the 0–40% ammonium sulfate cut of intiation factors (containing eIF-3 and eIF-4B) was sensitive to helenalin, while the 40–50% ammonium sulfate cut (containing eIF-2 and eIF-5) was not. Both ammonium sulfate cuts were equally sensitive to inhibition by the sulfhydryl reagent N-ethylmaleimide. Three purified rabbit reticulocyte initiation factors were then tested in the same assay system. Only eIF-3 showed appreciable sensitivity to helenalin, while eIF-2, eIF-3 and eIF-4B were all sensitive to inactivation by N-ethylmaleimide. These data suggest that helenalin may possess a relatively high degree of specificity as a sulfhydryl reagent.  相似文献   

3.
The AMP-activated protein kinase (AMPK) is a heterotrimeric protein composed of a catalytic subunit and two regulatory subunits, β and γ. The γ subunit is essential for enzyme activity by virtue of its binding to the C-terminus of the subunit and appears to play some role in the determination of AMP sensitivity. We demonstrate that a γ1R70Q mutation causes a marked increase in AMPK activity and renders it largely AMP-independent. This activation is associated with increased phosphorylation of the subunit activation loop T172. These in vitro characteristics of AMPK are also reflected in increased intracellular phosphorylation of one of its major substrates, acetyl-CoA carboxylase. These data illustrate the importance of the γ1 subunit in the regulation of AMPK and its modulation by AMP.  相似文献   

4.
Core particle DNA unfolding and refolding are followed by stopped-flow circular dichroism technique. When core particles are dissociated in the stopped-flow cuvette, the high CD deviation corresponding to the dissociated state is reached in the first millisecond, which means that the dissociation process is completed within the dead time of the apparatus which is ~1 ms. The same conclusion can be drawn when core particles are reassociated, since the low CD value, typical of the associated state, is immediately reached. Similarly histone release from chromatin is a very fast process. We also include some points of discussion about core particle assembly process.  相似文献   

5.
Rat liver casein kinase TS (Ck-TS) having quarternary structure α2β2, autophosphorylates at its 25 kDa, β-subunits, incorporating up to 1.2 mol P/mol enzyme. According to their effects on the autophosphorylation pattern the effectors of Ck-TS activity can be grouped into 3 classes: (i) inhibitors, like heparin, which also prevent the autophosphorylation of the β-subunit; (ii) stimulators possessing several amino groups (like spermine) which increase the autophosphorylation at the β-subunit; (iii) stimulators possessing several guanido groups, like protamines and related peptides, which prevent the phosphorylation of the β-subunit, while promoting the autophosphorylation of the 38 kDa α-subunit. In the presence of such polyarginyl effectors the 130 kDa Ck-TS is converted into forms with higher sedimentation coefficient.  相似文献   

6.
Double-stranded RNA (dsRNA) activates a cyclic 3′: 5′-AMP independent protein kinase (dsI) in reticulocyte lysates which inhibits protein synthesis by phosphorylating the 38, 000 dalton (38K) subunit of the initiation factor eIF-2 (eIF-2α). A latent precursor form of dsI (latent dsI) has been partially purified (1000–2000 fold) from lysates. Activation of dsI at all stages in the purification of latent dsI requires ATP and low levels of dsRNA (1–20 ng/ml), and is accompanied by the phosphorylation of a broad 67,000 dalton (67K) band. However, as purification proceeds the 67K band is resolved into two phosphorylated polypeptides of 68,500 and 67,000 daltons (68.5K67K). Although latent dsI and activated dsI have distinctly different chromatographic properties, both forms have similar molecular weights (~120,000) and similar sedimentation coefficients (~3.8S) in glycerol gradients. The data support the view that one or both components of the 68.5K67K doublet are associated with the dsRNA-dependent protein kinase activity.  相似文献   

7.
Protein kinase CK2 forms complexes with some protein substrates what may be relevant for the physiological control of this protein kinase. In previous studies in rat liver cytosol we had detected that the trimeric form of eukaryotic translation initiation factor 2 (eIF-2) co-eluted with protein kinase CK2. We have now observed that the ratio between eIF-2 and cytosolic CK2 contents in testis, liver and brain is quite similar, being eIF-2 levels about 5-fold higher than those of CK2. Furthermore eIF-2 was present in liver samples immunoprecipitated with anti-CK2/ antibodies, confirming the existence of complexes containing both proteins. Nonetheless, these complexes would represent only a fraction of total cytosolic CK2 and eIF-2.We had also observed that rat liver membrane glycoproteins obtained through chromatography on wheat-germ lectin-Sepharose contain CK2 activity which copurifies with grp94/endoplasmin. We have now confirmed that this activity was due to the presence of protein kinase CK2 as evidenced by immunodetection with antibodies against CK2/. The fractions enriched in grp94/endoplasmin and CK2 also contained another 55-kDa polypeptide (p55) phosphorylated by CK2 which has been identified as calreticulin by N-terminal sequencing. Calreticulin and grp94/endoplasmin could be partially resolved from CK2 by chromatography on heparin-agarose and almost completely on ConA-Sepharose. However, phosphorylation of immunoprecipitated grp94/endoplasmin was enhanced by its preincubation with purified CK2 prior to immunoprecipitation, what confirms the easy reassociation between these proteins.The association of protein kinase CK2 with eIF-2 and with grp94/endoplasmin may serve to locate the enzyme in the cellular machinery involved in protein synthesis and folding, and reinforces the possible involvement of CK2 in these processes.  相似文献   

8.
A Surovoy  D Waidelich  G Jung 《FEBS letters》1992,300(3):259-262
The isoforms of protein kinase C (PKC) present in rat mesangial cells were identified by immunoblot analysis with antibody raised against isotype-specific peptides. In addition to the previously observed - and -subspecies, mesangial cells also express the δ- and ζ-isoenzymes of PKC. On exposure to phorbol 12,13-dibutyrate (PDB) a complete depletion of PKC-δ is observed within 8 h. Removal of PDB results in a recovery of PKC-δ. In contrast, PKC-ζ is unaffected by addition or removal of PDB.  相似文献   

9.
The initiation factor eIF-2 that specifically binds Met-tRNAf and GTP in ternary complex (eIF-2. GTP. Met-tRNAf) has been purified to apparent homogeneity from wheat germ ribosomal salt wash. The purified factor exhibits a sedimentation coefficient of 5 · 5S and an aggregate molecular weight of 122000-daltons for the native protein.A preliminary account of this work was presented at the 66th Annual (1982) Meeting of the Federation of American Societies for Experimental Biology; Fed Proc 41, 1040.  相似文献   

10.
Neuropilin-1 (NRP1) is a multifunctional transmembrane protein which has a short cytoplasmic region with no particular functional domain, and is considered to act as a co-receptor for both VEGFs and semaphorins. However, the molecular mechanisms by which NRP1 carries out such versatile functions are still poorly understood. Here we identified protein kinase CK2 holoenzyme as a novel NRP1 binding protein by our combined purification strategy using epitope-tag immunoprecipitation followed by reverse-phase column chromatography. Further we showed that CK2 binds to the extracellular domain of NRP1 which is also phosphorylated by CK2 both in vitro and in vivo. Our findings of novel molecular interactions and modification of NRP1 may provide a new clue to understand the diverse functions of NRP1.  相似文献   

11.
Double-stranded RNA (dsRNA) inhibits protein synthesis initiation in rabbit reticulocyte lysates by the activation of a latent dsRNA-dependent cAMP-independent protein kinase which phosphorylates the α-subunit of the eukaryotic initiation factor eIF-2. In this study, we describe a dsRNA-like component which is present in preparations of HeLa mRNA (poly A+) isolated from total cytoplasmic RNA. The inhibitory species in the HeLa cytoplasmic mRNA was detected by (a) its ability to inhibit protein synthesis with biphasic kinetics in reticulocyte lysates translating endogenous globin mRNA, and (b) by the inefficient translation of HeLa cytoplasmic mRNA in a nuclease-treated mRNA-dependent reticulocyte lysate. The inhibitory component was characterized as dsRNA by several criteria including (i) the ability to activate the lysate dsRNA-dependent eIF-2α kinase (dsI); (ii) the prevention of both dsI activation and inhibition of protein synthesis by high levels of dsRNA or cAMP; (iii) the reversal of inhibition by eIF-2; and (iv) the inability to inhibit protein synthesis in wheat germ extracts which lack latent dsI. By the same criteria, the putative dsRNA component(s) appears to be absent from preparations of HeLa mRNA isolated exclusively from polyribosomes.  相似文献   

12.
CK1 constitutes a protein kinase subfamily that is involved in many important physiological processes. However, there is limited knowledge about mechanisms that regulate their activity. Isoforms CK1δ and CK1ε were previously shown to autophosphorylate carboxy‐terminal sites, a process which effectively inhibits their catalytic activity. Mass spectrometry of CK1α and splice variant CK1αL has identified the autophosphorylation of the last four carboxyl‐end serines and threonines and also for CK1αS, the same four residues plus threonine‐327 and serine‐332 of the S insert. Autophosphorylation occurs while the recombinant proteins are expressed in Escherichia coli. Mutation of four carboxy‐terminal phosphorylation sites of CK1α to alanine demonstrates that these residues are the principal but not unique sites of autophosphorylation. Treatment of autophosphorylated CK1α and CK1αS with λ phosphatase causes an activation of 80–100% and 300%, respectively. Similar treatment fails to stimulate the CK1α mutants lacking autophosphorylation sites. Incubation of dephosphorylated enzymes with ATP to allow renewed autophosphorylation causes significant inhibition of CK1α and CK1αS. The substrate for these studies was a synthetic canonical peptide for CK1 (RRKDLHDDEEDEAMS*ITA). The stimulation of activity seen upon dephosphorylation of CK1α and CK1αS was also observed using the known CK1 protein substrates DARPP‐32, β‐catenin, and CK2β, which have different CK1 recognition sequences. Autophosphorylation effects on CK1α activity are not due to changes in Kmapp for ATP or for peptide substrate but rather to the catalytic efficiency per pmol of enzyme. This work demonstrates that CK1α and its splice variants can be regulated by their autophosphorylation status. J. Cell. Biochem. 106: 399–408, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
Heme-deficiency and double-stranded RNA (dsRNA) activate distinct cyclic 3':5'-AMP independent protein kinases (HRI and dsI, respectively) in rabbit reticulocyte lysates. These kinases inhibit protein synthesis by phosphorylating the 38,000 daltons (38K) subunit of the initiation factor eIF-2 (eIF-2 alpha). Using separation techniques to obtain a reticulocyte enriched fraction and reticulocyte-free erythrocytes, we have prepared lysates of these fractions from normal human whole blood. Human reticulocyte-enriched lysates contain the hemin-regulated and dsRNA-dependent protein kinases which inhibit protein synthesis and which phosphorylate rabbit eIF-2 alpha. An endogenous 38K polypeptide which co-migrates with rabbit eIF-2 alpha is also phosphorylated. In contrast, human mature erythrocytes contain little or no heme-regulated or dsRNA-dependent eIF-2 alpha kinase activities which are inhibitory of protein synthesis.  相似文献   

14.
Ternary complex formation was studied in reticulocyte lysate supernatants and using rat liver eukaryotic initiation factor-2 (eIF-2) preparations. Haem-deficiency reduced the rate of formation of ternary (Met-tRNAf · GTP · eIF-2) complexes by the eIF-2 in reticulocyte supernatants, the reduction being more marked when complex formation was assayed in the absence of GTP-regenerating capacity. Pretreatment with the haem-controlled repressor (HCR) reduced the rate of ternary complex formation by crude (liver) eIF-2. In contrast, complex formation by an almost homogeneous eIF-2 preparation was unaffected by HCR: sensitivity to HCR was however restored by a factor which catalyses exchange of guanine nucleotides bound to eIF-2.  相似文献   

15.
We generated a set of GFP-tagged chimeras between protein kinase D2 (PKD2) and protein kinase D3 (PKD3) to examine in live cells the contribution of their C-terminal region to their intracellular localization. We found that the catalytic domain of PKD2 and PKD3 can localize to the nucleus when expressed without other kinase domains. However, when the C-terminal tail of PKD2 was added to its catalytic domain, the nuclear localization of the resulting protein was inhibited. In contrast, the nuclear localization of the CD of PKD3 was not inhibited by its C-terminal tail. Furthermore, the exchange of the C-terminal tail of PKD2 and PKD3 in the full-length proteins was sufficient to exchange their intracellular localization. Collectively, these data demonstrate that the short C-terminal tail of these kinases plays a critical role in determining their cytoplasmic/nuclear localization.  相似文献   

16.
Natural vitamin E consists of four different tocopherol and four different tocotrienol homologues (α, β, γ, δ) that all have antioxidant activity. However, recent data indicate that the different vitamin E homologues also have biological activity unrelated to their antioxidant activity. In this review, we discuss the anti-inflammatory properties of the two major forms of vitamin E, α-tocopherol (αT) and γ-tocopherol (γT), and discuss the potential molecular mechanisms involved in these effects. While both tocopherols exhibit anti-inflammatory activity in vitro and in vivo, supplementation with mixed (γT-enriched) tocopherols seems to be more potent than supplementation with αT alone. This may explain the mostly negative outcomes of the recent large-scale interventional chronic disease prevention trials with αT only and thus warrants further investigation.  相似文献   

17.
Pulmonary fibrosis (PF) is chronic and irreversible damage to the lung characterized by fibroblast activation and matrix deposition. Although recently approved novel anti‐fibrotic agents can improve the lung function and survival of patients with PF, the overall outcomes remain poor. In this study, a novel imidazopurine compound, 3‐(2‐chloro‐6‐fluorobenzyl)‐1,6,7‐trimethyl‐1H‐imidazo[2,1‐f]purine‐2,4(3H,8H)‐dione (IM‐1918), markedly inhibited transforming growth factor (TGF)‐β‐stimulated reporter activity and reduced the expression of representative fibrotic markers, such as connective tissue growth factor, fibronectin, collagen and α‐smooth muscle actin, on human lung fibroblasts. However, IM‐1918 neither decreased Smad‐2 and Smad‐3 nor affected p38MAPK and JNK. Instead, IM‐1918 reduced Akt and extracellular signal‐regulated kinase 1/2 phosphorylation increased by TGF‐β. Additionally, IM‐1918 inhibited the phosphorylation of fibroblast growth factor receptors 1 and 3. In a bleomycin‐induced murine lung fibrosis model, IM‐1918 profoundly reduced fibrotic areas and decreased collagen and α‐smooth muscle actin accumulation. These results suggest that IM‐1918 can be applied to treat lung fibrosis.  相似文献   

18.
cGMP-dependent protein kinase (PKG) represents a compelling drug target for treatment of cardiovascular diseases. PKG1 is the major effector of beneficial cGMP signaling which is involved in smooth muscle relaxation and vascular tone, inhibition of platelet aggregation and signaling that leads to cardioprotection. In this study, a novel piperidine series of activators previously identified from an ultrahigh-throughput screen were validated to directly bind partially activated PKG1α and subsequently enhance its kinase activity in a concentration-dependent manner. Compounds from initial optimization efforts showed an ability to activate PKG1α independent of the endogenous activator, cGMP. We demonstrate these small molecule activators mimic the effect of cGMP on the kinetic parameters of PKG1α by positively modulating the KM of the peptide substrate and negatively modulating the apparent KM for ATP with increase in catalytic efficiency, kcat. In addition, these compounds also allosterically modulate the binding affinity of cGMP for PKG1α by increasing the affinity of cGMP for the high-affinity binding site (CNB-A) and decreasing the affinity of cGMP for the low-affinity binding site (CNB-B). We show the mode of action of these activators involves binding to an allosteric site within the regulatory domain, near the CNB-B binding site. To the best of our knowledge, these are the first reported non-cGMP mimetic small molecules shown to directly activate PKG1α. Insights into the mechanism of action of these compounds will enable future development of cardioprotective compounds that function through novel modes of action for the treatment of cardiovascular diseases.  相似文献   

19.
Prolonged activation of protein kinase C (PKC) types and β by tumor-promoting phorbol esters leads to desensitization of the phorbol ester response, downregulation of protein kinase C activity and depletion of the protein kinase C polypeptide. When the γ isoenzyme of PKC is transiently expressed in COS-1 cells and exposed to phorbol esters, PKC-γ is downregulated in COS cells although these cells do not normally express this subtype. A point mutation in the purative ATP-binding site (Lys-380→Met-380) of the protein kinase C γ isoenzyme which results in a kinase-deficient enzyme does not interfere with this downregulation. Our results suggest that autophosphorylation or constitutive signalling through the protein kinase C-γ kinase domain is not a prerequisite for downregulation of PKC activity.  相似文献   

20.
Protein kinase CK2 is a highly pleiotropic enzyme whose high constitutive activity is suspected to be instrumental to the enhancement of the tumour phenotype and to the propagation of infectious diseases. Here we describe a novel compound, 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT), which is superior to the commonly used specific CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) in several respects. DMAT displays the lowest K(i) value ever reported for a CK2 inhibitor (40 nM); it is cell permeable and its efficacy on cultured cells, both in terms of endogenous CK2 inhibition and induction of apoptosis, is several fold higher than that of TBB. The selectivity of DMAT assayed on a panel of >30 protein kinases is comparable to that of TBB, with the additional advantage of being ineffective on protein kinase CK1 up to 200 microM. These properties make DMAT the first choice CK2 inhibitor for in vivo studies available to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号