首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Svedruzić ZM  Reich NO 《Biochemistry》2005,44(27):9472-9485
We followed the cytosine C(5) exchange reaction with Dnmt1 to characterize its preference for different DNA substrates, its allosteric regulation, and to provide a basis for comparison with the bacterial enzymes. We determined that the methyl transfer is rate-limiting, and steps up to and including the cysteine-cytosine covalent intermediate are in rapid equilibrium. Changes in these rapid equilibrium steps account for many of the previously described features of Dnmt1 catalysis and specificity including faster reactions with premethylated DNA versus unmethylated DNA, faster reactions with DNA in which guanine is replaced with inosine [poly(dC-dG) vs poly(dI-dC)], and 10-100-fold slower catalytic rates with Dnmt1 relative to the bacterial enzyme M.HhaI. Dnmt1 interactions with the guanine within the CpG recognition site can prevent the premature release of the target base and solvent access to the active site that could lead to mutagenic deamination. Our results suggest that the beta-elimination step following methyl transfer is not mediated by free solvent. Dnmt1 shows a kinetic lag in product formation and allosteric inhibition with unmethylated DNA that is not observed with premethylated DNA. Thus, we suggest the enzyme undergoes a slow relief from allosteric inhibition upon initiation of catalysis on unmethylated DNA. Notably, this relief from allosteric inhibition is not caused by self-activation through the initial methylation reaction, as the same effect is observed during the cytosine C(5) exchange reaction in the absence of AdoMet. We describe limitations in the Michaelis-Menten kinetic analysis of Dnmt1 and suggest alternative approaches.  相似文献   

2.
In the cell, Dnmt1 is the major enzyme in maintenance of the pattern of DNA methylation after DNA replication. Evidence suggests that the protein is located at the replication fork, where it could directly modify nascent DNA immediately after replication. To elucidate the potential mechanism of this process, we investigate the processivity of DNA methylation and accuracy of copying an existing pattern of methylation in this study using purified Dnmt1 and hemimethylated substrate DNA. We demonstrate that Dnmt1 methylates a hemimethylated 958-mer substrate in a highly processive reaction. Fully methylated and unmethylated CG sites do not inhibit processive methylation of the DNA. Extending previous work, we show that unmethylated sites embedded in a hemimethylated context are modified at an approximately 24-fold reduced rate, which demonstrates that the enzyme accurately copies existing patterns of methylation. Completely unmodified DNA is methylated even more slowly due to an allosteric activation of Dnmt1 by methylcytosine-containing DNA. Interestingly, Dnmt1 is not able to methylate hemimethylated CG sites on different strands of the DNA in a processive manner, indicating that Dnmt1 keeps its orientation with respect to the DNA while methylating the CG sites on one strand of the DNA.  相似文献   

3.
The mammalian DNA methyltransferase Dnmt1 is responsible for the maintenance of the pattern of DNA methylation in vivo. It is a large multidomain enzyme comprising 1620 amino acid residues. We have purified and characterized individual domains of Dnmt1 (NLS-containing domain, NlsD, amino acid residues: 1-343; replication foci-directing domain, 350-609; Zn-binding domain (ZnD), 613-748; polybromo domain, 746-1110; and the catalytic domain (CatD), 1124-1620). CatD, ZnD and NlsD bind to DNA, demonstrating the existence of three independent DNA-binding sites in Dnmt1. CatD shows a preference for binding to hemimethylated CpG-sites; ZnD prefers methylated CpGs; and NlsD specifically binds to CpG-sites, but does not discriminate between unmethylated and methylated DNA. These results are not compatible with the suggestion that the target recognition domain of Dnmt1 resides in the N terminus of the enzyme. We show by protein-protein interaction assays that ZnD and CatD interact with each other. The isolated catalytic domain does not methylate DNA, neither alone nor in combination with other domains. Full-length Dnmt1 was purified from baculovirus-infected insect cells. Under the experimental conditions, Dnmt1 has a strong (50-fold) preference for hemimethylated DNA. Dnmt1 is stimulated to methylate unmodified CpG sites by the addition of fully methylated DNA. This effect is dependent on Zn, suggesting that binding of methylated DNA to ZnD triggers the allosteric activation of the catalytic center of Dnmt1. The allosteric activation model can explain kinetic data obtained by others. It suggests that Dnmt1 might be responsible for spreading of methylation, a process that is observed during aging and carcenogenesis but may be important for de novo methylation of DNA.  相似文献   

4.
5.
DNA methyltransferase Dnmt1 ensures clonal transmission of lineage-specific DNA methylation patterns in a mammalian genome during replication. Dnmt1 is targeted to replication foci, interacts with PCNA, and favors methylating the hemimethylated form of CpG sites. To understand the underlying mechanism of its maintenance function, we purified recombinant forms of full-length Dnmt1, a truncated form of Dnmt1-(291-1620) lacking the binding sites for PCNA and DNA and examined their processivity using a series of long unmethylated and hemimethylated DNA substrates. Direct analysis of methylation patterns using bisulfite-sequencing and hairpin-PCR techniques demonstrated that full-length Dnmt1 methylates hemimethylated DNA with high processivity and a fidelity of over 95%, but unmethylated DNA with much less processivity. The truncated form of Dnmt1 showed identical properties to full-length Dnmt1 indicating that the N-terminal 290-amino acid residue region of Dnmt1 is not required for preferential activity toward hemimethylated sites or for processivity of the enzyme. Remarkably, our analyses also revealed that Dnmt1 methylates hemimethylated CpG sites on one strand of double-stranded DNA during a single processive run. Our findings suggest that these inherent enzymatic properties of Dnmt1 play an essential role in the faithful and efficient maintenance of methylation patterns in the mammalian genome.  相似文献   

6.
The Dnmt3a DNA methyltransferase has been shown to bind cooperatively to DNA and to form large multimeric protein/DNA fibers. However, it has also been reported to methylate DNA in a processive manner, a property that is incompatible with protein/DNA fiber formation. We show here that the DNA methylation rate of Dnmt3a increases more than linearly with increasing enzyme concentration on a long DNA substrate, but not on a short 30-mer oligonucleotide substrate. We also show that addition of a catalytically inactive Dnmt3a mutant, which carries an amino acid exchange in the catalytic center, increases the DNA methylation rate by wild type Dnmt3a on the long substrate but not on the short one. In agreement with this finding, preincubation experiments indicate that stable protein/DNA fibers are formed on the long, but not on the short substrate. In addition, methylation experiments with substrates containing one or two CpG sites did not provide evidence for a processive mechanism over a wide range of enzyme concentrations. These data clearly indicate that Dnmt3a binds to DNA in a cooperative reaction and that the formation of stable protein/DNA fibers increases the DNA methylation rate. Fiber formation occurs at low μm concentrations of Dnmt3a, which are in the range of Dnmt3a concentrations in the nucleus of embryonic stem cells. Understanding the mechanism of Dnmt3a is of vital importance because Dnmt3a is a hotspot of somatic cancer mutations one of which has been implicated in changing Dnmt3a processivity.  相似文献   

7.
《Epigenetics》2013,8(2):63-66
In this short review the enzymatic properties of Dnmt1 are summarized. Studies on the specificity of Dnmt1 have shown that the enzymes has 30-40 fold preference for hemimethylated target sites. It methylates hemimethylated DNA in a processive reaction, moving on the DNA in a random walk. Binding of DNA to allosteric site(s) in the N-terminal part of the enzyme can lead to stimulation and inhibition of its catalytic activity depending on the nature of the substrate and effector.  相似文献   

8.
DNA methylation is an epigenetic modification of DNA. There are currently three catalytically active mammalian DNA methyltransferases, DNMT1, -3a, and -3b. DNMT1 has been shown to have a preference for hemimethylated DNA and has therefore been termed the maintenance methyltransferase. Although previous studies on DNMT3a and -3b revealed that they act as functional enzymes during development, there is little biochemical evidence about how new methylation patterns are established and maintained. To study this mechanism we have cloned and expressed Dnmt3a using a baculovirus expression system. The substrate specificity of Dnmt3a and molecular mechanism of its methylation reaction were then analyzed using a novel and highly reproducible assay. We report here that Dnmt3a is a true de novo methyltransferase that prefers unmethylated DNA substrates more than 3-fold to hemimethylated DNA. Furthermore, Dnmt3a binds DNA nonspecifically, regardless of the presence of CpG dinucleotides in the DNA substrate. Kinetic analysis supports an Ordered Bi Bi mechanism for Dnmt3a, where DNA binds first, followed by S-adenosyl-l-methionine.  相似文献   

9.
PARylation [poly(ADP-ribosyl)ation] is involved in the maintenance of genomic methylation patterns through its control of Dnmt1 [DNA (cytosine-5)-methyltransferase 1] activity. Our previous findings indicated that Ctcf (CCCTC-binding factor) may be an important player in key events whereby PARylation controls the unmethylated status of some CpG-rich regions. Ctcf is able to activate Parp1 [poly(ADP-ribose) polymerase 1], which ADP-ribosylates itself and, in turn, inhibits DNA methylation via non-covalent interaction between its ADP-ribose polymers and Dnmt1. By such a mechanism, Ctcf may preserve the epigenetic pattern at promoters of important housekeeping genes. The results of the present study showed Dnmt1 as a new protein partner of Ctcf. Moreover, we show that Ctcf forms a complex with Dnmt1 and PARylated Parp1 at specific Ctcf target sequences and that PARylation is responsible for the maintenance of the unmethylated status of some Ctcf-bound CpGs. We suggest a mechanism by which Parp1, tethered and activated at specific DNA target sites by Ctcf, preserves their methylation-free status.  相似文献   

10.
11.
Dnmt3a is a de novo DNA methyltransferase that modifies unmethylated DNA. In contrast Dnmt1 shows high preference for hemimethylated DNA. However, Dnmt1 can be activated for the methylation of unmodified DNA. We show here that the Dnmt3a and Dnmt1 DNA methyltransferases functionally cooperate in de novo methylation of DNA, because a fivefold stimulation of methylation activity is observed if both enzymes are present. Stimulation is observed if Dnmt3a is used before Dnmt1, but not if incubation with Dnmt1 precedes Dnmt3a, demonstrating that methylation of the DNA by Dnmt3a stimulates Dnmt1 and that no physical interaction of Dnmt1 and Dnmt3a is required. If Dnmt1 and Dnmt3a were incubated together a slightly increased stimulation is observed that could be due to a direct interaction of these enzymes. In addition, we show that Dnmt1 is stimulated for methylation of unmodified DNA if the DNA already carries some methyl groups. We conclude that after initiation of de novo methylation of DNA by Dnmt3a, Dnmt1 becomes activated by the pre-existing methyl groups and further methylates the DNA. Our data suggest that Dnmt1 also has a role in de novo methylation of DNA. This model agrees with the biochemical properties of these enzymes and provides a mechanistic basis for the functional cooperation of different DNA MTases in de novo methylation of DNA that has also been observed in vivo.  相似文献   

12.
The mechanism of ATP hydrolysis by the solubilized mitochondrial ATPase (MF1) has been studied under conditions where catalytic turnover occurs at one site, uni-site catalysis (obtained when enzyme is in excess of substrate), or at two sites, bi-site catalysis (obtained when substrate is in excess of enzyme). Pulse-chase experiments support the conclusion that the sites which participate in bi-site catalysis are the same as those which participate in uni-site catalysis. Upon addition of ATP in molar excess to MF1, label that was bound under uni-site conditions dissociates at a rate equal to the rate of bi-site catalysis. Similarly, when medium ATP is removed, label that was bound under bi-site conditions dissociates at a rate equal to the rate of uni-site catalysis. Evidence that a high affinity catalytic site equivalent to the one observed under uni-site conditions participates as an intermediate in bi-site catalysis includes the demonstration of full occupancy of a catalytically competent site during steady-state turnover at nanomolar concentrations of ATP. Improved measurements of the interaction of ADP at a high affinity catalytic site have lead to the revision of several of the rate constants that define uni-site catalysis. The rate constant for unpromoted dissociation of ADP is equal to that for Pi (4 X 10(-3) s-1). The rate of binding ADP at a high affinity chaseable site (Kd = 1 nM) is equal to the rate of binding ATP (4 X 10(6) M-1 s-1). The rate of catalysis obtained when substrate binding at one site promotes product release from an adjacent site (bi-site catalysis) is up to 100,000-fold faster than unpromoted product release (uni-site catalysis).  相似文献   

13.
A DNA methyltransferase of Mr = 140,000 that is active on both unmethylated and hemimethylated DNA substrates has been purified from the murine plasma-cytoma cell line MPC 11. The maximal rate of methylation was obtained with maintenance methylation of hemimethylated Micrococcus luteus or M13 DNAs. At low enzyme concentrations, the highest rate of de novo methylation occurred with single-stranded DNA or relatively short duplex DNA containing single-stranded regions. Strong substrate inhibition was observed with hemimethylated but not unmethylated DNA substrates. Fully methylated single-stranded M13 phage DNA inhibited neither the de novo nor the maintenance reactions, but unmethylated single-stranded M13 DNA strongly inhibited the maintenance reaction. The kinetics observed with hemimethylated and single-stranded substrates could be explained if the enzyme were to bind irreversibly to a DNA molecule and to aggregate if present in molar excess. Such aggregates would be required for activity upon hemimethylated but not single-stranded DNA. For de novo methylation of duplex DNA, single-stranded regions or large amounts of methyltransferase appear to be required. The relative substrate preference for the enzyme is hemimethylated DNA greater than fully or partially single-stranded DNA greater than fully duplex DNA.  相似文献   

14.
Dnmt3L has been identified as a stimulator of the catalytic activity of de novo DNA methyltransferases. It is essential in the development of germ cells in mammals. We show here that Dnmt3L stimulates the catalytic activity of the Dnmt3A and Dnmt3B enzymes by directly binding to their respective catalytic domains via its own C-terminal domain. The catalytic activity of Dnmt3A and -3B was stimulated approximately 15-fold, and Dnmt3L directly binds to DNA but not to S-adenosyl-L-methionine (AdoMet). Complex formation between Dnmt3A and Dnmt3L accelerates DNA binding by Dnmt3A 20-fold and lowers its K(m) for DNA. Interaction of Dnmt3L with Dnmt3A increases the binding of the coenzyme AdoMet to Dnmt3A, and it lowers the K(m) of Dnmt3A for AdoMet. On the basis of our data we propose a model in which the interaction of Dnmt3A with Dnmt3L induces a conformational change of Dnmt3A that opens the active site of the enzyme and promotes binding of DNA and the AdoMet. We demonstrate that the interaction of Dnmt3A and Dnmt3L is transient, and after DNA binding to Dnmt3A, Dnmt3L dissociates from the complex. Following dissociation of Dnmt3L, Dnmt3A adopts a closed conformation leading to slow rates of DNA release. Therefore, Dnmt3L acts as a substrate exchange factor that accelerates DNA and AdoMet binding to de novo DNA methyltransferases.  相似文献   

15.
Pradhan S  Estève PO 《Biochemistry》2003,42(18):5321-5332
The human maintenance DNA (cytosine-5) methyltransferase (hDNMT1) consists of a large N-terminal regulatory domain fused to a catalytic C-terminal domain by randomly repeated Gly-Lys dipeptides. Several N-terminal deletion mutants of hDNMT1 were made, purified, and tested for substrate specificity. Deletion mutants lacking 121, 501, 540, or 580 amino acids from the N-terminus still functioned as DNA methyltransferases, methylated CG sequences, and preferred hemimethylated to unmethylated DNA, as did the full-length hDNMT1. Methylated DNA stimulated methylation spreading on unmethylated CpG sequences for the full-length and the 121 amino acid deletion hDNMT1 equally well but not for the mutants lacking 501, 540, or 580 amino acids, indicating the presence of an allosteric activation determinant between amino acids 121 and 501. Peptides from the N- and C-termini bound methylated DNA independently. Point mutation analysis within the allosteric region revealed that amino acids 284-287 (KKHR) were involved in methylated DNA-mediated allosteric activation. Allosteric activation was reduced in the double point mutant enzymes D25 (K284A and K285A) and D12 (H286A and R287A). Retinoblastoma gene product (Rb), a negative regulator of DNA methylation, bound to the allosteric site of hDNMT1 and inhibited methylation, suggesting Rb may regulate methylation spreading.  相似文献   

16.
The yeast DNA primase-DNA polymerase activities catalyze de novo oligoribonucleotide primed DNA synthesis on single-stranded DNA templates (Singh, H., and Dumas, L. B. (1984) J. Biol. Chem. 259, 7936-7940). In the presence of ATP substrate and poly(dT) template, the enzyme preparation synthesizes discrete-length oligoribonucleotides (apparent length 8-12) and multiples thereof. The unit length primers are the products of de novo processive synthesis and are precursors to the synthesis of the multimers. Multimeric length oligoribonucleotides are not generated by continuous processive extension of the de novo synthesis products, however, nor do they arise by ligation of unit length oligomers. Instead, dissociation and rebinding of a factor, possibly the DNA primase, results in processive extension of the RNA synthesis products by an additional modal length. Thus, catalysis by the yeast DNA primase can be viewed as repeated cycles of processive unit length RNA chain extension. Inclusion of dATP substrate results in three distinct transitions: (i) coupling of RNA priming to DNA synthesis, (ii) suppression of multimer RNA synthesis, and (iii) attenuation of primer length. The less than unit length RNA primers appear to result from premature DNA chain extension, not degradation from either end of the unit length primer. We discuss possible roles of DNA polymerase and DNA primase in RNA primer attenuation.  相似文献   

17.
Kinetic and catalytic mechanism of HhaI methyltransferase   总被引:53,自引:0,他引:53  
Kinetic and catalytic properties of the DNA (cytosine-5)-methyltransferase HhaI are described. With poly(dG-dC) as substrate, the reaction proceeds by an equilibrium (or processive) ordered Bi-Bi mechanism in which DNA binds to the enzyme first, followed by S-adenosylmethionine (AdoMet). After methyl transfer, S-adenosylhomocysteine (AdoHcy) dissociates followed by methylated DNA. AdoHcy is a potent competitive inhibitor with respect to AdoMet (Ki = 2.0 microM) and its generation during reactions results in non-linear kinetics. AdoMet and AdoHcy significantly interact with only the substrate enzyme-DNA complex; they do not bind to free enzyme and bind poorly to the methylated enzyme-DNA complex. In the absence of AdoMet, HhaI methylase catalyzes exchange of the 5-H of substrate cytosines for protons of water at about 7-fold the rate of methylation. The 5-H exchange reaction is inhibited by AdoMet or AdoHcy. In the enzyme-DNA-AdoHcy complex, AdoHcy also suppresses dissociation of DNA and reassociation of the enzyme with other substrate sequences. Our studies reveal that the catalytic mechanism of DNA (cytosine-5)-methyltransferases involves attack of the C6 of substrate cytosines by an enzyme nucleophile and formation of a transient covalent adduct. Based on precedents of other enzymes which catalyze similar reactions and the susceptibility of HhaI to inactivation by N-ethylmaleimide, we propose that the sulfhydryl group of a cysteine residue is the nucleophilic catalyst. Furthermore, we propose that Cys-81 is the active-site catalyst in HhaI. This residue is found in a Pro-Cys doublet which is conserved in all DNA (cytosine-5)-methyltransferases whose sequences have been determined to date and is found in related enzymes. Finally, we discuss the possibility that covalent adducts between C6 of pyrimidines and nucleophiles of proteins may be important general components of protein-nucleic acid interactions.  相似文献   

18.
The EcoRV DNA-(adenine-N(6))-methyltransferase recognizes GATATC sequences and modifies the first adenine residue within this site. We show here, that the enzyme binds to the DNA and the cofactor S-adenosylmethionine (AdoMet) in an ordered bi-bi fashion, with AdoMet being bound first. M.EcoRV binds DNA in a non-specific manner and the enzyme searches for its recognition site by linear diffusion with a range of approximately 1800 bp. During linear diffusion the enzyme continuously scans the DNA for the presence of recognition sites. Upon specific M.EcoRV-DNA complex formation a strong increase in the fluorescence of an oligonucleotide containing a 2-aminopurine base analogue at the GAT-2AP-TC position is observed which, most likely, is correlated with DNA bending. In contrast to the GAT-2AP-TC substrate, a G-2AP-TATC substrate in which the target base is replaced by 2-aminopurine does not show an increase in fluorescence upon M.EcoRV binding, demonstrating that 2-aminopurine is not a general tool to detect base flipping. Stopped-flow experiments show that DNA bending is a fast process with rate constants >10 s(-1). In the presence of cofactor, the specific complex adopts a second conformation, in which the target sequence is more tightly contacted by the enzyme. M.EcoRV exists in an open and in a closed state that are in slow equilibrium. Closing the open state is a slow process (rate constant approximately 0.7 min(-1)) that limits the rate of DNA methylation under single turnover conditions. Product release requires opening of the closed complex which is very slow (rate constant approximately 0.05-0.1 min(-1)) and limits the rate of DNA methylation under multiple turnover conditions. M.EcoRV methylates DNA sequences containing more than one recognition sites in a distributive manner. Since the dissociation rate from non-specific DNA does not depend on the length of the DNA fragment, DNA dissociation does not preferentially occur at the ends of the DNA.  相似文献   

19.
Phospholipase A2 at the bilayer interface.   总被引:2,自引:0,他引:2  
F Ramirez  M K Jain 《Proteins》1991,9(4):229-239
Interfacial catalysis is a necessary consequence for all enzymes that act on amphipathic substrates with a strong tendency to form aggregates in aqueous dispersions. In such cases the catalytic event occurs at the interface of the aggregated substrate, the overall turnover at the interface is processive, and it is influenced the molecular organization and dynamics of the interface. Such enzymes can access the substrate only at the interface because the concentration of solitary monomers of the substrate in the aqueous phase is very low. Moreover, the microinterface between the bound enzyme and the organized substrate not only facilitates formation of the enzyme-substrate complex, but a longer residence time of the enzyme at the substrate interface also promotes high catalytic processivity. Binding of the enzyme to the substrate interface as an additional step in the overall catalytic turnover permits adaptation of the Michaelis-Menten formalism as a basis to account for the kinetics of interfacial catalysis. As shown for the action of phospholipase A2 on bilayer vesicles, binding equilibrium has two extreme kinetic consequences. During catalysis in the scooting mode the enzyme does not leave the surface of the vesicle to which it is bound. On the other hand, in the hopping mode the absorption and desorption steps are a part of the catalytic turnover. In this minireview we elaborate on the factors that control binding of pig pancreatic phospholipase A2 to the bilayer interface. Binding of PLA2 to the interface occurs through ionic interactions and is further promoted by hydrophobic interactions which probably occur along a face of the enzyme, with a hydrophobic collar and a ring of cationic residues, through which the catalytic site is accessible to substrate molecules in the bilayer. An enzyme molecule binds to the surface occupied by about 35 lipid molecules with an apparent dissociation constant of less than 0.1 pM for the enzyme on anionic vesicles compared to 10 mM on zwitterionic vesicles. Results at hand also show that aggregation or acylation of the protein is not required for the high affinity binding or catalytic interaction at the interface.  相似文献   

20.
The DNA polymerase encoded by herpes simplex virus 1 consists of a single polypeptide of Mr 136,000 that has both DNA polymerase and 3'----5' exonuclease activities; it lacks a 5'----3' exonuclease. The herpes polymerase is exceptionally slow in extending a synthetic DNA primer annealed to circular single-stranded DNA (turnover number approximately 0.25 nucleotide). Nevertheless, it is highly processive because of its extremely tight binding to a primer terminus (Kd less than 1 nM). The single-stranded DNA-binding protein from Escherichia coli greatly stimulates the rate (turnover number approximately 4.5 nucleotides) by facilitating the efficient binding to and extension of the DNA primers. Synchronous replication by the polymerase of primed single-stranded DNA circles coated with the single-stranded DNA-binding protein proceeds to the last nucleotide of available 5.4-kilobase template without dissociation, despite the 20-30 min required to replicate the circle. Upon completion of synthesis, the polymerase is slow in cycling to other primed single-stranded DNA circles. ATP (or dATP) is not required to initiate or sustain highly processive synthesis. The 3'----5' exonuclease associated with the herpes DNA polymerase binds a 3' terminus tightly (Km less than 50 nM) and is as sensitive as the polymerase activity to inhibition by phosphonoacetic acid (Ki approximately 4 microM), suggesting close communication between the polymerase and exonuclease sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号