首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small nuclear ribonucleoprotein particles containing the five major nucleoplasmic snRNAs U1, U2, U4, U5 and U6 as well as two smaller sized snRNAs were purified from broad bean nuclear extracts by anti-m3G, monoclonal antibody, immunoaffinity chromatography. We have so far defined 13 polypeptides of approximate mol. wts. of 11 kd, 11.5 kd, 12.5 kd, 16 kd, 17 kd, 17.5 kd, 18.5 kd, 25 kd (double band), 30 kd, 31 kd, 35 kd, 36 kd and 54 kd. Upon fractionation of the UsnRNPs by anion exchange chromatography, essentially pure U5 snRNPs were obtained, containing the 11 kd, 11.5 kd, 12.5 kd, 16 kd, 17 kd, 17.5 kd, 35 kd and 36 kd polypeptides. These may therefore represent the common snRNP polypeptides and which may also be present in the other snRNPs. By immunoblotting studies, using anti-Sm sera and mouse monoclonal antibodies we show that the 35 kd and 36 kd proteins are immunologically related to the mammalian common B/B' proteins. The broad bean 16 kd and 17 kd proteins appear to share structural elements with the mammalian D protein. The three proteins of mol. wts. 11 kd, 11.5 kd and 12.5 kd probably represent the broad bean polypeptides E, F, and G. Cross-reactivity of proteins of mol. wts of 30 kd and 31 kd with Anti-(U1/U2)RNP antibodies suggests that they may represent the broad bean A and B" polypeptides. The 54 kd protein and the 18.5 kd protein could be candidates for the U1 specific 70 k and C polypeptides. Our results demonstrate a strong similarity between the overall structure of broad bean and mammalian snRNPs.  相似文献   

2.
Summary Polyclonal antibodies have been produced which react with a nuclear protein having a molecular weight of 107kD and a pl of 8.7–8.8 (designated p107). This protein is shown to be a component of the residual ribonucleoprotein (RNP) network of the nuclear matrix. P107 localized exclusively to the nuclear interior but not within nucleolar or chromatin domains. We have taken advantage of this unique probe to examine whether the RNP network of the isolated nuclear matrix has a physical counterpart in situ. We show that RNA, p107, divalent cations and the 28 kD Sm antigen of U-snRNPs are components of in situ macromolecular assemblies. While the morphology and intranuclear distribution of these assemblies are insensitive to the removal of chromatin, they are markedly altered by degradation of RNA. Digestion in situ of RNA in the presence of EDTA followed by extraction with high ionic strength buffers solubilized the components of these assemblies. Electron microscopic and immunobiochemical data are presented which support the concept that the residual RNP network of the nuclear matrix is an isolate of a pre-existing structure, and that perturbations in this internal network can be created by RNA degradation, depletion of essential metal ions and proteolysis.Abbreviations CRLM polyclonal chicken antibody raised against rat liver nuclear matrix - Sm monoclonal antibody specific for the 28 kd protein antigen of U1, U2, U4, U5 and U6 snRNPs - hnRNP ribonucleoprotein particles containing hnRNA - snRNP ribonucleoprotein particles containing snRNA - PBS phosphate buffered saline - PMSF phenylmethylsulfonyl fluoride - PAGE polyacrylamide gel electrophoresis - EDTA ethylenediaminetetraacetic acid - VRC vanadium ribonucleoside complex - BSA bovine serum albumin - DMSO dimethylsulfoxide - HS high salt buffer - LS low salt buffer  相似文献   

3.
Although useful for specific purposes, immunofluorescence, precipitation in agarose gels, and the m.w. estimation of RNA or proteins immunoprecipitated from transformed cells often provide partial or ambiguous definition of autoantibody specificity. We have analyzed organ and cell extracts by one-and two-dimensional electrophoresis together with Western blotting to define the fine specificities of antibodies to the ribonucleoprotein (RNP) antigens Ro, La, Sm, RNP and Jo-1. One-dimensional analysis identified the Ro protein as a 57 kilodalton (kd) protein, although many anti-Ro sera also react with a 50 kd protein. La antisera react with 50 and 43 kd proteins. The 50 kd La protein readily breaks down into 43, 25, and smaller immunoreactive cleavage products. Partial proteolysis of Ro and La proteins in human spleen extracts produces similar immunoreactive products, providing evidence for a common structure. The major immunoreactive Sm antigens defined by human polyclonal antisera and a mouse monoclonal antiserum were doublets of 25/26 and 16/18 kd, whereas anti-RNP sera reacted with a protein of 68 kd. Most Sm-RNP antisera contained antibodies reactive with additional proteins, especially when whole cell extracts were used as a source of antigens. Two-dimensional analysis provided characteristic maps of the antigens. Ro and La were acidic, and La showed a unique set of acidic charge isomers at 50 and 43 kd. Anti-Sm antibodies reacted with discrete dots corresponding to both the acidic and basic regions of the first-dimension (charge) gels, whereas the RNP antigen showed a series of basic charge isomers of 68 kd. Many anti-Sm-RNP sera reacted with other closely spaced proteins of a similar charge and size to the Sm and RNP antigens, suggesting antibody cross-reactivity or reactivity with closely related functional proteins. Although Jo-1 had the same m.w. as the undegraded La antigen, the fingerprints were quite distinctive on two-dimensional electrophoresis. The results of this study indicate how the source and preparation of antigen extracts, as well as protein degradation, influence the m.w. determinations of soluble protein antigens. With these factors taken into account, two-dimensional fractionation with immunoblotting provides a highly discriminating, sensitive, and reproducible method of analysis of autoantibody specificity. This technique can be used to standardize reference antisera and to study protein antigens in normal and abnormal cell and tissue extracts, and could lead to new or more precise correlations with clinical disease.  相似文献   

4.
5.
The nuclear ribonucleoprotein (RNP) particles containing rapidly labeled RNA were isolated from interphase cells of the cellular slime mold Dictyostelium discoideum and characterized. The size of the isolated RNP particles was small (10S to 50S) in comparison with that of nuclear RNP particles found in higher eukaryotes. These small RNP particles do not seem to be artifacts due to degradation during the preparation of nuclear extracts. The rapidly labeled RNA of the nuclear RNP particles was heterogeneous in size and a considerable amount contained polyadenylic acid sequences. Synthesis of RNA in the nuclear RNP particles was resistant to a relatively high concentration of actinomycin D. The protein component of the RNP particle consists of at least four proteins with molecular weights of 80,000, 66,000, 60,000, and 42,000. Thus it is suggested that almost all of the nuclear RNP particles containing rapidly labeled RNA in interphase cells are RNP complexes consisting of Heterogeneous nuclear RNA and several protein species.  相似文献   

6.
Isolated rat liver nuclear matrices have been partially separated by means of mild sonication into a matrix protein (matricin) fraction and a residual ribonucleoprotein (RNP) fraction. The initial matricin fraction is composed largely of protein (91.1%) but also contains significant amounts of DNA (8.4%). Reconstruction experiments indicate that this DNA is not the result of the artifactual binding of DNA to the matrix during the extraction procedures. Subsequent treatment with DNase I results in purified matricin composed of greater than 99.5% protein. SDS acrylamide gel electrophoresis of the matrix protein fibrils reveals only three bands: the primary matrix polypeptides of 62,000, 66,000, and 70,000 daltons. Electron microscopy demonstrates a diffuse reticulum with fibrils as thin as 30--50 A and the presence of 80--100-A globular structures. The residual RNP fraction is composed largely of protein (80.1%) and RNA (19.5%), with only traces of DNA (1.1%). Over 98% of the total matrix-associated RNA is recovered in this fraction. SDS acrylamide gel electrophoresis indicates an enrichment in both low and high molecular weight secondary matrix polypeptides, although the 60,000--70,000-dalton polypeptides are present in significant amounts as well. Ultrastructural analysis of the residual RNP fraction reveals distinct electron-dense-staining matrix particles (150--350 A) attached to a fibrous matricin network.  相似文献   

7.
8.
Y Xiong  H Zhang  D Beach 《Cell》1992,71(3):505-514
Human cyclin D1 has been associated with a wide variety of proliferative diseases but its biochemical role is unknown. In diploid fibroblasts we find that cyclin D1 is complexed with many other cellular proteins. Among them are protein kinase catalytic subunits CDK2, CDK4 (previously called PSK-J3), and CDK5 (also called PSSALRE). In addition, polypeptides of 21 kd and 36 kd are identified in association with cyclin D1. We show that the 36 kd protein is the proliferating cell nuclear antigen, PCNA. Cyclin D3 also associates with multiple protein kinases, p21 and PCNA. It is proposed that there exists a quaternary complex of D cyclin, CDK, PCNA, and p21 and that many combinatorial variations (cyclin D1, D3, CDK2, 4, and 5) may assemble in vivo. These findings link a human putative G1 cyclin that is associated with oncogenesis with a well-characterized DNA replication and repair factor.  相似文献   

9.
10.
A nuclear carbohydrate-binding protein with a molecular mass of 67 kDa (CBP67), which is specific for glucose residues, was purified to essential homogeneity from rat liver nuclear extracts. This protein could also be isolated from nuclear ribonucleoprotein (RNP) complexes by extraction in the presence of 0.6 M or 2 M NaCl, but it was absent in polysomal RNP complex. The binding of the purified protein, which has an isoelectric point of 7.3, to glucose-containing glycoconjugates depends on the presence of Ca2+ and Mg2+. Using closed nuclear envelope vesicles as a system to study nuclear transport of RNA, it was shown that both entrapped polysomal mRNA and nuclear RNA precursors are readily exported from the vesicles in an ATP-dependent manner. The transport was unidirectional and strongly promoted by the poly(A) segment attached to these RNAs. In contrast, nuclear RNP complexes entrapped into the vesicles together with glucose-conjugated bovine serum albumin or nucleoplasmin, or bird nest glycoprotein, were not exported into the extravesicular space. However, transport of nuclear RNP complexes could be achieved in the presence of glucose or after co-addition of a glucose-recognizing lectin from Pellina semitubulosa. In Western blots, radioiodinated CBP67 binds to an 80-kDa polypeptide both in isolated rat liver nuclear envelopes and pore-complex laminae. From these results we postulate that CBP67 may direct nuclear RNP complexes to the nuclear pore.  相似文献   

11.
12.
The protein coding regions of plastid mRNAs in higher plants are generally flanked by 3' inverted repeat sequences. In spinach chloroplast mRNAs, these inverted repeat sequences can fold into stem-loop structures and serve as signals for the correct processing of the mature mRNA 3' ends. The inverted repeat sequences are also required to stabilize 5' upstream mRNA segments, and interact with chloroplast protein in vitro. To dissect the molecular components involved in chloroplast mRNA 3' end processing and stability, a spinach chloroplast protein extract containing mRNA 3' end processing activity was fractionated by FPLC and RNA affinity chromatography. The purified fraction consisted of several proteins and was capable of processing the 3' ends of the psbA, rbcL, petD and rps14 mRNAs. This protein fraction was enriched for a 28 kd RNA-binding protein (28RNP) which interacts with both the precursor and mature 3' ends of the four mRNAs. Using specific antibodies to this protein, the poly(A) RNA-derived cDNA for the 28RNP was cloned and sequenced. The predicted amino acid sequence for the 28RNP reveals two conserved RNA-binding domains, including the consensus sequences RNP-CS1 and CS2, and a novel acidic and glycine-rich N-terminal domain. The accumulation of the nuclear-encoded 28RNP mRNA and protein are developmentally regulated in spinach cotyledons, leaves, root and stem, and are enhanced during light-dependent chloroplast development. The general correlation between accumulation of the 28RNP and plastid mRNA during development, together with the result that depletion of the 28RNP from the chloroplast protein extract interferes with the correct 3' end processing of several chloroplast mRNAs, suggests that the 28RNP is required for plastid mRNA 3' end processing and/or stability.  相似文献   

13.
The intranuclear localization of SV40 T-antigen (T-Ag) and the cellular protein p53 was studied in SV40 abortively infected baby mouse kidney cells using two complementary methods of ultrastructural immunocytochemistry in combination with preferential staining of nuclear RNP components and electron microscope autoradiography. Both proteins were revealed in association with peri- and interchromatin RNP fibrils containing the newly synthesized hnRNA. In addition, T-Ag and p53 remained bound, at least in part, to the residual internal nuclear matrix following nuclease and salt extractions of infected cells. The localization of T-Ag was different in SV40 lytically infected monkey kidney cells since, in addition to hnRNP fibrils, the viral protein was also associated with cellular chromatin. However, when lytic infection was performed in conditions of blocked viral DNA replication, T-Ag was no longer associated with the cellular chromatin but remained bound to the hnRNP fibrils. We conclude that the transforming and lytic functions of T-Ag can be distinguished by different subnuclear distributions. The significance of the association of T-Ag and p53 with hnRNP fibrils and the internal nuclear matrix is discussed in relation to the role of these structures in the control of cellular mRNA biogenesis.  相似文献   

14.
15.
A residual protein matrix has been prepared from avian erythroblast nuclei by extensive extraction with salines and detergent and subsequent digestion with high concentrations of RNase and DNase. Ultrastructural examination reveals considerable internal structure, the most prominent feature being the remains of the nucleoli embedded in a network of fibres of fairly uniform diameter of 50 Å. The proteins which make up this structure have been examined by two-dimensional electrophoresis and are shown to consist of a characteristic set of about 30, mainly acidic components, including four prominent species of 43 000, 52 000, 66 000 and 68 000 molecular weight (MW). In parallel preparations of the nuclear matrix digested with DNase alone, much of the nuclear RNA is found associated with the residual structure, including globin-coding sequences. These results correlate well with the ultrastructural appearance of DNase-digested matrix preparations which show that superimposed on the 50 Å fibrous network is a 200–300 Å granular component, the combined fibrillo-granular structure resembling the interchromatin RNP previously identified in situ. However, the proteins of the DNase-digested matrix seen by two-dimensional electrophoresis are indistinguishable from the proteins of matrix preparations digested with both DNase and RNase. Furthermore, two-dimensional comparison between the proteins of the DNase-digested matrix and purified 40S nuclear RNP particles shows that the bulk of the proteins found associated with nuclear RNA in vitro are extracted during matrix preparation, and only two, with MWs of 43 000 and 73 000, remain. The latter species co-migrates with the poly(A)-binding protein.  相似文献   

16.
Rat liver nuclear skeleton and small molecular weight RNA species   总被引:9,自引:5,他引:4  
Small molecular weight RNA species (smwRNAs) were studied in rat liver nuclei with and without chromatin as well as with and without nuclear envelope and nucleoplasm. From all the species identified, only two, N5 and 5Sb, were related to ribosomes. The others were localized exclusively in the nuclear skeleton or the spongelike network that was described in the preceding communication. This network or protein matrix contains a less abundant but exclusive set of molecules designated 5Sa, N1, and 4.5S, as well as other more abundant molecules which also exist in rat liver endoplasmic reticulum but not in polysomes or postribosomal RNP complexes. The smwRNAs behave like HnRNA; they remain located in the nuclear skeleton when nuclei are deprived of nucleoplasm and chromatin. With the information presently available, it is not possible to know whetherer both species are in the same or different RNP complexes and whether some of the smwRNAs contribute to the architecture of the nuclear skeleton. Distinct from any other nuclear RNA species, smwRNAs have two unique properties: facility of extraction, and resistance to nuclear ribonuclease digestion.  相似文献   

17.
I Faiferman  A O Pogo 《Biochemistry》1975,14(17):3808-3816
Rapidly labeled polydispersed nuclear RNA is part of a ribonucleoprotein (RNP) network which in turn is tightly bound to the nuclear membrane. The membranous attachment, therefore, established a connection between chromatin and cytoplasm. The ultrastructure of the RNP network comprises fibrils and granules similar to those observed in intact nuclei. When bound to the nuclear membrane it has the composition of 63% protein, 14% RNA, 0.4% DNA, and 22.6% lipids. The proportion of lipids diminishes to 2.2% when nuclear membrane is not present. Chromatin, nucleoli, and ribosomes are minor contaminants since histones and ribosomal proteins are not detectable in polyacrylamide gel electrophoresis. Nuclear disruption at high pressure in a French pressure cell causes fragmentation of the RNP network into a series of polydispersed RNP particles. Fragmentation can be prevented by using mild pressure, or by disrupting nuclei with high salt buffer and digesting the dispersed chromatin with deoxyribonuclease. A RNP network, almost free of membrane, is also obtained if the nucleus is deprived of its envelope by treatment with Triton X-100. Since no polydispersed RNP particles are found following dissolution of the nuclear membrane, it is assumed that the particles are components of the RNP network whose fragmentation occurs as a consequence of two processes: (a) activation of nuclear nucleases and (b) shearing forces.  相似文献   

18.
K Shimizu  H Handa  S Nakada    K Nagata 《Nucleic acids research》1994,22(23):5047-5053
An in vitro RNA synthesis system mimicking replication of genomic influenza virus RNA was developed with nuclear extracts prepared from influenza virus-infected HeLa cells using exogenously added RNA templates. The RNA synthesizing activity was divided into two complementing fractions, i.e. the ribonucleoprotein (RNP) complexes and the fraction free of RNP, which could be replaced with RNP cores isolated from virions and nuclear extracts from uninfected cells, respectively. When nuclear extracts from uninfected cells were fractionated by phosphocellulose column chromatography, the stimulatory activity for RNA synthesis was further separated into two distinct fractions. One of them, tentatively designated RAF (RNA polymerase activating factor), stimulated RNA synthesis with either RNP cores or RNA polymerase and nucleocapsid protein purified from RNP cores as the enzyme source. In contrast, the other, designated PRF (polymerase regulating factor), functioned as an activator only when RNP cores were used as the enzyme source. Biochemical analyses revealed that PRF facilitates dissociation of RNA polymerase from RNP cores. Of interest is that virus-coded non-structural protein 1 (NS1), which has been thought to be involved in regulation of replication, counteracted PRF function. Roles of cellular factors and viral proteins, NS1 in particular, are discussed in terms of regulation of influenza virus RNA genome replication.  相似文献   

19.
20.
The chloroplast 24 kDa RNA binding protein (24RNP) from Spinacea oleracea is a nuclear encoded protein that binds the 3' untranslated region (3'UTR) of some chloroplast mRNAs and seems to be involved in some processes of mRNA metabolism, such as 3'UTR processing, maturation and stabilization. The 24RNP is similar to the 28RNP which is involved in the correct maturation of petD and psbA 3'UTRs, and when phosphorylated, decreases its binding affinity for RNA. In the present work, we determined that the recombinant 24RNP was phosphorylated in vitro either by an animal protein kinase C, a plant Ca(2+)-dependent protein kinase, or a chloroplastic kinase activity present in a protein extract with 3'-end processing activity in which the 24RNP is also present. Phosphorylation of 24RNP increased the binding capacity (B(max)) 0.25 time for petD 3'UTR, and three times for psbA 3'UTR; the affinity for P-24RNP only increased when the interaction with petD was tested. Competition experiments suggested that B(max), not K(d), might be a more important factor in the P-24RNP-3'UTR interaction. The data suggested that the 24RNP role in chloroplast mRNA metabolism may be regulated in vivo by changes in its phosphorylation status carried out by a chloroplastic kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号