首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The interaction between the stromal cell-derived factor-1 alpha (SDF-1α, CXCL12) and its chemokine receptor CXCR4 has been reported to regulate stem cell migration, mobilization and homing. The CXCR4 antagonist plerixafor is highly efficient in mobilizing hematopoietic progenitor cells (HPCs). However, the precise regulatory mechanisms governing the CXCR4/SDF-1α axis between the bone marrow niche and HPCs remain unclear. In this study, we quantify the impact of plerixafor on the interaction between human bone marrow derived mesenchymal stromal cells (MSCs) and human CD34+ HPCs. An assessment of SDF-1α levels in the supernatant of MSC cultures revealed that exposure to plerixafor led to a transient increase but had no long-term effect. In Transwell experiments, we observed that the addition of SDF-1α significantly stimulated HPC migration; this stimulation was almost completely antagonized by the addition of plerixafor, confirming the direct impact of the CXCR4/SDF-1α interaction on the migration capacity of HPCs. We also developed a new microstructural niche model to determine the chemotactic sensitivity of HPCs. Time-lapse microscopy demonstrated that HPCs migrated actively along an SDF-1α gradient within the microchannels and the quantitative assessment of the required minimum gradient initiating this chemotaxis revealed a surprisingly high sensitivity of HPCs. These data demonstrate the fine-tuned balance of the CXCR4/SDF-1α axis and the synergistic effects of plerixafor on HPCs and MSCs, which most likely represent the key mechanisms for the consecutive mobilization of HPCs from the bone marrow niche into the circulating blood.  相似文献   

3.
The chemokine stromal cell-derived factor-1alpha (SDF-1alpha) is expressed by bone marrow (BM) stromal cells and plays key roles in cell homing to and retention into the bone marrow. In multiple myeloma, blood-borne malignant plasma cells home to the BM and accumulate in contact with stromal cells, implicating myeloma cell migration across endothelium. Myeloma cells express the SDF-1alpha receptor CXCR4, as well as the integrin alpha4beta1, which mediates their attachment to BM stroma. We show here that SDF-1alpha promotes transendothelial migration of purified BM myeloma cells and myeloma-derived NCI-H929 cells, involving a transient upregulation of alpha4beta1-dependent cell adhesion to the endothelium. Characterization of intracellular signaling pathways involved in the modulation by SDF-1alpha of alpha4beta1-mediated myeloma cell adhesion revealed that intracellular cAMP amounts associated with the activation of protein kinase A play key roles in this modulation. Furthermore, a functional link between cAMP actions on the dynamics of actin cytoskeleton, RhoA activation, and alpha4beta1-dependent cell adhesion in response to SDF-1alpha has been found. The regulation of alpha4beta1-mediated myeloma cell adhesion by SDF-1alpha could play key roles during myeloma cell homing into and trafficking inside the BM, and characterization of the molecular events involved in SDF-1alpha-activated modulation of this adhesion will contribute to a better understanding of mechanisms participating in cell migration.  相似文献   

4.
CD26/dipeptidylpeptidase IV (DPPIV) is a membrane-bound extracellular peptidase that cleaves dipeptides from the N terminus of polypeptide chains. The N terminus of chemokines is known to interact with the extracellular portion of chemokine receptors, and removal of these amino acids in many instances results in significant changes in functional activity. CD26/DPPIV has the ability to cleave the chemokine CXCL12/stromal cell-derived factor 1alpha (SDF-1alpha) at its position two proline. CXCL12/SDF-1alpha induces migration of hemopoietic stem and progenitor cells, and it is thought that CXCL12 plays a crucial role in homing/mobilization of these cells to/from the bone marrow. We found that CD26/DPPIV is expressed by a subpopulation of CD34(+) hemopoietic cells isolated from cord blood and that these cells have DPPIV activity. The involvement of CD26/DPPIV in CD34(+) hemopoietic stem and progenitor cell migration has not been previously examined. Functional studies show that the N-terminal-truncated CXCL12/SDF-1alpha lacks the ability to induce the migration of CD34(+) cord blood cells and acts to inhibit normal CXCL12/SDF-1alpha-induced migration. Finally, inhibiting the endogenous CD26/DPPIV activity on CD34(+) cells enhances the migratory response of these cells to CXCL12/SDF-1alpha. This process of CXCL12/SDF-1alpha cleavage by CD26/DPPIV on a subpopulation of CD34(+) cells may represent a novel regulatory mechanism in hemopoietic stem and progenitor cells for the migration, homing, and mobilization of these cells. Inhibition of the CD26/DPPIV peptidase activity may therefore represent an innovative approach to increasing homing and engraftment during cord blood transplantation.  相似文献   

5.
SDF-1/CXCR4轴在缺氧缺血性脑损伤中的研究进展   总被引:6,自引:0,他引:6  
李士勇  邓宇斌 《生命科学》2008,20(3):463-466
干细胞在许多组织器官显示巨大的细胞分化潜能,其治疗缺血缺氧性疾病成为当前研究的热点。已知局部缺血可诱导干细胞的动员,并能感受组织损伤而定向迁移到损伤区并进行分化。具有趋化因子受体4(CXC chemokine receptor 4,CXCR4)的干细胞迁移到高表达间质细胞来源的因子-1(stromal cell-derived factor-1,SDF-1)的组织区域,这种细胞的迁移运动能被CXCR4拈抗剂所阻断或通过CXCR4的过表达增强迁移的运动。SDF-1-CXCR4轴是体内各种类型的干细胞迁移及细胞在骨髓的滞留和归巢中的重要调节物质。本文就缺氧缺血性脑损伤的骨髓间质干细胞(bone marrow stromal cell,BMSC)治疗,SDF- 1-CXCR4轴在MSCs动员和损伤、修复中的作用作一综述。  相似文献   

6.
Mesenchymal stem cells (MSCs) are attractive candidates for cell based therapies. However, the mechanisms responsible for stem cell migration and homing after transplantation remain unknown. It has been shown that insulin-like growth factor-1 (IGF-1) induces proliferation and migration of some cell types, but its effects on stem cells have not been investigated. We isolated and cultured MSC from rat bone marrow, and found that IGF-1 increased the expression levels of the chemokine receptor CXCR4 (receptor for stromal cell-derived factor-1, SDF-1). Moreover, IGF-1 markedly increased the migratory response of MSC to SDF-1. The IGF-1-induced increase in MSC migration in response to SDF-1 was attenuated by PI3 kinase inhibitor (LY294002 and wortmannin) but not by mitogen-activated protein/ERK kinase inhibitor PD98059. Our data indicate that IGF-1 increases MSC migratory responses via CXCR4 chemokine receptor signaling which is PI3/Akt dependent. These findings provide a new paradigm for biological effects of IGF-1 on MSC and have implications for the development of novel stem cell therapeutic strategies.  相似文献   

7.
Homing and engraftment, a determining factor in hematopoietic stem cell transplantation success is defined as a process through which hematopoietic stem/progenitor cells (HSPCs) lodge recipient bone marrow. SDF-1/CXCR4 axis acts as a principle regulator in homing and engraftment, however, CXCR4 signaling is dependent upon expression of CXCR4 and its ligand SDF-1, which is highly dynamic. Hence, present investigation was aimed to explore the potential of CXCR4 constitutive active mutants (CXCR4-CAMs) in overcoming the limitation of CXCR4 signaling and up-modulate its efficiency in homing and engraftment. Regulated transgene expression study of these mutants revealed their significantly enhanced cell adhesion efficiency to endothelium and extracellular matrix protein. This altogether indicates promising prospects of CXCR4-CAMs in research aimed to improve HSPCs engraftment efficiency.  相似文献   

8.
Culture-expanded human mesenchymal stem cells (hMSCs) are increasingly used in a variety of preclinical and clinical studies. However, these cells have a low rate of engraftment to bone marrow or damaged tissues. Several laboratories have shown that during isolation and subculturing mesenchymal stem cells quickly lose the expression of CXCR4, the key receptor responsible for lymphocytes and hematopoietic stem cell homing. Here we show that culturing of hMSCs as three-dimensional aggregates (hMSC spheroids) restores CXCR4 functional expression. Expression of CXCR4 inversely correlates with the secretion of SDF-1 by hMSCs. Cells from hMSC spheroids up-regulate expression of CD49b, the alpha2 integrin subunit, and suppress the expression of CD49d, the alpha4 integrin subunit. Transfer of cells from the spheroids back to a monolayer suppresses the expression of CXCR4 and CD49b and restores the expression of CD49d. Treatment of cells from the spheroids with SDF-1 leads to CXCR4 internalization and activation of ERK-1,2. Adhesion of hMSCs to human umbilical vein endothelial cells (HUVECs) was investigated. SDF-1, AMD-3100, or exposure of HUVECs to hypoxia did not affect adhesion of hMSCs from a monolayer to HUVECs. Adhesion of cells from hMSC spheroids to HUVECs was stimulated by SDF-1, AMD-3100, or by exposure of HUVECs to hypoxia. Stimulatory effects of hypoxia and addition of SDF-1 or AMD-3100 were not additive. Overall, our data indicate that the expression of CXCR4 by hMSCs regulates hMSC adhesion to endothelial cells.  相似文献   

9.
Stromal cell-derived growth factor-1alpha (SDF-1alpha) is a member of the CXC chemokines and interacts with the G protein, seven-transmembrane CXCR4 receptor. SDF-1alpha acts as a chemoattractant for immune and hemopoietic cells. The Tac1 gene encodes peptides belonging to the tachykinin family with substance P being the predominant member. Both SDF-1alpha and Tac1 peptides are relevant hemopoietic regulators. This study investigated the effects of SDF-1alpha on Tac1 expression in the major hemopoietic supporting cells, the bone marrow stroma, and addresses the consequence to hemopoiesis. Reporter gene assays with the 5' flanking region of Tac1 showed a bell-shaped effect of SDF-1alpha on luciferase activity with 20 ng/ml SDF-1alpha acting as stimulator, whereas 50 and 100 ng/ml SDF-1alpha acted as inhibitors. Gel shift assays and transfection with wild-type and mutant IkappaB indicate NF-kappaB as a mediator in the repressive effects at 50 and 100 ng/ml SDF-1alpha. Northern analyses and ELISA showed correlations among reporter gene activities, mRNA (beta-preprotachykinin I), and protein levels for substance P. Of relevance is the novel finding by long-term culture-initiating cell assays that showed an indirect effect of SDF-1alpha on hemopoiesis through substance P production. The results also showed neurokinin 1 and not neurokinin 2 as the relevant receptor. Another crucial finding is that substance P does not regulate the production of SDF-1alpha in stroma. The studies indicate that SDF-1alpha levels above baseline production in bone marrow stroma induce the production of substance P to stimulate hemopoiesis. Substance P, however, does not act as autocrine stimulator to induce the production of SDF-1alpha. This study adds SDF-1alpha as a mediator within the neural-immune-hemopoietic axis.  相似文献   

10.
SDF-1 and CXCR4 in normal and malignant hematopoiesis   总被引:12,自引:0,他引:12  
Over recent years it has become apparent that the chemokine SDF-1 and its receptor CXCR4 play pivotal roles in normal hematopoiesis. They are essential for the normal ontogeny of hematopoiesis during embryogenesis and continue to play a key role in retaining hematopoietic progenitors within the bone marrow microenvironment in the adult. As a result of this role disruption of SDF-1/CXCR4 interactions results in mobilization of hematopoietic progenitors and standard mobilization protocols disrupt this axis. Similarly SDF-1/CXCR4 interactions are required for homing and engraftment of hematopoietic stem cells during transplantation. SDF-1 regulates the localisation of leukemic cells and like their normal counterparts most leukemic cells respond to SDF-1 with increased adhesion, survival and proliferation. However in some instances leukemic cell responses to SDF-1 can be disregulated, the impact of which on the progression of disease in not known. In this review we discuss the pleiotropic roles of SDF-1/CXCR4 interactions in human hematopoietic stem cell ontogeny, bone marrow homing and engraftment, mobilization and how these interactions impact on malignant hematopoiesis.  相似文献   

11.
Stromal cell-derived factor-1alpha (SDF-1alpha) is a chemokine whose receptor, CXCR4, is distributed in specific brain areas including hypothalamus. SDF-1alpha has recently been found to play important roles in neurons, although direct modulation of voltage-gated ionic channels has never been shown. In order to clarify this issue, we performed patch-clamp experiments in fetal mouse hypothalamic neurons in culture. SDF-1alpha (10 nm) decreased the peak and rising slope of the action potentials and spike discharge frequency in 22% of hypothalamic neurons tested. This effect was blocked by the CXCR4 antagonist AMD 3100 (1 microm) but not by the metabotropic glutamate receptor antagonist MCPG (500 microm), indicating a direct action of SDF-1alpha on its cognate receptor. This effect involved a depression of both inward and outward voltage-dependent currents of the action potential. We confirmed these effects in the human neuroblastoma cell line SH-SY5Y, which endogenously expresses CXCR4. Voltage-clamp experiments revealed that SDF-1alpha induced a 20% decrease in the peak of the tetrodotoxin-sensitive sodium current and tetraethylammonium-sensitive delayed rectifier potassium current, respectively. Both effects were concentration dependent, and blocked by AMD 3100 (200 nm). This dual effect was reduced or blocked by 0.4 mm GTPgammaS G-protein pre-activation or by pre-treatment with the G-protein inhibitor pertussis toxin (200 ng/mL), suggesting that it is mediated via activation of a G(i/o) protein. This study extends the functions of SDF-1alpha to a direct modulation of voltage-dependent membrane currents of neuronal cells.  相似文献   

12.
CXCR4 function requires membrane cholesterol: implications for HIV infection   总被引:15,自引:0,他引:15  
HIV requires cholesterol and lipid rafts on target cell membranes for infection. To elucidate a possible mechanism, we determined that cholesterol extraction by hydroxypropyl-beta-cyclodextrin (BCD) inhibits stromal cell-derived factor 1alpha (SDF-1alpha) binding to CXCR4 on T cell lines and PBMCs. Intracellular calcium responses to SDF-1alpha, as well as receptor internalization, were impaired in treated T cells. Loss in ligand binding is likely due to conformational changes in CXCR4 and not increased sensitivity to internalization. SDF-1alpha binding and calcium responses were effectively restored by reloading cholesterol. Immunofluorescence microscopy revealed that SDF-1alpha binding occurred in lipid raft microdomains that contained GM1. CXCR4 surface expression, on the other hand, only partially colocalized with GM1. HIV-1(IIIB) infection assays confirmed the functional loss of CXCR4 in the cell lines tested, Sup-T1 and CEM-NKR-CCR5. These data suggest that cholesterol is essential for CXCR4 conformation and function and that lipid rafts may play a regulatory role in SDF-1alpha signaling.  相似文献   

13.

Introduction

The objective of the present study was to investigate the role of the stromal cell-derived factor 1 (SDF-1)/CXCR4 axis in TNF-induced mobilization of osteoclast precursors (OCPs) from bone marrow.

Methods

OCPs were generated from bone marrow cells of TNF-transgenic mice or wild-type mice treated with TNF or PBS. The percentage of CD11b+/Gr-1-/lo OCPs was assessed by fluorescence-activated cell sorting. OCP migration to the SDF-1 gradient and the osteoclast forming potency were assessed in chemotaxis/osteoclastogenic assays. SDF-1 expression was assessed by real-time RT-PCR, ELISA and immunostaining in primary bone marrow stromal cells, in the ST2 bone marrow stromal cell line, and in bones from TNF-injected mice.

Results

OCPs generated in vitro from wild-type mice migrated to SDF-1 gradients and subsequently gave rise to osteoclasts in response to RANKL and macrophage colony-stimulating factor. TNF reduced SDF-1 expression by ST2 cells. Bone marrow stromal cells from TNF-transgenic mice produced low levels of SDF-1. TNF treatment of wild-type mice decreased the SDF-1 concentration in bone marrow extracts and decreased the SDF-1 immunostaining of bone marrow stromal cells, and it also increased the circulating OCP numbers. The percentage of bone marrow CXCR4+ OCPs was similar in TNF-transgenic mice and wild-type littermates and in TNF-treated and PBS-treated wild-type mice.

Conclusion

Systemically elevated TNF levels inhibit bone marrow stromal cell production of SDF-1 and increase the release of bone marrow OCPs to the peripheral blood. Disruption of the SDF-1/CXCR4 axis by TNF may play an important role in mediating OCP mobilization from the bone marrow cavity in chronic inflammatory arthritis.  相似文献   

14.
Because the binding of HIV-1 envelope to CD4 initiates a configurational change in glycoprotein 120 (gp120), enabling it to interact with fusion coreceptors, we investigated how this process interferes with the expression and function of CXC chemokine receptor 4 (CXCR4) in CD4+ T lymphocytes. A recombinant gp120 (MN), after preincubation with CD4+ T lymphocytes, significantly inhibited the binding and chemotaxis of the cells in response to the CXCR4 ligand stromal cell-derived factor-1alpha (SDF-1alpha), accompanied by a markedly reduced surface expression of CXCR4. gp120, but not SDF-1alpha, induced rapid tyrosine phosphorylation of src-like kinase p56lck in CD4+ T cells, whereas both gp120 and SDF-1alpha caused phosphorylation of the CXCR4. The tyrosine kinase inhibitor herbimycin A abolished the phosphorylation of p56lck and CXCR4 induced by gp120 in association with maintenance of normal expression of cell surface CXCR4 and a migratory response to SDF-1alpha. Thus, a CD4-associated signaling molecule(s) including p56lck is activated by gp120 and is required for the down-regulation of CXCR4.  相似文献   

15.
CXCR4 and its ligand stromal cell-derived factor 1alpha (SDF-1alpha) have recently been implicated in the development of airway inflammation in a mouse model of allergic airway disease. Here we report, for the first time, the expression of a functional CXCR4 in primary human normal bronchial epithelial cells and the regulation of CXCR4 gene expression by proinflammatory mediators. Both bradykinin (BK) and IL-1beta induced an accumulation of CXCR4 mRNA in normal bronchial epithelial cells in a time-dependent manner, with peak levels of CXCR4 mRNA reached between 4 and 24 h after stimulation. Ligand activation of CXCR4 in airway epithelial cells resulted in the activation of the extracellular signal-regulated kinase and stress-activated protein kinase/c-Jun amino-terminal kinase signaling pathways and calcium mobilization. Pretreatment of airway epithelial cells with BK or IL-1beta enhanced SDF-1alpha induced phospho-extracellular signal-regulated kinase and calcium mobilization, in addition to increasing the level of CXCR4 protein. Finally, we describe the expression of CXCR4 mRNA and its regulation by BK in vivo in human nasal tissue. CXCR4 mRNA levels are significantly higher in the nasal tissue of symptomatic allergic rhinitis subjects compared with normal subjects. Moreover, BK challenge significantly increased CXCR4 mRNA levels in nasal tissue of mild allergic rhinitis subjects in vivo, but not normal controls. In conclusion, this study demonstrates that human airway epithelial cells respond to proinflammatory mediators by up-regulating the chemokine receptor CXCR4, thus enabling the cells to respond more effectively to constitutively expressed SDF-1alpha. This may lead to enhanced activation of intracellular signaling pathways resulting in the release of mediators involved in inflammatory allergic airway disease.  相似文献   

16.
17.
Numerous studies have reported that CXCR4 and CXCR7 play an essential, but differential role in stromal cell-derived factor-1 (SDF-1)-inducing cell chemotaxis, viability and paracrine actions of BMSCs. Adipose tissue-derived mesenchymal stem cells (ADSCs) have been suggested to be potential seed cells for clinical application instead of bone marrow derived stroma cell (BMSCs). However, the function of SDF-1/CXCR4 and SDF-1/CXCR7 in ADSCs is not well understood. This study was designed to analyze the effect of SDF-1/CXCR4 and SDF-1/CXCR7 axis on ADSCs biological behaviors in vitro. Using Flow cytometry and Western blot methods, we found for the first time that CXCR4/CXCR7 expression was increased after treatment with SDF-1 in ADSCs. SDF-1 promoted ADSCs paracrine, proliferation and migration abilities. CXCR4 or CXCR7 antibody suppressed ADSCs paracrine action induced by SDF-1. The migration of ADSCs can be abolished by CXCR4 antibody, while the proliferation of ADSCs was only downregulated by CXCR7 antibody. Our study indicated that the angiogenesis of ADSCs is, at least partly, mediated by SDF-1/CXCR4 and SDF-1/CXCR7 axis. However, only binding of SDF-1/CXCR7 was required for proliferation of ADSCs, and CXCR7 was required for migration of ADSCs induced by SDF-1. Our studies provide evidence that the activation of either axis may be helpful to improve the effectiveness of ADSCs-based stem cell therapy.  相似文献   

18.
Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. The stromal cell-derived factor 1 (SDF-1), constitutively secreted by human lung epithelium cells, has been shown to function in a key role for recruitment of neutrophils. Here, we found that human chondrosarcoma tissues and chondrosarcoma cell lines had significant expression of CXCR4 (SDF-1 receptor), which was higher than normal cartilage and human chondrocyte. SDF-1alpha and lung epithelium cells conditioned medium (LECM) induced the invasiveness of chondrosarcoma cells. SDF-1 siRNA inhibited LECM-induced invasion of chondrosarcoma cells and SDF-1alpha also directly induced the cell surface expression of alphavbeta3 but not alpha2beta1 and alpha5beta1 integrin. Activations of ERK and NF-kappaB pathways after SDF-1 treatment was demonstrated, and SDF-1alpha-induced expression of alphavbeta3 integrin and invasion activity was inhibited by the specific inhibitor and mutant of ERK and NF-kappaB cascades. Taken together, our results indicate that lung derived-SDF-1alpha enhances the invasiveness of chondrosarcoma cells by increasing alphavbeta3 integrin expression through the CXCR4/ERK/NF-kappaB signal transduction pathway.  相似文献   

19.
Hemopoiesis is regulated in part by survival/apoptosis of hemopoietic stem/progenitor cells. Exogenously added stromal cell-derived factor-1 ((SDF-1)/CXC chemokine ligand (CXCL)12) enhances survival/antiapoptosis of myeloid progenitor cells in vitro. To further evaluate SDF-1/CXCL12 effects on progenitor cell survival, transgenic mice endogenously expressing SDF-1/CXCL12 under a Rous sarcoma virus promoter were produced. Myeloid progenitors (CFU-granulocyte-macrophage, burst-forming unit-erythroid, CFU-granulocyte-erythrocyte-megakaryocyte-monocyte) from transgenic mice were studied for in vitro survival in the context of delayed addition of growth factors. SDF-1-expressing transgenic myeloid progenitors were enhanced in survival and antiapoptosis compared with their wild-type littermate counterparts. Survival-enhancing effects were due to release of low levels of SDF-1/CXCL12 and mediated through CXCR4 and G(alpha)i proteins as determined by ELISA, an antagonist to CXCR4, Abs to CXCR4 and SDF-1, and pertussis toxin. Transgenic effects of low SDF-1/CXCR4 may be due to synergy of SDF-1/CXCL12 with other cytokines; low SDF-1/CXCL12 synergizes with low concentrations of other cytokines to enhance survival of normal mouse myeloid progenitors. Consistent with in vitro results, progenitors from SDF-1/CXCL12 transgenic mice displayed enhanced marrow and splenic myelopoiesis: greatly increased progenitor cell cycling and significant increases in progenitor cell numbers. These results substantiate survival effects of SDF-1/CXCL12, now extended to progenitors engineered to endogenously produce low levels of this cytokine, and demonstrate activity in vivo for SDF-1/CXCL12 in addition to cell trafficking.  相似文献   

20.
Homing and engraftment, a determining factor in hematopoietic stem cell transplantation success is defined as a process through which hematopoietic stem/progenitor cells (HSPCs) lodge recipient bone marrow. SDF-1/CXCR4 axis acts as a principle regulator in homing and engraftment, however, CXCR4 signaling is dependent upon expression of CXCR4 and its ligand SDF-1, which is highly dynamic. Hence, present investigation was aimed to explore the potential of CXCR4 constitutive active mutants (CXCR4-CAMs) in overcoming the limitation of CXCR4 signaling and up-modulate its efficiency in homing and engraftment. Regulated transgene expression study of these mutants revealed their significantly enhanced cell adhesion efficiency to endothelium and extracellular matrix protein. This altogether indicates promising prospects of CXCR4-CAMs in research aimed to improve HSPCs engraftment efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号