首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The peroxisomal ATP binding cassette (ABC) transporter adrenoleukodystrophy-related protein, encoded by ABCD2, displays functional redundancy with the X-linked adrenoleukodystrophy-associated protein, making ABCD2 up-regulation of therapeutic value. Cholesterol lowering activates human ABCD2 in cultured cells. To investigate in vivo regulation by sterols, we first characterized a sterol regulatory element (SRE) in the murine Abcd2 promoter that is directly bound by SRE-binding proteins (SREBPs). Intriguingly, this element overlaps with a direct repeat 4, which serves as binding site for liver X receptor (LXR)/retinoid X receptor heterodimers, suggesting novel cross-talk between SREBP and LXR/retinoid X receptor in gene regulation. Using fasting-refeeding and cholesterol loading, SREBP accessibility to the SRE/direct repeat 4 was tested. Results suggest that adipose Abcd2 is induced by SREBP1c, whereas hepatic Abcd2 expression is down-regulated by concurrent activation of LXRalpha and SREBP1c. In cell culture, SREBP1c-mediated Abcd2 induction is counteracted by ligand-activated LXRalpha. Finally, hepatic Abcd2 expression in LXRalpha,beta-deficient mice is inducible to levels vastly exceeding wild type. Together, we identify LXRalpha as negative modulator of Abcd2, acting through a novel regulatory mechanism involving overlapping SREBP and LXRalpha binding sites.  相似文献   

2.
SREBP transcription factors: master regulators of lipid homeostasis   总被引:41,自引:0,他引:41  
  相似文献   

3.
4.
Hepatitis C virus (HCV) relies on host lipids and lipid droplets for replication and morphogenesis. The accumulation of lipid droplets in infected hepatocytes manifests as hepatosteatosis, a common pathology observed in chronic hepatitis C patients. One way by which HCV promotes the accumulation of intracellular lipids is through enhancing de novo lipogenesis by activating the sterol regulatory element-binding proteins (SREBPs). In general, activation of SREBPs occurs during cholesterol depletion. Interestingly, during HCV infection, the activation of SREBPs occurs under normal cholesterol levels, but the underlying mechanisms are still elusive. Our previous study has demonstrated the activation of the inflammasome complex in HCV-infected human hepatoma cells. In this study, we elucidate the potential link between chronic hepatitis C-associated inflammation and alteration of lipid homeostasis in infected cells. Our results reveal that the HCV-activated NLRP3 inflammasome is required for the up-regulation of lipogenic genes such as 3-hydroxy-3-methylglutaryl-coenzyme A synthase, fatty acid synthase, and stearoyl-CoA desaturase. Using pharmacological inhibitors and siRNA against the inflammasome components (NLRP3, apoptosis-associated speck-like protein containing a CARD, and caspase-1), we further show that the activation of the NLRP3 inflammasome plays a critical role in lipid droplet formation. NLRP3 inflammasome activation in HCV-infected cells enables caspase-1-mediated degradation of insulin-induced gene proteins. This subsequently leads to the transport of the SREBP cleavage-activating protein·SREBP complex from the endoplasmic reticulum to the Golgi, followed by proteolytic activation of SREBPs by S1P and S2P in the Golgi. Typically, inflammasome activation leads to viral clearance. Paradoxically, here we demonstrate how HCV exploits the NLRP3 inflammasome to activate SREBPs and host lipid metabolism, leading to liver disease pathogenesis associated with chronic HCV.  相似文献   

5.
6.
7.
8.
9.
Poly(ADP-ribose) polymerase-2 (PARP-2) is acknowledged as a DNA repair enzyme. However, recent investigations have attributed unique roles to PARP-2 in metabolic regulation in the liver. We assessed changes in hepatic lipid homeostasis upon the deletion of PARP-2 and found that cholesterol levels were higher in PARP-2−/− mice as compared to wild-type littermates. To uncover the molecular background, we analyzed changes in steady-state mRNA levels upon the knockdown of PARP-2 in HepG2 cells and in murine liver that revealed higher expression of sterol-regulatory element binding protein (SREBP)-1 dependent genes. We demonstrated that PARP-2 is a suppressor of the SREBP1 promoter, and the suppression of the SREBP1 gene depends on the enzymatic activation of PARP-2. Consequently, the knockdown of PARP-2 enhances SREBP1 expression that in turn induces the genes driven by SREBP1 culminating in higher hepatic cholesterol content. We did not detect hypercholesterolemia, higher fecal cholesterol content or increase in serum LDL, although serum HDL levels decreased in the PARP-2−/− mice. In cells and mice where PARP-2 was deleted we observed decreased ABCA1 mRNA and protein expression that is probably linked to lower HDL levels. In our current study we show that PARP-2 impacts on hepatic and systemic cholesterol homeostasis. Furthermore, the depletion of PARP-2 leads to lower HDL levels which represent a risk factor to cardiovascular diseases.  相似文献   

10.
11.
Elevated plasma low-density lipoprotein (LDL) cholesterol is considered as a risk factor for atherosclerosis. Because the hepatic LDL receptor (LDLR) uptakes plasma lipoproteins and lowers plasma LDL cholesterol, the activation of LDLR is a promising drug target for atherosclerosis. In the present study, we identified the naturally occurring alkaloid piperine, as an inducer of LDLR gene expression by screening the effectors of human LDLR promoter. The treatment of HepG2 cells with piperine increased LDLR expression at mRNA and protein levels and stimulated LDL uptake. Subsequent luciferase reporter gene assays revealed that the mutation of sterol regulatory element-binding protein (SREBP)-binding element abolished the piperine-mediated induction of LDLR promoter activity. Further, piperine treatments increased mRNA levels of several SREBP targets and mature forms of SREBPs. However, the piperine-mediated induction of the mature forms of SREBPs was not observed in SRD–15 cells, which lack insulin-induced gene–1 (Insig–1) and Insig–2. Finally, the knockdown of SREBPs completely abolished the piperine-meditated induction of LDLR gene expression in HepG2 cells, indicating that piperine stimulates the proteolytic activation of SREBP and subsequent induction of LDLR expression and activity.  相似文献   

12.
13.
14.
15.
16.
Sterol regulatory element-binding proteins (SREBPs) activate genes of cholesterol and fatty acid metabolism. In each case, a ubiquitous co-regulatory factor that binds to a neighboring recognition site is also required for efficient promoter activation. It is likely that gene- and pathway-specific regulation by the separate SREBP isoforms is dependent on subtle differences in how the individual proteins function with specific co-regulators to activate gene expression. In the studies reported here we extend these observations significantly by demonstrating that SREBPs are involved in both sterol regulation and carbohydrate activation of the FAS promoter. We also demonstrate that the previously implicated Sp1 site is largely dispensable for sterol regulation in established cultured cells, whereas a CCAAT-binding factor/nuclear factor Y is critically important. In contrast, carbohydrate activation of the FAS promoter in primary hepatocytes is dependent upon SREBP and both the Sp1 and CCAAT-binding factor/nuclear factor Y sites. Because 1c is the predominant SREBP isoform expressed in hepatocytes and 1a is more abundant in sterol depleted established cell lines, this suggests that the different SREBP isoforms utilize distinct co-regulatory factors to activate target gene expression.  相似文献   

17.
We previously reported that trisomy 21 (T21) fetuses have an intrinsic lipid metabolism abnormality resulting in higher serum cholesterol levels than their matched controls. In an attempt to clarify the biochemical basis of this derangement we analyzed the liver cholesterol levels and activation of the sterol regulatory element binding proteins SREBP-1 and SREBP-2. We report here for the first time that SREBP-1 and SREBP-2 are present in human fetal liver and their activation follows a different regulatory pattern. Moreover T21 fetuses show a peculiar pattern of SREBP activation which, at variance from control fetuses, involves sterol-independent maturation of SREBP-1. Multiple defects accompanied the lipid derangement in T21, resulting in high circulating and tissue cholesterol. This may serve as an early biochemical marker of an unknown, possibly genetically determined mechanism, whose consequence on lipid homeostasis during postnatal and adult life is still not understood.  相似文献   

18.
19.
20.
Using two independent prostate cancer cell lines (LNCaP and MDA-PCa-2a), we demonstrate that coordinated stimulation of lipogenic gene expression by androgens is a common phenomenon in androgen-responsive prostate tumor lines and involves activation of the sterol regulatory element-binding protein (SREBP) pathway. We show 1) that in both cell lines, androgens stimulate the expression of fatty acid synthase and hydroxymethylglutaryl-coenzyme A synthase, two key lipogenic genes representative for the fatty acid and the cholesterol synthesis pathway, respectively; 2) that treatment with androgens results in increased nuclear levels of active SREBP; 3) that the effects of androgens on promoter-reporter constructs derived from both lipogenic genes (fatty acid synthase and hydroxymethylglutaryl-coenzyme A synthase) depend on the presence of intact SREBP-binding sites; and 4) that cotransfection with dominant-negative forms of SREBPs abolishes the effects of androgens. Related to the mechanism underlying androgen activation of the SREBP pathway, we show that in addition to minor effects on SREBP precursor levels, androgens induce a major increase in the expression of sterol regulatory element-binding protein cleavage-activating protein (SCAP), an escort protein that transports SREBPs from their site of synthesis in the endoplasmic reticulum to their site of proteolytical activation in the Golgi. Both time course studies and overexpression experiments showing that increasing levels of SCAP enhance the production of mature SREBP and stimulate lipogenic gene expression support the contention that SCAP plays a pivotal role in the lipogenic effects of androgens in tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号