首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective: Retinol binding protein‐4 (RBP4) has been reported to impair insulin sensitivity throughout the body. We investigated the relationship between serum RBP4 levels and adiposity indices as well as metabolic risk variables. Research Methods and Procedure: We recruited a total of 102 healthy women 21 to 67 years old. We assessed body composition by computed tomography and divided the study population into four groups based on body weight and visceral fat area (non‐obese without visceral adiposity, non‐obese with visceral adiposity, obese without visceral adiposity, and obese with visceral adiposity). Serum RBP4 levels were measured by radioimmunoassay. Results: Despite similar levels of total body fat, non‐obese women had lower systolic blood pressure, total cholesterol, triglyceride (TG), low‐density lipoprotein (LDL)‐cholesterol levels, insulin resistance indices, and RBP4 levels than non‐obese women with visceral adiposity and had higher high‐density lipoprotein‐cholesterol levels. Similarly, obese women without visceral adiposity had lower blood pressure, total cholesterol, TG levels, insulin resistance indices, and RBP4 levels than obese women with visceral adiposity. In addition, despite having increased body fat, obese women without visceral adiposity had lower TGs, insulin resistance indices, and serum RBP4 levels than non‐obese women with visceral adiposity. By step‐wise multiple regression analysis, visceral fat areas and LDL‐cholesterol levels independently affected RBP4 levels. Discussion: We determined that serum RBP4 levels are independently associated with visceral fat and LDL‐cholesterol levels. These results suggest that, irrespective of body weight, visceral obesity is an independent predictor of serum RBP4 levels, and RBP4 may represent a link between visceral obesity and cardiovascular disease.  相似文献   

2.
3.
Elevated serum retinol-binding protein (RBP) concentration has been associated with obesity and insulin resistance, but accompanying retinol values have not been reported. Assessment of retinol is required to discriminate between apo-RBP, which may act as an adipokine, and holo-RBP, which transports vitamin A. The relations between serum RBP, retinol, retinyl esters, BMI, and measures of insulin resistance were determined in obese adults. Fasting blood (> or =8 h) was collected from obese men and women (n = 76) and blood chemistries were obtained. Retinol and retinyl esters were quantified by HPLC and RBP by ELISA. RBP and retinol were determined in age and sex-matched, nonobese individuals (n = 41) for comparison. Serum apo-RBP was two-fold higher in obese (0.90 +/- 0.62 microM) than nonobese subjects (0.44 +/- 0.56 microM) (P < 0.001). The retinol to RBP ratio (retinol:RBP) was significantly lower in obese (0.73 +/- 0.13) than nonobese subjects (0.90 +/- 0.22) (P < 0.001) and RBP was strongly associated with retinol in both groups (r = 0.71 and 0.90, respectively, P < 0.0001). In obese subjects, RBP was associated with insulin (r = 0.26, P < 0.05), homeostatic model assessment of insulin resistance (r = 0.29, P < 0.05), and quantitative insulin sensitivity check index (r = -0.27, P < 0.05). RBP was associated with BMI only when obese and nonobese subjects were combined (r = 0.25, P < 0.01). Elevated serum RBP, derived in part from apo-RBP, was more strongly associated with retinol than with BMI or measures of insulin resistance in obese adults. Investigations into the role of RBP in obesity and insulin resistance should include retinol to facilitate the measurement of apo-RBP and retinol:RBP. When evaluating the therapeutic potential of lowering serum RBP, consideration of the consequences of vitamin A metabolism is paramount.  相似文献   

4.
To determine whether type 2 diabetes mellitus alters systemic and regional free fatty acid ([3H]palmitate) metabolism, 14 nondiabetic (ND) and 14 type 2 diabetic (D) subjects underwent hyperinsulinemic-hyperglycemic (approximately 9.3 mM) clamps. The subjects were matched for age, body mass index, percent body fat, and fat-free mass. D subjects had more (P < 0.05) visceral fat than ND. During somatostatin, replacement growth hormone, and glucagon infusions, insulin was infused to achieve moderate (approximately 75 pmol/l) and high (approximately 150 pmol/l) physiological insulin levels. D subjects had greater (P < 0.02) systemic and regional (splanchnic and leg) palmitate release than ND subjects during both insulin infusion intervals. The relative contributions of splanchnic, leg, and nonsplanchnic upper body regions to systemic palmitate release did not differ between groups, although the last contributed the most (approximately 75%) to systemic palmitate release. Visceral fat area correlated with systemic palmitate flux (r = 0.45, P < 0.03) during both insulin infusions. We conclude that type 2 diabetes is associated with a generalized impairment in insulin suppression of lipolysis compared with equally obese ND individuals.  相似文献   

5.
Visceral fat has been linked to insulin resistance and type 2 diabetes mellitus (T2DM); and emerging data links RBP4 gene expression in adipose tissue with insulin resistance. In this study, we examined RBP4 protein expression in omental adipose tissue obtained from 24 severely obese patients undergoing bariatric surgery, and 10 lean controls (4 males/6 females, BMI = 23.2 ± 1.5 kg/m2) undergoing elective abdominal surgeries. Twelve of the obese patients had T2DM (2 males/10 females, BMI: 44.7 ± 1.5 kg/m2) and 12 had normal glucose tolerance (NGT: 4 males/8 females, BMI: 47.6 ± 1.9 kg/m2). Adipose RBP4, glucose transport protein‐4 (GLUT4), and p85 protein expression were determined by western blot. Blood samples from the bariatric patients were analyzed for serum RBP4, total cholesterol, triglycerides, and glucose. Adipose RBP4 protein expression (NGT: 11.0 ± 0.6; T2DM: 11.8 ± 0.7; lean: 8.7 ± 0.8 arbitrary units) was significantly increased in both NGT (P = 0.03) and T2DM (P = 0.005), compared to lean controls. GLUT4 protein was decreased in both NGT (P = 0.02) and T2DM (P = 0.03), and p85 expression was increased in T2DM subjects, compared to NGT (P = 0.03) and lean controls (P = 0.003). Regression analysis showed a strong correlation between adipose RBP4 protein and BMI for all subjects, as well as between adipose RBP4 and fasting glucose levels in T2DM subjects (r = 0.76, P = 0.004). Further, in T2DM, serum RBP4 was correlated with p85 expression (r = 0.68, P = 0.01), and adipose RBP4 protein trended toward an association with p85 protein (r = 0.55, P = 0.06). These data suggest that RBP4 may regulate adiposity, and p85 expression in obese‐T2DM, thus providing a link to impaired insulin signaling and diabetes in severely obese patients.  相似文献   

6.
Retinol-binding protein 4 (RBP4) and nicotinamide phosphoribosyltransferase/visfatin (Nampt/visfatin) are adipocyte-secreted proteins (adipokines) whose relevance to the metabolic syndrome and regulation in obesity remain controversial. Here, we tested the hypothesis that adipose tissue expression and circulating levels of these two adipokines are elevated in obesity by analyzing their changes in both a genetic and a diet-induced model of obesity in the rat (obese FA/ FA Zucker rats and Wistar rats fed a cafeteria diet, respectively). Compared with lean controls, obese FA/ FA rats were hyperleptinemic, hyperinsulinemic, and insulin resistant and had reduced RBP4 serum levels and mRNA levels in adipose depots, unchanged Nampt/visfatin serum levels, and reduced Nampt/visfatin mRNA levels selectively in the inguinal adipose depot. Cafeteria diet-induced obesity resulted in increased fed blood glucose levels, a variable degree of insulin resistance, unchanged serum Nampt/visfatin and RBP4 levels, and reduced mRNA levels of both adipokines in several adipose depots. Hence, increases in RBP4 or Nampt/visfatin do not accompany obesity and insulin resistance in the models examined.  相似文献   

7.
Contradictory findings regarding the gene expression of the main lipogenic enzymes in human adipose tissue depots have been reported. In this cross‐sectional study, we aimed to evaluate the mRNA expression of fatty acid synthase (FAS) and acetyl‐CoA carboxilase (ACC) in omental and subcutaneous (SC) fat depots from subjects who varied widely in terms of body fat mass. FAS and ACC gene expression were evaluated by real time‐PCR in 188 samples of visceral adipose tissue which were obtained during elective surgical procedures in 119 women and 69 men. Decreased sex‐adjusted FAS (?59%) and ACC (?49%) mRNA were found in visceral adipose tissue from obese subjects, with and without diabetes mellitus type 2 (DM‐2), compared with lean subjects (both P < 0.0001). FAS mRNA was also decreased (?40%) in fat depots from overweight subjects (P < 0.05). Indeed, FAS mRNA was significantly and positively associated with ACC gene expression (r = 0.316, P < 0.0001) and negatively with BMI (r = ?0.274), waist circumference (r = ?0.437), systolic blood pressure (r = ?0.310), serum glucose (r = ?0.277), and fasting triglycerides (r = ?0.226), among others (all P < 0.0001). Similar associations were observed for ACC gene expression levels. In a representative subgroup of nonobese (n = 4) and obese women (n = 6), relative FAS gene expression levels significantly correlated (r = 0.657, P = 0.034; n = 10) with FAS protein values. FAS protein levels were also inversely correlated with blood glucose (r = ?0.640, P = 0.046) and fasting triglycerides (r = ?0.832, P = 0.010). In conclusion, the gene expression of the main lipogenic enzymes is downregulated in visceral adipose tissue from obese subjects.  相似文献   

8.
Borst SE  Conover CF 《Life sciences》2005,77(17):2156-2165
In several strains of genetically obese and insulin resistant rodents, adipose tissue over expresses mRNA for tumor necrosis factor alpha (TNF-alpha). Our purpose was to determine whether tissue expression of TNF-alpha protein is elevated in rats that are made obese and insulin resistant by administration of a high-fat diet. Young Wistar rats weighing approximately 50 g were fed for 39 days with either normal rat chow (12.4% fat) or a high-fat diet (50% fat). After 33 days, glucose tolerance was assessed and after 39 days, insulin-stimulated transport of [3H]-2-deoxyglucose was assessed in isolated strips of soleus muscle. Rats on the high-fat diet consumed slightly fewer calories but became obese, displaying significant approximately 2-fold increases in the mass of both visceral and subcutaneous fat depots. High-fat feeding also caused a moderate degree of insulin resistance. Fasting serum insulin was significantly increased, as were insulin and glucose concentrations following glucose loading. In isolated strips of soleus muscle, the high-fat diet produced a trend toward a 33% decrease in the insulin-stimulated component of glucose transport (p=0.064). Western analysis of muscle, liver and fat revealed two forms of TNF-alpha, a soluble 17 Kd form (sTNF-alpha) and a 26 Kd membrane form (mTNF-alpha). Both sTNF-alpha and mTNF-alpha were relatively abundant in fat; whereas sTNF-alpha was the predominant form present in muscle and liver. High-fat feeding caused a significant 2-fold increase in muscle sTNF-alpha, along with a trend toward a 54% increase in visceral fat sTNF-alpha (p=0.055). TNF-alpha was undetectable in serum. We conclude that muscle over expression of TNF-alpha occurs during the development of diet-induced obesity and may, in part cause insulin resistance by an autocrine mechanism.  相似文献   

9.
Objective: To assess the main determinant of serum leptin concentration changes in morbidly obese patients treated by banded vertical gastroplasty. Research Methods and Procedures: Serum leptin and insulin concentrations, insulin resistance, BMI, body weight, and body fat mass in 18 obese women and 8 obese men treated by vertical banded gastroplasty were studied. Lean women and men subjects were used as controls. Results: Before surgery, serum leptin and insulin concentrations and insulin resistance index were significantly higher in morbidly obese patients than in control subjects. BMI, body fat mass, and serum triacylglycerol concentrations were also significantly higher in obese than in lean subjects. All of these parameters gradually decreased during 50 weeks after surgery. Univariate regression analysis displayed significant correlations between the following: serum leptin concentration and BMI (and body fat mass), serum leptin concentration and serum insulin concentration, and serum leptin concentration and insulin resistance index. Multivariate regression analysis indicated that only BMI was independently correlated with the decrease in serum leptin concentration. Discussion: Obtained data suggest the following: 1) vertical banded gastroplasty causes reduction of body weight, serum leptin and insulin concentration, insulin resistance, and serum triacylglycerol concentration; and 2) BMI is the main determinant of the circulating leptin concentration in morbidly obese women after anti‐obesity surgery.  相似文献   

10.
To determine whether serine/threonine ROCK1 is activated by insulin in vivo in humans and whether impaired activation of ROCK1 could play a role in the pathogenesis of insulin resistance, we measured the activity of ROCK1 and the protein content of the Rho family in vastus lateralis muscle of lean, obese nondiabetic, and obese type 2 diabetic subjects. Biopsies were taken after an overnight fast and after a 3-h hyperinsulinemic euglycemic clamp. Insulin-stimulated GDR was reduced 38% in obese nondiabetic subjects compared with lean, 62% in obese diabetic subjects compared with lean, and 39% in obese diabetic compared with obese nondiabetic subjects (all comparisons P < 0.001). Insulin-stimulated IRS-1 tyrosine phosphorylation is impaired 41-48% in diabetic subjects compared with lean or obese subjects. Basal activity of ROCK1 was similar in all groups. Insulin increased ROCK1 activity 2.1-fold in lean and 1.7-fold in obese nondiabetic subjects in muscle. However, ROCK1 activity did not increase in response to insulin in muscle of obese type 2 diabetic subjects without change in ROCK1 protein levels. Importantly, insulin-stimulated ROCK1 activity was positively correlated with insulin-mediated GDR in lean subjects (P < 0.01) but not in obese or type 2 diabetic subjects. Moreover, RhoE GTPase that inhibits the catalytic activity of ROCK1 by binding to the kinase domain of the enzyme is notably increased in obese type 2 diabetic subjects, accounting for defective ROCK1 activity. Thus, these data suggest that ROCK1 may play an important role in the pathogenesis of resistance to insulin action on glucose disposal in muscle of obese type 2 diabetic subjects.  相似文献   

11.
Obesity and insulin resistance are independent risk factors for metabolic syndrome, diabetes, and cardiovascular disease. Adipose tissue samples from nonobese (NO), insulin-sensitive obese (ISO), and insulin-resistant obese (IRO) subjects from subcutaneous (SC) and omental (OM) adipose tissue (n = 28) were analyzed by microarray and confirmed by real-time PCR. Insulin signaling gene expression changes were greater in OM than in SC tissue and were related to insulin resistance rather than to obesity; few genes correlated with body mass index. Insulin receptor and insulin receptor substrate 1 (IRS-1) increased in the IRO versus pooled insulin-sensitive (NO+ISO) subjects. In glucose transport, PI3Kalpha and PDK2 decreased in IRO subjects, whereas PI3Kgamma, Akt2, GLUT4, and GLUT1 increased. IRS-1 regulators Jnk and IKK increased in IRO (P < 0.01 and P < 0.001 respectively). In protein synthesis, most genes examined were downregulated in IRO subjects, including mTor, Rheb, and 4EBP and eIF members (all P < 0.05). In proliferation, SHC, SOS, and Raf1 (P < 0.05) were increased, whereas Ras and MEK1/2 kinase 1 (P < 0.05) were decreased, in IRO subjects. Finally, in differentiation, PPARgamma, CEBPalpha, and CEBPbeta decreased, whereas PPARdelta, CEBPgamma, and CEBPepsilon increased, in IRO subjects (P < 0.05). Together, microarray and real-time PCR data demonstrate that insulin resistance rather than obesity is associated with altered gene expression of insulin signaling genes, especially in OM adipose tissue.  相似文献   

12.
Vitamin A and its analogs (retinoids) regulate adipocyte differentiation. Recent investigations have demonstrated a relationship among retinoids, retinoid-binding-protein 4 (RBP4) synthesized in adipose tissues, and insulin-resistance status. In this study, we measured retinoid levels and analyzed the expression of retinoid homeostatic genes associated with retinol uptake, esterification, oxidation, and catabolism in subcutaneous (Sc) and visceral (Vis) mouse fat tissues. Both Sc and Vis depots were found to contain similar levels of all-trans retinol. A metabolite of retinol with characteristic ultraviolet absorption maxima for 9-cis retinol was observed in these 2 adipose depots, and its level was 2-fold higher in Sc than in Vis tissues. Vis adipose tissue expressed significantly higher levels of RBP4, CRBP1 (intracellular retinol-binding protein 1), RDH10 (retinol dehydrogenase), as well as CYP26A1 and B1 (retinoic acid (RA) hydroxylases). No differences in STRA6 (RBP4 receptor), LRAT (retinol esterification), CRABP1 and 2 (intracellular RA-binding proteins), and RALDH1 (retinal dehydrogenase) mRNA expressions were discerned in both fat depots. RALDH1 was identified as the only RALDH expressed in both Sc and Vis adipose tissues. These results indicate that Vis is more actively involved in retinoid metabolism than Sc adipose tissue.  相似文献   

13.
Serum retinol-binding protein (RBP4) is secreted by liver and adipocytes and is implicated in systemic insulin resistance in rodents and humans. RBP4 normally binds to the larger transthyretin (TTR) homotetramer, forming a protein complex that reduces renal clearance of RBP4. To determine whether alterations in RBP4-TTR binding contribute to elevated plasma RBP4 levels in insulin-resistant states, we investigated RBP4-TTR interactions in leptin-deficient ob/ob mice and high-fat-fed obese mice (HFD). Gel filtration chromatography of plasma showed that 88-94% of RBP4 is contained within the RBP4-TTR complex in ob/ob and lean mice. Coimmunoprecipitation with an RBP4 antibody brought down stoichiometrically equal amounts of TTR and RBP4, indicating that TTR was not more saturated with RBP4 in ob/ob mice than in controls. However, plasma TTR levels were elevated approximately fourfold in ob/ob mice vs. controls. RBP4 injected intravenously in lean mice cleared rapidly, whereas the t(1/2) for disappearance was approximately twofold longer in ob/ob plasma. Urinary fractional excretion of RBP4 was reduced in ob/ob mice, consistent with increased retention. In HFD mice, plasma TTR levels and clearance of injected RBP4 were similar to chow-fed controls. Hepatic TTR mRNA levels were elevated approximately twofold in ob/ob but not in HFD mice. Since elevated circulating RBP4 causes insulin resistance and glucose intolerance in mice, these findings suggest that increased TTR or alterations in RBP4-TTR binding may contribute to insulin resistance by stabilizing RBP4 at higher steady-state concentrations in circulation. Lowering TTR levels or interfering with RBP4-TTR binding may enhance insulin sensitivity in obesity and type 2 diabetes.  相似文献   

14.
Abdominally obese individuals with the metabolic syndrome often have excess fat deposition both intra‐abdominally (IA) and in the liver, but the relative contribution of these two deposits to variation in components of the metabolic syndrome remains unclear. We determined the mutually independent quantitative contributions of IA and liver fat to components of the syndrome, fasting serum (fS) insulin, and liver enzymes and measures of hepatic insulin sensitivity in 356 subjects (mean age 42 years, mean BMI 29.7 kg/m2) in whom liver fat and abdominal fat volumes were measured. IA and liver fat contents were correlated (r = 0.65, P < 0.0001). In multivariate linear regression analyses including either liver or IA fat, liver fat or IA fat explained variation in fS‐triglyceride (TG) and high‐density lipoprotein (HDL) cholesterol, plasma glucose, insulin and liver enzyme concentrations, and hepatic insulin sensitivity independent of age, gender, subcutaneous (SC) fat, and/or lean body mass (LBM). Including both liver and IA fat, liver and IA fat both explained variation in TG, HDL cholesterol, insulin and hepatic insulin sensitivity independent of each other and of age, gender, SC fat, and LBM. Liver fat independently predicted glucose and liver enzymes. SC fat and age explained variation in blood pressure. In conclusion, both IA and liver fat independently of each other explain variation in serum TG, HDL cholesterol, insulin concentrations and hepatic insulin sensitivity, thus supporting that both fat depots are important predictors of these components of the metabolic syndrome.  相似文献   

15.
We previously reported that a eucaloric, low fat, liquid formula diet enriched in simple carbohydrate markedly increased the synthesis of fatty acids in lean volunteers. To examine the diet sensitivity of obese subjects, 7 obese and 12 lean volunteers were given two eucaloric low fat solid food diets enriched in simple sugars for 2 weeks each in a random-order, cross-over design (10% fat, 75% carbohydrate vs. 30% fat, 55% carbohydrate, ratio of sugar to starch 60:40). The fatty acid compositions of both diets were matched to the composition of each subject's adipose tissue and fatty acid synthesis measured by the method of linoleate dilution in plasma VLDL triglyceride. In all subjects, the maximum % de novo synthesized fatty acids in VLDL triglyceride 3;-9 h after the last meal was higher on the 10% versus the 30% fat diet. There was no significant difference between the dietary effects on lean (43+/-13 vs. 12+/-13%) and obese (37+/-15 vs. 6+/-6%) subjects, despite 2-fold elevated levels of insulin and reduced glucagon levels in the obese. Similar results were obtained for de novo palmitate synthesis in VLDL triglyceride measured by mass isotopomer distribution analysis after infusion of [(13)C]acetate. On the 10% fat diet, plasma triglycerides (fasting and 24 h) were increased and correlated with fatty acid synthesis. Triglycerides were higher when fatty acid synthesis was constantly elevated rather than having diurnal variation.Thus, eucaloric, solid food diets which are very low in fat and high in simple sugars markedly stimulate fatty acid synthesis from carbohydrate, and plasma triglycerides increase in proportion to the amount of fatty acid synthesis. However, this dietary effect is not related to body mass index, insulin, or glucagon levels.  相似文献   

16.
目的:探讨儿童血清视黄醇结合蛋白-4(retinol-binding protein4,RBP-4),视黄醇,甲状腺素运载蛋白(transthyretin,TTR)等维生素A相关指标与肥胖、胰岛素抵抗以及代谢综合征组分之间的关系。方法:分别随机选取本地区13-15岁体检学生,其中正常对照组和单纯性肥胖组儿童各50例,测定其血清RBP-4、视黄醇、TTR水平;利用空腹胰岛素和定量胰岛索敏感性检测指标评价其胰岛素抵抗;同时测定代谢综合征部分组分水平和亚临床炎症指标。结果:仅5%的青少年存在维生素A营养不足状态。排除年龄、性别、感染等因素的影响后,血清RBP-4水平、视黄醇、RBP-4/TTR摩尔比值以及RBP-4/视黄醇摩尔比值与体重指数、体脂含量以及体脂的中心分布(WHR)等密切相关;RBP-4与代谢综合征组分的甘油三酯水平则存在明显的正相关,而RBP-4/视黄醇摩尔比值则与空腹胰岛素水平存在显著的正相关。结论:RBP-4可能通过视黄醇依赖和/或非视黄醇依赖的方式参与肥胖和代谢综合征的病理过程。  相似文献   

17.
Objective: The fat mass and obesity associated (FTO) gene is related to obesity, but the regulation of FTO expression in adipose tissue is not fully understood. We investigated FTO expression in paired subcutaneous and omental adipose tissues (SAT and OAT) from healthy women undergoing gynecological surgeries, and its relation with adiposity and insulin sensitivity. Design and Methods: FTO expression in SAT of type 2 diabetic patients treated or not with Rosiglitazone was also compared. Results: Both the mRNA and protein levels of FTO were higher in OAT from women than in SAT. Only OAT FTO protein levels negatively correlated with BMI and body fat mass, whereas SAT FTO mRNA levels were negatively correlated with subcutaneous fat deposition. In addition, SAT FTO mRNA and protein levels were increased in insulin resistant women (high HOMA) compared to insulin sensitive women (low HOMA), whereas OAT FTO expression was not different between these two subgroups. Interestingly, FTO mRNA levels were increased in SAT of type 2 diabetic patients, and treatment of diabetics with Rosiglitazone improved insulin sensitivity and reduced SAT FTO mRNA levels. Lastly, FTO expression was transiently increased in the early phase of 3T3‐L1 cell differentiation, which coincides with the induction of PPARγ2 expression. However, partial reduction of FTO did not impact PPARγ2 expression and adipocyte differentiation. Conclusion: Therefore, FTO gene expression is higher in OAT than in SAT in lean to moderately obese women. OAT FTO expression is associated with adiposity, whereas SAT FTO expression is associated with insulin sensitivity. These associations are independent of an effect of FTO on adipocyte differentiation.  相似文献   

18.
Retinol binding protein 4 (RBP4) is an adipokine that may contribute to the development of insulin resistance. However, how this adipokine is affected and its possible involvement in lipid metabolism in obese patients with varying degrees of insulin resistance is yet to be determined. A total of 299 middle-aged morbid obese patients (BMI>40 kg/m2) were divided in euglycemic, metabolic syndrome or type 2 diabetic. Anthropometric measurements, biochemical variables and systemic RBP4 levels were determined. RBP4 levels were significantly higher in patients with metabolic syndrome and type 2 diabetes than in euglycemic subjects (42.9±14.6; 42.3±17.0 and 37.4±11.7 µg/ml, respectively) and correlated with triglycerides but not with those of HOMA-IR in the whole population. The multivariate regression model revealed that triglycerides were the strongest predictor of systemic RBP4 levels. Analysis of lipoprotein subfractions in a subpopulation of 80 subjects showed an altered profile of insulin resistant states characterized by higher VLDL, sdLDL and small HDL percentages and lower large HDL percentage. Although RBP4 levels correlated significantly with LDL particle size and small HDL percentage, the latter parameter was independently associated only with RBP4. Our study reveals that systemic RBP4 levels could play an important role in lipid metabolism in morbid obesity, increasing triglyceride levels and contributing to the formation of small HDL.  相似文献   

19.
The objective of this study was to determine the change of plasma endothelin (ET)-1 concentrations and insulin resistance index after therapy for hyperthyroidism. We studied 20 patients with hyperthyroidism (15 women and 5 men; age, 34.0 +/- 2.8 years), and 31 patients with euthyroid goiters as controls (27 women, 4 men; age, 37.0 +/- 2.4 years). All hyperthyroid patients were treated with antithyroid drugs. The patients received evaluations before and after normalization of thyroid function. The evaluations included body mass index (BMI), body fat, and measurement of circulating concentrations of thyroid hormones, glucose, insulin, and ET-1. Hyperthyroid subjects had higher plasma ET-1 concentrations than the control group (P < 0.001). No significant differences in serum glucose and insulin concentrations or insulin resistance index estimated by the R value of the homeostasis model assessment (HOMA-R) were noted between the groups. Plasma ET-1 concentrations decreased after correction of hyperthyroidism compared with pretreatment (P = 0.006). Serum glucose concentrations decreased after correction of hyperthyroidism (P = 0.005). Moreover, both body weight-adjusted insulin concentrations and the HOMA-R index were also decreased after correction of hyperthyroidism compared with pretreatment (P = 0.026 and P = 0.019, respectively). Pearson's correlation revealed that plasma ET-1 levels positively correlated with serum triiodothyronine (T3) and free thyroxine (FT4) levels. Serum insulin levels and the HOMA-R index positively correlated with BMI and body fat. The HOMA-R index also positively correlated with serum T3 and FT4 levels. Neither insulin levels nor the HOMA-R index correlated with ET-1 levels. Hyperthyroidism is associated with higher plasma ET-1 concentrations. In addition, correction of hyperthyroidism is also associated with a decrease of plasma ET-1 levels as well as the insulin resistance index calculated by HOMA-R.  相似文献   

20.
Overweight and obesity correspond with metabolic syndromes, such as glucose intolerance and type 2 diabetes. The objective of this study was to determine whether decreased thermogenesis mass and glucose intolerance are directly related to changes in body mass in Mongolian gerbils. High body weight gerbils displayed increase in total body fat mass especially epididymal fat pad, and decrease in nonshivering thermogenesis, as indicated by depressed mitochondrial protein content and uncoupling protein-1 content in brown adipose tissue. No variations of sirtuin 1 and subunit IV of cytochrome oxidase expression were found in brown adipose tissue and skeletal muscle between the two groups. High body weight gerbils showed increased serum leptin and insulin concentrations but surprisingly increased glucose tolerance, suggesting a difference from other obese species in the regulation of glucose metabolism. Serum leptin levels were negatively correlated with UCP1 content in BAT and positively correlated with energy intake and insulin concentration. Our data suggest that leptin may be involved in thermogenesis regulation, insulin secretion and glucose metabolism in HBW gerbils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号