首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Pattison DI  Davies MJ 《Biochemistry》2005,44(19):7378-7387
Hypochlorous acid (HOCl) is a powerful oxidant generated from H(2)O(2) and chloride ions by the heme enzyme myeloperoxidase (MPO) released from activated leukocytes. In addition to its potent antibacterial effects, excessive HOCl production can lead to host tissue damage, with this implicated in human diseases such as atherosclerosis, cystic fibrosis, and arthritis. HOCl reacts rapidly with biological materials, with proteins being major targets. Chlorinated amines (chloramines) formed from Lys and His side chains and alpha-amino groups on proteins are major products of these reactions; these materials are however also oxidants and can undergo further reactions. In this study, the kinetics of reaction of His side-chain chloramines with other protein components have been investigated by UV/visible spectroscopy and stopped flow methods at pH 7.4 and 22 degrees C, using the chloramines of the model compound 4-imidazoleacetic acid and N-alpha-acetyl-histidine. The second-order rate constants decrease in a similar order (Cys > Met > disulfide bonds > Trp approximately alpha-amino > Lys > Tyr > backbone amides > Arg) to the corresponding reactions of HOCl, but are typically 5-25 times slower. These rate constants are consistent with His side-chain chloramines being important secondary oxidants in HOCl-mediated damage. These studies suggest that formation and subsequent reactions of His side-chain chloramines may be responsible for the targeted secondary modification of selected protein residues by HOCl that has previously been observed experimentally and highlight the importance of chloramine structure on their subsequent reactivity.  相似文献   

2.
Degradation of the reduced pyridine nucleotides NMNH and NADH by HOCl involves two distinct stages: a fast reaction, k = 4.2 x 10(5) M(-1) s(-1), leads to generation of stable pyridine products (Py/Cl) with a strong absorption band at 275 nm (epsilon = 12.4 x 10(3) M(-1) cm(-1) in the case of NMNH); secondarily, a subsequent reaction of HOCl, k = 3.9 x 10(3) M(-1) s(-1), leads to a complete loss of the aromatic absorption band of the pyridine ring. HOBr and HOI(I(2)) react similarly. Apparent rate constants of the primary reactions of HOX species with NMNH at pH 7.2 increase in the order HOCl (3 x 10(5) M(-1) s(-1)) < HOBr( approximately 4 x 10(6) M(-1) s(-1)) < HOI(I(2))( approximately 6.5 x 10(7) M(-1) s(-1)). HOBr reacts fast also with the primary product Py/Br, k approximately 9 x 10(5) M(-1) s(-1), while the reactions of HOI and I(2) with Py/I are slower, approximately 1.4 x 10(3) M(-1) s(-1) and >6 x 10(3) M(-1) s(-1), respectively. Halogenation of the amide group of NMN(+) by HOX species is many orders of magnitude slower than oxidation of NMNH. Taurine inhibits HOCl-induced oxidation of NADH, but HOBr-induced oxidation is not inhibited because the taurine monobromamine rapidly oxidizes NADH, and oxidation by HOI(I(2)) is not inhibited because taurine is inert toward HOI(I(2)). Also sulfur compounds (GSH, GSSG, and methionine) are less efficient in protecting NADH against oxidation by HOBr and HOI(I(2)) than against oxidation by HOCl. The results suggest that reactions of HOBr and HOI(I(2)) in a cellular environment are much more selectively directed toward irreversible oxidation of NADH than reactions of HOCl. It is noteworthy that the rather inert N-chloramines react with iodide to generate HOI(I(2)), i.e., the most reactive and selective oxidant of reduced pyridine nucleotides. NMR investigations show that the primary stable products of the reaction between NMNH and HOCl are various isomeric chlorohydrins originating from a nonstereospecific electrophilic addition of HOCl to the C5&dbond;C6 double bond of the pyridine ring. The primary products (Py/X) of NMNH all exhibit similar absorption bands around 275 nm and are hence likely to result from analogous addition of HOX to the C5&dbond;C6 bond of the pyridine ring. Since the Py/X species are stable and inert toward endogeneous reductants like ascorbate and GSH, they may generally be useful markers for assessing the contribution of hypohalous acids to inflammatory injury.  相似文献   

3.
Pattison DI  Hawkins CL  Davies MJ 《Biochemistry》2007,46(34):9853-9864
Hypochlorous acid (HOCl) is a powerful oxidant generated from H2O2 and Cl- by the heme enzyme myeloperoxidase, which is released from activated leukocytes. HOCl possesses potent antibacterial properties, but excessive production can lead to host tissue damage that occurs in numerous human pathologies. As proteins and amino acids are highly abundant in vivo and react rapidly with HOCl, they are likely to be major targets for HOCl. In this study, two small globular proteins, lysozyme and insulin, have been oxidized with increasing excesses of HOCl to determine whether the pattern of HOCl-mediated amino acid consumption is consistent with reported kinetic data for isolated amino acids and model compounds. Identical experiments have been carried out with mixtures of N-acetyl amino acids (to prevent reaction at the alpha-amino groups) that mimic the protein composition to examine the role of protein structure on reactivity. The results indicate that tertiary structure facilitates secondary chlorine transfer reactions of chloramines formed on His and Lys side chains. In light of these data, second-order rate constants for reactions of Lys side chain and Gly chloramines with Trp side chains and disulfide bonds have been determined, together with those for further oxidation of Met sulfoxide by HOCl and His side chain chloramines. Computational kinetic models incorporating these additional rate constants closely predict the experimentally observed amino acid consumption. These studies provide insight into the roles of chloramine formation and three-dimensional structure on the reactions of HOCl with isolated proteins and demonstrate that kinetic models can predict the outcome of HOCl-mediated protein oxidation.  相似文献   

4.
Oxidation of cytochrome c, a key protein in mitochondrial electron transport and a mediator of apoptotic cell death, by reactive halogen species (HOX, X2), i.e., metabolites of activated neutrophils, was investigated by stopped-flow. The fast initial reactions between FeIIIcytc and HOX species, with rate constants (at pH 7.6) of k > 3 x 10(6) M(-1) s(-1) for HOBr, k > 3 x 10(5) M(-1) s(-1) for HOCl, and k = (6.1+/-0.3) x 10(2) M(-1) s(-1) for HOI, are followed by slower intramolecular processes. All HOX species lead to a blue shift of the Soret absorption band and loss of the 695-nm absorption band, which is an indicator for the intact iron to Met-80 bond, and of the reducibility of FeIIIcytc. All HOX species do, in fact, persistently impair the ability of FeIIIcytc to act as electron acceptor, e.g., in reaction with ascorbate or O2*-. I2 selectively oxidizes the iron center of FeIIcytc, with a stoichiometry of 2 per I2, and with k(FeIIcytc + I2) approximately 4.6 x 10(4) M(-1) s(-1) and k(FeIIcytc + I2*-) = (2.9+/-0.4) x 10(8) M(-1) s(-1). Oxidation of FeIIcytc by HOX species is not selectively directed toward the iron center; HOBr and HOCl are considered to react primarily by N-halogenation of side chain amino groups, and HOI mainly by sulfoxidation. There is some evidence for the generation of HO* radicals upon reaction of HOCl with FeIIcytc. Chloramines (e.g., NH2Cl), bromamine (NH2Br), and cyclo-Gly2 chloramide oxidize FeIIcytc slowly and unselectively, but iodide efficiently catalyzes reactions of these N-halogens to yield fast selective oxidation of the iron center; this is due to generation of I2 by reaction of I- with the N-halogen and recycling of I- by reaction of I2 with FeIIcytc. Iodide also catalyzes methionine sulfoxidation and thiol oxidation by NH2Cl. The possible biological relevance of these findings is discussed.  相似文献   

5.
A comparative study was performed on lysozyme modification after exposure to Fenton reagent (Fe(II)/H2 O2) or hydroxyl radicals produced by y radiation. The conditions were adjusted to obtain, with both systems, a 50% loss of activity of the modified ensemble. Gamma radiation modified almost all types of amino acid residues in the enzyme, with little specificity. The modification order was Tyr > Met = Cys > Lys > Ile + Leu > Gly > Pro = Phe > Thr + Ala > Trp = Ser > Arg > Asp + Glu, with 42 mol of modified residues per initial mole of native enzyme. In contrast, when the enzyme was exposed to the Fenton reaction, only some types of amino acids were modified. Furthermore, a smaller number of residues (13.5) were damaged per initial mole of enzyme. The order of the modified residues was Tyr > Cys > Trp > Met His > Ile + Leu > Val > Arg. These results demonstrate that the modifications elicited by these two free radical sources follow different mechanisms. An intramolecular free radical chain reaction is proposed to play a dominant role in the oxidative modification of the protein promoted by gamma radiation.  相似文献   

6.
Activated leukocytes generate the potent oxidants HOCl and HOBr via the formation of H(2)O(2) and the release of peroxidase enzymes (myeloperoxidase, eosinophil peroxidase). HOCl and HOBr are potent microbiocidal agents, but excessive or misplaced production can cause tissue damage and cell lysis. In this study it is shown that HOBr induces red blood cell lysis at approximately 10-fold lower concentrations than HOCl, whereas with monocyte (THP1) and macrophage (J774) cells HOCl and HOBr induce lysis at similar concentrations. The role of radical formation during lysis has been investigated by EPR spin trapping, and it is shown that reaction of both oxidants with each cell type generates cell-derived radicals. Red blood cells exposed to nonlytic doses of HOCl generate novel nitrogen-centered radicals whose formation is GSH dependent. In contrast, HOBr gives rise to nitrogen-centered, membrane-derived protein radicals. With lytic doses of either oxidant, protein (probably hemoglobin)-derived, nitrogen-centered radicals are observed. Unlike the red blood cells, treatment of monocytes and macrophages with HOCl gives significant radical formation only under conditions where cell lysis occurs concurrently. These radicals are nitrogen-centered, cell-protein-derived species and have parameters identical to those detected with red blood cells and HOBr. Exposure of these cells to HOBr did not give detectable radicals. Overall these experiments demonstrate that HOCl and HOBr react with different selectivity with cellular targets, and that this can result in radical formation. This radical generation can precede, and may play a role in, cell lysis.  相似文献   

7.
Myeloperoxidase catalyzes the reaction of chloride ions with H2O2 to yield hypochlorous acid (HOCl), which can damage proteins. Human myoglobin (HMb) differs from other Mbs by the presence of a cysteine residue at position 110 (Cys110). This study has (i) compared wild-type and a Cys110Ala variant of HMb to assess the influence of Cys110 on HOCl-induced amino acid modification and (ii) determined whether HOCl oxidation of HMb affects the rate of ferric heme reduction by cytochrome b5. For wild-type HMb (HOCl:Mb ratio of 5:1 mol:mol), Cys110 was preferentially oxidized to a homodimeric or cysteic acid product—sulfenic/sulfinic acids were not detected. At a HOCl:Mb ratio 10:1 mol:mol, methionine (Met) oxidation was detected, and this was enhanced in the Cys110Ala variant. Tryptophan (Trp) oxidation was detected only in the Cys110Ala variant at the highest HOCl dose tested, with oxidation susceptibility following the order Cys > Met > Trp. Tyrosine chlorination was evident only in reactions between HOCl and the Cys110Ala variant and at a longer incubation time (24 h), consistent with the formation via chlorine-transfer reactions from preformed chloramines. HOCl-mediated oxidation of wild-type HMb resulted in a dose-dependent decrease in the observed rate constant for ferric heme reduction (approx two-fold at HOCl:Mb of 10:1 mol:mol). These data indicate that Cys110 influences the oxidation of HMb by HOCl and that oxidation of Cys, Met, and Trp residues is associated with a decrease in the one-electron reduction of ferric HMb by other proteins; such heme-Fe3+ reduction is critical to the maintenance of function as an oxygen storage protein in tissues.  相似文献   

8.
Myeloperoxidase (MPO), a heme enzyme secreted by activated phagocytes, catalyzes the oxidation of halides to hypohalous acids. At plasma concentrations of halides, hypochlorous acid (HOCl) is the major strong oxidant produced. In contrast, the related enzyme eosinophil peroxidase preferentially generates hypobromous acid (HOBr). Since reagent and MPO-derived HOCl converts low-density lipoprotein (LDL) to a potentially atherogenic form, we investigated the effects of HOBr on LDL modification. Compared to HOCl, HOBr caused 2-3-fold greater oxidation of tryptophan and cysteine residues of the protein moiety (apoB) of LDL and 4-fold greater formation of fatty acid halohydrins from the lipids in LDL. In contrast, HOBr was 2-fold less reactive than HOCl with lysine residues and caused little formation of N-bromamines. Nevertheless, HOBr caused an equivalent increase in the relative electrophoretic mobility of LDL as HOCl, which was not reversed upon subsequent incubation with ascorbate, in contrast to the shift in mobility caused by HOCl. Similar apoB modifications were observed with HOBr generated by MPO/H(2)O(2)/Br(-). In the presence of equivalent concentrations of Cl(-) and Br(-), modifications of LDL by MPO resembled those seen in the presence of Br(-) alone. Interestingly, even at physiological concentrations of the two halides (100 mM Cl(-), 100 microM Br(-)), MPO utilized a portion of the Br(-) to oxidize apoB cysteine residues. MPO also utilized the pseudohalide thiocyanate to oxidize apoB cysteine residues. Our data show that even though HOBr has different reactivities than HOCl with apoB, it is able to alter the charge of LDL, converting it into a potentially atherogenic particle.  相似文献   

9.
Activated eosinophils, and hypobromous acid (HOBr) generated by these cells, have been implicated in the tissue injury in asthma, allergic reactions, and some infections. Proteins are major targets for this oxidant, but limited information is available on the mechanisms of damage and intermediates formed. Reaction of HOBr with proteins is shown to result in the formation of bromamines and bromamides, from side-chain and backbone amines and amides, and 3-bromo- and 3,5-dibromo-Tyr, from Tyr residues; these materials account for ca. 70% of the oxidant consumed. Protein carbonyls, dityrosine, and 3,4-dihydroxyphenylalanine are also formed, though these are minor products (<5% of HOBr added). With BSA, extensive (selective and nonspecific) protein fragmentation and limited aggregation are also observed. The bromamines/bromamides are unstable and induce further oxidation and free radical formation as detected by EPR spin trapping. Evidence was obtained for the generation of nitrogen-centered radicals on side-chain and backbone amide groups of amino acids, peptides, and proteins. These radicals readily undergo rearrangement reactions to give carbon-centered radicals. With proteins, alpha-carbon (backbone) radicals are detected, which may play a role in protein fragmentation. A novel damage transfer pathway from Gln side-chain amide groups to backbone sites was also observed.  相似文献   

10.
Elevated MPO (myeloperoxidase) levels are associated with multiple human inflammatory pathologies. MPO catalyses the oxidation of Cl-, Br- and SCN- by H2O2 to generate the powerful oxidants hypochlorous acid (HOCl), hypobromous acid (HOBr) and hypothiocyanous acid (HOSCN) respectively. These species are antibacterial agents, but misplaced or excessive production is implicated in tissue damage at sites of inflammation. Unlike HOCl and HOBr, which react with multiple targets, HOSCN targets cysteine residues with considerable selectivity. In the light of this reactivity, we hypothesized that Sec (selenocysteine) residues should also be rapidly oxidized by HOSCN, as selenium atoms are better nucleophiles than sulfur. Such oxidation might inactivate critical Sec-containing cellular protective enzymes such as GPx (glutathione peroxidase) and TrxR (thioredoxin reductase). Stopped-flow kinetic studies indicate that seleno-compounds react rapidly with HOSCN with rate constants, k, in the range 2.8×10(3)-5.8×10(6) M-1·s-1 (for selenomethionine and selenocystamine respectively). These values are ~6000-fold higher than the corresponding values for H2O2, and are also considerably larger than for the reaction of HOSCN with thiols (16-fold for cysteine and 80-fold for selenocystamine). Enzyme studies indicate that GPx and TrxR, but not glutathione reductase, are inactivated by HOSCN in a concentration-dependent manner; k for GPx has been determined as ~5×105 M-1·s-1. Decomposed HOSCN did not induce inactivation. These data indicate that selenocysteine residues are oxidized rapidly by HOSCN, with this resulting in the inhibition of the critical intracellular Sec-dependent protective enzymes GPx and TrxR.  相似文献   

11.
A single stained band containing approximately 5 micrograms of protein was cut out of a polyacrylamide gel and subjected to hydrolysis together with the gel. The hydrolysate was subsequently analyzed for its amino acid content by high-performance liquid chromatography and postlabeling with o-phthalaldehyde. Bovine serum albumin, ribonuclease B, ovalbumin, pepsin, and chymotrypsinogen A were analyzed by this method, and their amino acid compositions were found to be in good agreement with the reported values. By this method, it is possible to quantitate 16 amino acids: Asx, Thr, Ser, Glx, Pro, Cys, Gly, Ala, Val, Ile, Leu, Tyr, Phe, His, Lys, and Arg. Thioglycolic acid is effective protection against the decomposition of Tyr, Cys, and Met; however, the recovery of Met is inconsistent. This method might be very helpful for the amino acid analysis of proteins of multicomponent systems, especially, those which can be resolved only by polyacrylamide gel electrophoresis.  相似文献   

12.
Hypochlorous acid (HOCl) produced via the enzyme myeloperoxidase is a major antibacterial oxidant produced by neutrophils, and Met residues are considered primary amino acid targets of HOCl damage via conversion to Met sulfoxide. Met sulfoxide can be repaired back to Met by methionine sulfoxide reductase (Msr). Catalase is an important antioxidant enzyme; we show it constitutes 4-5% of the total Helicobacter pylori protein levels. msr and katA strains were about 14- and 4-fold, respectively, more susceptible than the parent to killing by the neutrophil cell line HL-60 cells. Catalase activity of an msr strain was much more reduced by HOCl exposure than for the parental strain. Treatment of pure catalase with HOCl caused oxidation of specific MS-identified Met residues, as well as structural changes and activity loss depending on the oxidant dose. Treatment of catalase with HOCl at a level to limit structural perturbation (at a catalase/HOCl molar ratio of 1:60) resulted in oxidation of six identified Met residues. Msr repaired these residues in an in vitro reconstituted system, but no enzyme activity could be recovered. However, addition of GroEL to the Msr repair mixture significantly enhanced catalase activity recovery. Neutrophils produce large amounts of HOCl at inflammation sites, and bacterial catalase may be a prime target of the host inflammatory response; at high concentrations of HOCl (1:100), we observed loss of catalase secondary structure, oligomerization, and carbonylation. The same HOCl-sensitive Met residue oxidation targets in catalase were detected using chloramine-T as a milder oxidant.  相似文献   

13.
The usage of synonymous codons and the frequencies of amino acids were investigated in the complete genome of the bacterium Thermotoga maritima using a multivariate statistical approach. The GC3 content of each gene was the most prominent source of variation of codon usage. Surprisingly the usage of UGU and UGC (synonymous triplets coding for Cys, the least frequent amino acid in this species) was detected as the second most prominent source of variation. However, this result is probably an artifact due to the very low frequency of Cys together with the nonbiased composition of this genome. The third trend was related to the preferential usage of a subset of codons among highly expressed genes, and these triplets are presumed to be translationally optimal. Concerning the amino acid usage, the hydropathy level of each protein (and therefore the frequency of charged residues) was the main trend, while the second factor was related to the frequency of usage of the smaller residues, suggesting that the cell economy strongly influences the architecture of the proteins. The third axis of the analysis discriminated the usage of Phe, Tyr, Trp (aromatic residues) plus Cys, Met, and His. These six residues have in common the property of being the preferential targets of reactive oxygen species, and therefore the anaerobic condition of T. maritima is an important factor for the amino acid frequencies. Finally, the Cys content of each protein was the fourth trend. Received: 22 June 2001 / Accepted: 1 October 2001  相似文献   

14.
Generation of hydrogen peroxide and hydroxyl radicals in L-amino acid solutions in phosphate buffer, pH 7.4, under X-ray irradiation was determined by enhanced chemiluminescence in the luminol-p-iodophenol-peroxidase system and using the fluorescent probe coumarin-3-carboxylic acid, respectively. Amino acids are divided into three groups according to their effect on the hydrogen peroxide formation under irradiation: those decreasing yield of H2O2, having no effect, and increasing its yield. All studied amino acids at 1 mM concentration decrease the yield of hydroxyl radicals in solution under X-ray irradiation. However, the highest effect is observed in the order: Cys > His > Phe = Met = Trp > Tyr. At Cys, Tyr, and His concentrations close to physiological, the yield of hydroxyl radicals decreases significantly. Immunoenzyme analysis using monoclonal antibodies to 8-oxoguanine (8-oxo-7,8-dihydroguanine) was applied to study the effect of amino acids with the most pronounced antioxidant properties (Cys, Met, Tyr, Trp, Phe, His, Lys, Arg, Pro) on 8-oxoguanine formation in vitro under X-ray irradiation. It is shown that amino acids decrease the content of 8-oxoguanine in DNA. These amino acids within DNA-binding proteins may protect intracellular DNA against oxidative damage caused by formation of reactive oxygen species in conditions of moderate oxidative stress.  相似文献   

15.
Irreversible oxidation of reduced nicotinamide nucleotides by neutrophil-derived halogen oxidants (HOCl, chloramines, HOBr, etc.) is likely to be a highly lethal process, because of the essential role of NAD(P)H in important cell functions such as mitochondrial electron transport, and control of the cellular thiol redox state by NADPH-dependent glutathione reductase. Chloramines (chloramine-T, NH(2)Cl, etc.) and N-chloramides (N-chlorinated cyclopeptides) react with NADH to generate the same products as HOCl, i.e., pyridine chlorohydrins, as judged from characteristic changes in the NADH absorption spectrum. Compared with the fast oxidation of NADH by HOCl, k approximately 3 x 10(5) M(-1) s(-1) at pH 7.2, the oxidation by chloramines is about five orders of magnitude slower; that by chloramides is about four orders of magnitude slower. Apparent rate constants for oxidation of NADH by chloramines increase with increasing proton or buffer concentration, consistent with general acid catalysis, but oxidation by chloramides proceeds with pH-independent kinetics. In presence of iodide the oxidation of NADH by chloramines or chloramides is faster by at least two orders of magnitude; this is due to reaction of iodide with the N-halogen to give HOI/I(2), the most reactive and selective oxidant for NADH among HOX species. Quinuclidine derivatives (QN) like 3-chloroquinuclidine and quinine are capable of catalyzing the irreversible degradation of NADH by HOCl and by chloramines; QN(+)Cl, the chain carrier of the catalytic cycle, is even more reactive toward NADH than HOCl/ClO(-) at physiological pH. Oxidation of NADH by NH(2)Br proceeds by fast, but complex, biphasic kinetics. A compilation of rate constants for interactions of reactive halogen species with various substrates is presented and the concept of selective reactivity of N-halogens is discussed.  相似文献   

16.
Tyrosine residues are sensitive to oxidation and can be converted to hydroperoxides either by superoxide reacting with the Tyr radical or by singlet oxygen. These hydroperoxides rearrange to bicyclic derivatives that are readily reduced to more stable hydroxides. The aromatic character of tyrosine is lost, but the product contains an α-β unsaturated carbonyl group and is, therefore, an electrophile. We have generated hydroxide derivatives of several Tyr-containing peptides and shown using liquid chromatography/mass spectrometry that they undergo Michael addition with GSH. For Tyr-Gly, rate constants of 9.2 and 11.8 m(-1)min(-1) were measured for the two chromatographically distinct isomers. Unusual for GSH addition to an electrophile, the reaction is reversible, with a half-life of many hours for the reverse reaction. These kinetics indicate that with a typical cellular concentration of 5 mm GSH, >95% Tyr-Gly hydroxide would become conjugated with a half-life of ~15 min. Sperm whale myoglobin forms a hydroperoxide on Tyr-151 in a hydrogen peroxide/superoxide-dependent reaction. We show that its hydroxide derivative reacts with GSH to form a conjugate. Detection of the conjugate required stabilization by reduction; otherwise, the reverse reaction occurred during tryptic digestion and analysis. Our findings represent a novel mechanism for peptide or protein glutathionylation involving a carbon-sulfur cross-link between oxidized Tyr and Cys. As with other electrophiles, the oxidized Tyr should undergo a similar reaction with Cys residues in proteins to give intramolecular or intermolecular protein cross-links. This mechanism could give rise to protein cross-linking in conditions of oxidative stress.  相似文献   

17.
For the first time, by using mass-spectrometry method, the oxidation-mediated modification of the catalytic FXIII-A subunit of plasma fibrin-stabilizing factor, pFXIII, has been studied. The oxidative sites were identified to belong to all structural elements of the catalytic subunit: the β-sandwich (Tyr104, Tyr117, and Cys153), the catalytic core domain (Met160, Trp165, Met266, Cys328, Asp352, Pro387, Arg409, Cys410, Tyr442, Met475, Met476, Tyr482, and Met500), the β-barrel 1 (Met596), and the β-barrel 2 (Met647, Pro676, Trp692, Cys696, and Met710), which correspond to 3.9%, 1.11%, 0.7%, and 3.2%, respectively, of oxidative modifications as compared to the detectable amounts of amino acid residues in each of the structural domains. Lack of information on some parts of the molecule may be associated with the spatial unavailability of residues, complicating analysis of the molecule. The absence of oxidative sites localized within crucial areas of the structural domains may be brought about by both the spatial inaccessibility of the oxidant to amino acid residues in the zymogen and the screening effect of the regulatory FXIII-B subunit.  相似文献   

18.
19.
Skaff O  Pattison DI  Davies MJ 《Biochemistry》2008,47(31):8237-8245
Plasmalogens, which contain a vinyl ether bond, are major phospholipids of the plasma membranes of endothelial and vascular smooth muscle cells and cardiac myocytes. These lipids, in contrast to other phospholipids, have been reported to be targets of HOCl/HOBr generated by myeloperoxidase, with elevated levels of the products of these reactions (alpha-chloro/alpha-bromo aldehydes and unsaturated lysophospholipids) having been detected in human atherosclerotic lesions. The reason(s) for the targeting of this lipid class, over other phospholipids, is poorly understood, and is examined here. It is shown that HOCl and HOBr react with a model vinyl ether (ethylene glycol vinyl ether) 200-300-fold faster ( k = 1.6 x 10 (3) and 3.5 x 10 (6) M (-1) s (-1), respectively) than with aliphatic alkenes (models of phospholipids). True plasmalogens react ca. 20-fold slower than the models. Chloramines and bromamines (from reaction of HOCl/HOBr with primary amines and alpha-amino groups) also react with vinyl ethers, unlike aliphatic alkenes, with k = 10 (-3)-10 (2) M (-1) s (-1) for chloramines (with the His side chain chloramine being the most reactive, k = 172 M (-1) s (-1)) and k = 10 (3)-10 (4) M (-1) s (-1) for bromamines. The bromamine rate constants are typically 10 (5)-10 (6) larger than those of the chloramines. Intermolecular vinyl ether oxidation by phospholipid headgroup bromamines can also occur. These kinetic data indicate that plasmalogens are significantly more susceptible to oxidation than the aliphatic alkenes of phospholipids, thereby rationalizing the detection of products from the former, but not the latter, in human atherosclerotic lesions.  相似文献   

20.
A comparative study was performed on lysozyme modification after exposure to Fenton reagent (Fe(II)/H 2 O 2 ) or hydroxyl radicals produced by &#110 radiation. The conditions were adjusted to obtain, with both systems, a 50% loss of activity of the modified ensemble. &#110 radiation modified almost all types of amino acid residues in the enzyme, with little specificity. The modification order was Tyr > Met=Cys > Lys > Ile+Leu > Gly > Pro=Phe>Thr+Ala>Trp=Ser>Arg>Asp+Glu, with 42 mol of modified residues per initial mole of native enzyme. In contrast, when the enzyme was exposed to the Fenton reaction, only some types of amino acids were modified. Furthermore, a smaller number of residues (13.5) were damaged per initial mole of enzyme. The order of the modified residues was Tyr > Cys > Trp > Met >His > Ile+Leu > Val > Arg. These results demonstrate that the modifications elicited by these two free radical sources follow different mechanisms. An intramolecular free radical chain reaction is proposed to play a dominant role in the oxidative modification of the protein promoted by &#110 radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号