首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
Ammonium transporters play a key functional role in nitrogen uptake and assimilation in microorganisms and plants; however, little is known about their structural counterpart in mammals. Here, we report the molecular cloning and biochemical characterization of Rh type B glycoproteins, human RhBG and mouse Rhbg, two new members of the Rh family with distinct tissue specificities. The RhBG orthologues possess a conserved 12-transmembrane topology and most resemble bacterial and archaeal ammonium transporters. Human RHBG resides at chromosome 1q21.3, which harbors candidate genes for medullary cystic kidney disease, whereas mouse Rhbg is syntenic on chromosome 3. Northern blot and in situ hybridization revealed that RHBG and Rhbg are predominantly expressed in liver, kidney, and skin, the specialized organs involving ammonia genesis, excretion, or secretion. Confocal microscopy showed that RhBG is located in the plasma membrane and in some intracellular granules. Western blots of membrane proteins from stable HEK293 cells and from mouse kidney and liver confirmed this distribution. N-Glycanase digestion showed that RhBG/Rhbg has a carbohydrate moiety probably attached at the NHS motif on exoloop 1. Phylogenetic clustering, tissue-specific expression, and plasma membrane location suggest that RhBG homologous proteins are the long sought major ammonium transporters in mammalians.  相似文献   

7.
In most tissues, ribonucleases (RNases) are found in a latent form complexed with ribonuclease inhibitor (RI). To examine whether these so-called cytoplasmic RNases belong to the same superfamily as pancreatic RNases, we have purified from porcine liver two such RNases (PL1 and PL3) and examined their primary structures. It was found that RNase PL1 belonged to the same family as human RNase Us [Beintema et al. (1988) Biochemistry 27, 4530-4538] and bovine RNase K2 [Irie et al. (1988) J. Biochem. (Tokyo) 104, 289-296]. RNase PL3 was found to be a hitherto structurally uncharacterized type of RNase. Its polypeptide chain of 119 amino acid residues was N-terminally blocked with pyroglutamic acid, and its sequence differed at 63 positions with that of the pancreatic enzyme. All residues important for catalysis and substrate binding have been conserved. Comparison of the primary structure of RNase PL3 with that of its bovine counterpart (RNase BL4; M. Irie, personal communication) revealed an unusual conservation for this class of enzymes; the 2 enzymes were identical at 112 positions. Moreover, comparison of the amino acid compositions of these RNases with that of a human colon carcinoma-derived RNase, RNase HT-29 [Shapiro et al. (1986) Biochemistry 25, 7255-7264], suggested that these three proteins are orthologous gene products. The structural characteristics of RNases PL1 and PL3 were typical of secreted RNases, and this observation questions the proposed cytoplasmic origin of these RI-associated enzymes.  相似文献   

8.
Hsu CH  Wang AH 《Nucleic acids research》2011,39(15):6764-6774
Organisms growing at elevated temperatures face the challenge of maintaining the integrity of their genetic materials. Archaea possess unique chromatin proteins for gene organization and information processing. We present the solution structure of Sso7c4 from Sulfolobus solfataricus, which has a homodimeric DNA-binding fold forming a swapped β-loop-β 'Tai-Chi' topology. The fold is reminiscent of the N-terminal DNA-binding domain of AbrB and MazE. In addition, several amide resonances in the heteronuclear single quantum coherence spectra of Sso7c4 are shifted and broadened with the addition of small amounts of duplex DNA oligomers. The locations of the corresponding amides in the Sso7c4 structure define its DNA-interacting surface. NMR spectra of DNA titrated with the protein further indicated that Sso7c4 interacts with DNA in the major groove. Taken together, a plausible model for the Sso7c4-DNA complex is presented, in which the DNA double helix is curved around the protein dimer.  相似文献   

9.
10.
The malaria parasite's chloroquine resistance transporter (CRT) is an integral membrane protein localized to the parasite's acidic digestive vacuole. The function of CRT is not known and the protein was originally described as a transporter simply because it possesses 10 transmembrane domains. In wild-type (chloroquine-sensitive) parasites, chloroquine accumulates to high concentrations within the digestive vacuole and it is through interactions in this compartment that it exerts its antimalarial effect. Mutations in CRT can cause a decreased intravacuolar concentration of chloroquine and thereby confer chloroquine resistance. However, the mechanism by which they do so is not understood. In this paper we present the results of a detailed bioinformatic analysis that reveals that CRT is a member of a previously undefined family of proteins, falling within the drug/metabolite transporter superfamily. Comparisons between CRT and other members of the superfamily provide insight into the possible role of the protein and into the significance of the mutations associated with the chloroquine resistance phenotype. The protein is predicted to function as a dimer and to be oriented with its termini in the parasite cytosol. The key chloroquine-resistance-conferring mutation (K76T) is localized in a region of the protein implicated in substrate selectivity. The mutation is predicted to alter the selectivity of the protein such that it is able to transport the cationic (protonated) form of chloroquine down its steep concentration gradient, out of the acidic vacuole, and therefore away from its site of action.  相似文献   

11.
A novel cellular gene termed SFA-1 was isolated by differential hybridization of a cDNA library, using probes obtained from an adult T-cell leukemia cell line in comparison with probes obtained from normal CD4+ T cells and the MOLT-4 cell line. The mRNA of the SFA-1 gene is approximately 1.6 kb in size and encodes a protein of 253 amino acids, containing four putative transmembrane domains, a number of cysteine residues, and one potential N-glycosylation site in a major hydrophilic region between the third and fourth transmembrane domains. Expression of the SFA-1 gene was either absent or present at a low level in lymphoid cells but was up-regulated after transformation by human T-cell leukemia virus type 1 and transactivated by Tax. SFA-1 was broadly expressed in many human cell types and conserved in different species. Computer-aided comparison showed that SFA-1 had significant sequence homology and common structural features with members of the transmembrane 4 superfamily. SFA-1 antigen was detected as a 29-kDa membrane protein by immunoblotting, using anti-SFA-1 monoclonal antibody.  相似文献   

12.
13.
The kidneys play pivotal roles in acid-base homeostasis, and the acid-secreting (alpha-type) and bicarbonate-secreting (beta-type) intercalated cells in the collecting ducts are major sites for the final modulation of urinary acid secretion. Since the H(+)-ATPase and anion exchanger activities in these two types of intercalated cells exhibit opposite polarities, it has been suggested that the alpha- and beta-intercalated cells are interchangeable via a cell polarity change. Immunohistological studies, however, have failed to confirm that the apical anion exchanger of beta-intercalated cells is the band 3 protein localized to the basolateral membrane of alpha-intercalated cells. In the present study, we show the evidence that a novel member of the anion exchanger and sodium bicarbonate cotransporter superfamily is an apical anion exchanger of beta-intercalated cells. Cloned cDNA from the beta-intercalated cells shows about 30% homology with anion exchanger types 1-3, and functional expression of this protein in COS-7 cells and Xenopus oocytes showed sodium-independent and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-insensitive anion exchanger activity. Furthermore, immunohistological studies revealed that this novel anion exchanger is present on the apical membrane of beta-intercalated cells, although some beta-intercalated cells were negative for AE4 staining. We conclude that our newly cloned transporter is an apical anion exchanger of the beta-intercalated cells, whereas our data do not exclude the possibility that there may be another form of anion exchanger in these cells.  相似文献   

14.
A new member of the insulin gene superfamily (INSL5) was identified by searching EST databases for the presence of the conserved insulin B-chain cysteine motif. Human and murine INSL5 are both polypeptides of 135 amino acids, matching the classical signature of the insulin superfamily. Through the B- and A-chain regions, human INSL5 has 48% identity to shark relaxin, 40% identity to human relaxin, and 34% identity to human Leydig insulin-like factor. Northern blot analysis detected expression of human INSL5 in rectal, colon, and uterine tissue and of murine INSL5 only in thymic tissue. Using quantitative RT-PCR, expression of murine INSL5 was detected in the highest quantity in colon followed by thymus, and minimal expression was seen in testis. By radiation hybrid mapping and the use of surrounding markers, human INSL5 maps to chromosome 1 in the 1p31.1 to 1p22.3 region.  相似文献   

15.
Native disulfide bond formation in the endoplasmic reticulum is a critical process in the maturation of many secreted and outer membrane proteins. Although a large number of proteins have been implicated in this process, it is clear that our current understanding is far from complete. Here we describe the functional characterization of a new 18-kDa protein (ERp18) related to protein-disulfide isomerase. We show that ERp18 is located in the endoplasmic reticulum and that it contains a single catalytic domain with an unusual CGAC active site motif and a probable insertion between beta3 and alpha3 of the thioredoxin fold. From circular dichroism and NMR measurements, ERp18 is well structured and undergoes only a minor conformational change upon dithioldisulfide exchange in the active site. Guanidinium chloride denaturation curves indicate that the reduced form of the protein is more stable than the oxidized form, suggesting that it is involved in disulfide bond formation. Furthermore, in vitro ERp18 possesses significant peptide thiol-disulfide oxidase activity, which is dependent on the presence of both active site cysteine residues. This activity differs from that of the human PDI family in that under standard assay conditions it is limited by substrate oxidation and not by enzyme reoxidation. A putative physiological role for Erp18 in native disulfide bond formation is discussed.  相似文献   

16.
Gluconobacter oxydans enable to oxidize sugars and polyols incompletely to corresponding materials with potential industrial applications, containing around 75 putative dehydrogenases. One of these putative dehydrogenases, Gox2181, was cloned and expressed in Escherichia coli BL21 (DE3), and its X-ray crystal structure was determined to a resolution of 1.8 Å. Gox2181 formed a homo-tetramer in the crystal that was coincident with the apparent molecular mass determined in the solution. Gox2181 displayed α/β-folding patterns, the conserved catalytic tetrad of Asn119-Ser147-Tyr162-Lys166, and the NAD-binding pocket, which aligned well with the ‘classical’ type of short-chain dehydrogenase/reductase (SDR) enzymes. Gox2181 was denoted SDR51C based on the SDR nomenclature system. The purified recombinant Gox2181 was demonstrated to be NAD(H)-dependent and active towards a wide range of substrates, including sugar alcohols, secondary alcohols, ketones, and ketoses. Among the substrates tested, Gox2181 displayed preference for secondary hydroxyl or carbonyl groups, showing low Km values with d-arabitol and butanedione.  相似文献   

17.
Stone B  Schummer M  Paley PJ  Crawford M  Ford M  Urban N  Nelson BH 《Gene》2001,267(2):173-182
Most known members of the MAGE superfamily are expressed in tumors, testis and fetal tissues, which has been described as a cancer/testis or "CT" expression pattern. We have identified a novel member of this superfamily, MAGE-F1, which is expressed in all adult and fetal tissues tested. In addition to normal tissues, MAGE-F1 is expressed in many tumor types including ovarian, breast, cervical, melanoma and leukemia. MAGE-F1 is encoded on chromosome 3, identifying a sixth chromosomal location for a MAGE superfamily gene. The coding region of MAGE-F1 is contained within a single exon and includes a microsatellite repeat. Sequence analysis and expression profiles define a new class of ubiquitously expressed MAGE superfamily genes that includes MAGE-F1, MAGE-D1, MAGE-D2/JCL-1 and NDN. The finding that several MAGE genes are ubiquitously expressed suggests a role for MAGE encoded proteins in normal cell physiology. Furthermore, potential cross-reactivity to these ubiquitously expressed MAGE gene products should be considered in the design of MAGE-targeted immunotherapies for cancer.  相似文献   

18.
Invertebrates have frequently been used to help understand the complexities of regulatory gene function and evolution. The bone morphogenetic proteins (BMPs) are a highly conserved group of secreted regulatory factors that play an important part in early embryonic patterning. In the present study we have used the remarkable regenerative potential of crinoid echinoderms to explore the BMPs' site of expression in an adult developmental programme. Our results suggest that a crinoid BMP2/4 homologue is actively involved during the early stages of blastemal regeneration at a time when fundamental patterns are being established. This supports the idea of an evolutionary developmental programme where essential gene families are conserved throughout phylogeny in terms of both expression and function.  相似文献   

19.
We have isolated a cDNA from human placenta, which, when expressed heterologously in mammalian cells, mediates the transport of the water-soluble vitamin thiamine. The cDNA codes for a protein of 497 amino acids containing 12 putative transmembrane domains. Northern blot analysis indicates that this transporter is widely expressed in human tissues. When expressed in HeLa cells, the cDNA induces the transport of thiamine (K(t) = 2.5 +/- 0.6 microM) in a Na(+)-independent manner. The cDNA-mediated transport of thiamine is stimulated by an outwardly directed H(+) gradient. Substrate specificity assays indicate that the transporter is specific to thiamine. Even though thiamine is an organic cation, the cDNA-induced thiamine transport is not inhibited by other organic cations. Similarly, thiamine is not a substrate for the known members of mammalian organic cation transporter family. The thiamine transporter gene, located on human chromosome 1q24, consists of 6 exons and is most likely the gene defective in the metabolic disorder, thiamine-responsive megaloblastic anemia. At the level of amino acid sequence, the thiamine transporter is most closely related to the reduced-folate transporter and thus represents the second member of the folate transporter family.  相似文献   

20.
Interleukin (IL) -33 is a nuclear protein that is released from damaged cells and acts as an alarmin. We investigated the expression of IL-33 in human gingival fibroblasts after stimulation by tumor necrosis factor alpha (TNF-α). Human periodontal tissue samples were collected and fixed in phosphate-buffered 4% formalin in saline and processed to paraffin blocks. TNF-α was immunostained in samples of ten periodontitis patients and ten controls. Human gingival fibroblasts were isolated using an explant culture technique. The influence of TNF-α on IL-33 in gingival fibroblasts was analyzed using enzyme-linked immunosorbent assay (ELISA). The number of TNF-α positive cells was significantly greater in periodontitis samples than in controls. TNF-α was located mainly in macrophage- and fibroblast-like cells, vascular endothelial cells and epithelial cells. Analysis of IL-33 expression in cell culture lysates showed that TNF-α induced IL-33 in cultured gingival fibroblasts. Periodontitis samples are characterized by Th2 cell dominance, which has been linked to anti-inflammatory responses and periodontal repair. TNF-α-induced IL-33 may link inflammation directly to the IL-33-dependent stimulation of Th2 cytokine producing cells and participate in the induction of lymphocytes, which results in protective, anti-inflammatory and reparative responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号