首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Structure-activity relationship (SAR) studies of novel 5-alkyl and 5-aryl/heteroaryl substituted 1,2,4-triazoles are described. The in vitro activity is compared to the pyrazole class of compounds with analogous side chains to delineate the contribution of the triazole ring nitrogen in binding to the active site. Both series are quite potent and selective in the canine whole blood (CWB) COX-2 assay, suggesting the increased binding contribution of the hydrophobic side chains.  相似文献   

2.
3.
4.
A series of 20 novel 1-(4-sulfamylphenyl)-3-trifluoromethyl-5-indolyl pyrazolines were designed, synthesized, and screened in vitro for anti-inflammatory activity. These compounds were designed for evaluation as dual inhibitors of cyclooxygenases (COX-1 and COX-2) and lipoxygenases (LOX-5, LOX-12, and LOX-15) that are responsible for inflammation and pain. All pyrazoline molecules prepared are optically active and compounds that are more potent in COX-2 inhibitory activity (5a and 5f) were resolved by chiral column and each enantiomer was tested for cyclooxygenase inhibitory activity. Molecular modeling and comparison of molecular models of 5a enantiomers with that of celecoxib model shows that 5a (enantiomer-1) and 5a (enantiomer-2) have more hydrogen bonding interactions in the catalytic domain of COX-2 enzyme than celecoxib. Compounds 5a, 5e, and 5f showed moderate to good LOX-5 and LOX-15 inhibitory activity and this is comparable to that of celecoxib and more potent than rofecoxib.  相似文献   

5.
A new series of substituted 2-sulfonyphenyl-3-phenyl-indole derivatives were synthesized and evaluated for their ability to inhibit COX-2 and COX-1enzymes. Most of the compounds synthesized were found to be highly potent and selective inhibitors of COX-2. This work led to the discovery of 2-aminosulfonylphenyl-3-phenyl-indole 5a which possesses higher activity and selectivity for COX-2 than Celecoxib both in vitro and in vivo.  相似文献   

6.
A series of novel sulfone substituted 4,5-diarylthiazoles have been synthesized and evaluated for their inhibition of the two isoforms of human cyclooxygenase (COX-1 and COX-2). This series displays exceptionally selective COX-2 inhibition.  相似文献   

7.
Substituted 1-tosyl-3-vinylindoles undergo [3+2] dipolar cycloaddition with cyclic nitrones to afford substituted isoxazoles in good yield and high diastereoselectivity. The cycloadducts were readily converted in 4 steps into ring constrained homotryptamine analogs. These analogs exhibited excellent binding affinity for the human serotonin transporter (hSERT). Indoles bearing a 5-cyano group and a pendent ethyl(tetrahydroisoquinoline) moiety at the 3-position displayed the best potency for hSERT and high selectivity versus hDAT and hNET.  相似文献   

8.
A series of 2-trifluoromethyl/sulfonamido-5,6-diarylsubstituted imidazo[2,1-b]-1,3,4-thiadiazole derivatives 15a-j have been synthesized by the reaction of 2-amino-5-trifluoromethyl/sulfonamido-1,3,4-thiadiazoles 14a-b and appropriately substituted alpha-bromo-1,2-(p-substituted)diaryl-1-ethanones 13a-h. Structures of these compounds were established by IR, (1)H NMR, (13)C NMR, Mass, and HRMS data. The selected compounds were evaluated for their preliminary in vitro cyclooxygenase inhibitory activity against COX-2 and COX-1enzymes using colorimetric method. The compounds tested showed selective inhibitory activity toward COX-2 (80.6-49.4%) over COX-1 (30.6-8.6), amongst them compounds 15f and 15j showed appreciable COX-2 selective inhibitory activity. These compounds also exhibited significant anti-inflammatory activity (70.09-42.32%), which is comparable to that of celecoxib in the carrageenan-induced rat paw edema method.  相似文献   

9.
'Bridged' stilbene derivatives as selective cyclooxygenase-1 inhibitors   总被引:1,自引:0,他引:1  
Resveratrol ((E)-3,4',5-trihydroxy-stilbene), a phytoalexin found in various plants, shows non-selective cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) inhibition. In order to find more selective COX inhibitors a series of bridged stilbene derivatives was synthesized and evaluated for their ability to inhibit both COX-1 and COX-2 in vitro. The compounds showed a high rate of COX-1 inhibition with the most potent compounds exhibiting submicromolar IC(50) values and high selectivity indices. A prediction model for COX-inhibiting activity was also developed using the classical LIE approach resulting in consistent docking data for our molecule sample. Phenyl substituted 1,2-dihydronaphthalene derivatives and 1H-indene derivatives therefore represent a novel class of highly selective COX-1 inhibitors and land promising candidates for in vivo studies.  相似文献   

10.
Naphthol derivatives, 2-(3'-hydroxypropyl)-naphthalen-1-ol (2), 2-(3'-hydroxy-2'-methylpropyl)-naphthalen-1-ol (3) and 2-(3'-hydroxy-2',2'-dimethylpropyl)-naphthalen-1-ol (7) were synthesized and already reported by our group. Therefore in this paper we described further synthesis of their ether derivatives, 3-(1-methoxy-naphthalen-2-yl)-propan-1-ol (4), 3-(1-methoxy-naphthalen-2-yl)-2methyl-propan-1-ol (5), 3-(1-methoxy-naphthalen-2-yl)-2,2-dimethyl-propan-1-ol (8), 2-(3-methoxy-propyl)-naphthalen-1-ol (10) and 2-(3-methoxy-2,2-dimethyl-propyl)-naphthalen-1-ol (13). Compounds 4, 5 and 8 were prepared by methylation of compounds 2, 3 and 7, respectively while compounds 10 and 13 were prepared in good yield from naphthols 2 and 7, respectively. When tested for inhibitory activity, five compounds (2, 3, 7, 10 and 13) showed preferential inhibition of COX-2 over COX-1, while compounds 4, 5 and 8 lacked inhibitory effect on either the COX-1 or COX-2 isozyme. The structure-activity relationships of these naphthols analyzed by docking experiments, indicated that the presence of hydroxyl group at C-1 position on the naphthalene nucleus enhanced the anti-inflammatory activity towards COX-2 via hydrogen bonding to the COX-2 Val 523 side chain. When this hydroxyl group was replaced by methoxy group, there was no inhibition. C-2' Dimethyl substituents on the propyl chain also increased the inhibitory activity. All active compounds have the C-1 hydroxyl group aligned so as to form hydrogen bond with Val 523. The results provide a model for the binding of the naphthol derivatives to COX-2 and facilitate the design of more potent or selective analogs prior to synthesis.  相似文献   

11.
A series of novel N-substituted 2-(2-oxo-2H-chromen-4-yloxy)propanamide derivatives were synthesized via converting the readily available 4-hydroxy coumarin to the corresponding ethyl 2-(2-oxo-2H-chromen-4-yloxy)propanoate followed by hydrolysis and then reacting with different substituted amines. The molecular structures of two representative compounds, that is, 3 and 5l were confirmed by single crystal X-ray diffraction study. All the compounds synthesized were evaluated for their cyclooxygenase (COX) inhibiting properties in vitro. The compound 5i showed balanced selectivity towards COX-2 over COX-1 inhibition and good docking scores when docked into the COX-2 protein.  相似文献   

12.
13.
A number of novel indomethacin glycolamide esters were synthesized and tested for their cyclooxygenase (COX-1 and COX-2) inhibition properties in vitro. Many of these compounds proved to be selective COX-2 inhibitors, and subtle structural changes in the substituents on the glycolamide ester moiety altered the inhibitory properties as well as potencies significantly. Their in vitro data were rationalized through molecular modeling studies. Few of them displayed anti-inflammatory activity in vivo. Compound 32, [1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]acetic acid 2-morpholin-4-yl-2-oxo ethyl ester, was identified as a promising compound in this class and its good anti-inflammatory activity was demonstrated in the in vivo model.  相似文献   

14.
15.
QSAR analysis based on classical Hansch approach was adopted on two recently reported novel series of 2-phenylpyran-4-ones as selective cyclooxygenase-2 (COX-2) inhibitors. The 6-methyl derivatives of title compounds bifurcate as 3-phenoxypyran-4-ones (subset A) and 3-phenylpyran-4-ones (subset B) among series 1. Series 2 consists of 5-chloro derivatives of title compounds. Various regression equations were derived to study the influence of phenoxy and phenyl ring substituents of series 1 compounds on COX-2, COX-1 and selective COX-2 over COX-1 inhibitory activity. The best triparametric equation derived for 36 compounds of series 1 explains the hydrophobic, electronic and steric requirements for improved COX-2 inhibitory activity. QSAR model derived to explore the selective COX-2 over COX-1 inhibition showed that selectivity could be influenced by size and lipophilicity of substituents. The size of the first atom of 2 substituents appears to have negative effect on selectivity, whereas highly polar 3 substituents at R are favorable for improved selectivity. QSAR investigations on series 2 compounds revealed some interesting correlation of COX-2 inhibitory activity with calculated physicochemical properties of whole molecules. The positive logP confirms the hydrophobic interaction of series 2 compounds with COX-2 enzyme. The positive MR term indicates that an overall increase in size and polarizabilty of the molecules increases COX-2 inhibitory activity. The positive contribution of structural variable suggests biphenyl analogs are extremely potent COX-2 inhibitors.  相似文献   

16.
A set of ten derivatives of methylhonokiol, an anti-inflammatory active biphenyl-type neolignan from Magnolia grandiflora, has been evaluated for their in vitro cyclooxygenase-1/2 (COX-1/2) inhibitory activity using assays with purified prostaglandin H synthase (PGHS)-1 and PGHS-2 enzymes as well as for their 5-lipoxygenase (5-LOX) mediated LTB4 formation inhibitory activity using an assay with activated human polymorphonuclear leukocytes. The derivatization reactions included methylation, acetylation, hydrogenation, epoxydation and isomerization. Five of the derivatives are new to science. The most active compound against COX-1 and COX-2 was methylhonokiol with IC50 values of 0.1 μM, whereas the most active compound against LTB4 formation was (E)-3′-propenyl-5-(2-propenyl)-biphenyl-2,4′-diol with an IC50 value of 1.0 μM. Structure–activity relationship studies showed that the polarity of the derivatives plays a crucial role in their activity towards COX-1/2 enzyme and 5-LOX mediated LTB4 formation.  相似文献   

17.
Plasma glucose 2H enrichment was quantified by 2H NMR in patients with cirrhosis (n=6) and healthy subjects (n=5) fasted for 16 h and given 2H(2)O to approximately 0.5% body water. The percent contribution of glycogenolysis and gluconeogenesis to glucose production (GP) was estimated from the relative enrichments of hydrogen 5 and hydrogen 2 of plasma glucose. Fasting plasma glucose levels were normal in both groups (87+/-7 and 87+/-24 mg/dl for healthy and cirrhotic subjects, respectively). The percent contribution of glycogen to GP was smaller in cirrhotics than controls (22+/-7% versus 46+/-4%, P<0.001), while the contribution from gluconeogenesis was larger (78+/-7% versus 54+/-4%, P<0.001). In all subjects, glucose 6R and 6S hydrogens had similar enrichments, consistent with extensive exchange of 2H between body water and the hydrogens of gluconeogenic oxaloacetate (OAA). The difference in 2H-enrichment between hydrogen 5 and hydrogen 6S was significantly larger in cirrhotics, suggesting that the fractional contribution of glycerol to the glyceraldehyde-3-phosphate (G3P)-moiety of plasma glucose was higher compared to controls (19+/-6% versus 7+/-6%, P<0.01). In all subjects, hydrogens 4 and 5 of glucose had identical enrichments while hydrogen 3 enrichments were systematically lower. This reflects incomplete exchange between the hydrogen of water and that of 1-R-dihydroxyacetone phosphate (DHAP) or incomplete exchange of DHAP and G3P pools via triose phosphate isomerase.  相似文献   

18.
A series of novel 5-substituted 1H-tetrazoles as cyclooxygenase-2 (COX-2) inhibitors was prepared via treatment of various diaryl amides with tetrachlorosilane/sodium azide. All compounds were tested in cyclooxygenase (COX) assays in vitro to determine COX-1 and COX-2 inhibitory potency and selectivity. Tetrazoles contained a methylsulfonyl or sulfonamide group as COX-2 pharmacophore displayed only low inhibitory potency towards COX-2. Most potent compounds showed IC(50) values of 6 and 7 μM for COX-2. All compounds showed IC(50) values greater 100 μM for COX-1 inhibition.  相似文献   

19.
The structural gene for a putative PPP family protein-serine/threonine phosphatase from the microcystin-producing cyanobacterium Microcystis aeruginosa PCC 7820, pp1-cyano1, was cloned. The sequence of the predicted gene product, PP1-cyano1, was 98% identical to that of the predicted product of an open reading frame, pp1-cyano2, from a cyanobacterium that does not produce microcystins, M. aeruginosa UTEX 2063. By contrast, PP1-cyano1 displayed less than 20% identity with other PPP family protein phosphatases from eukaryotic, archaeal, or other bacterial organisms. PP1-cyano1 and PP1-cyano2 were expressed in Escherichia coli and purified to homogeneity. Both enzymes exhibited divalent metal dependent phosphohydrolase activity in vitro toward phosphoserine- and phosphotyrosine-containing proteins and 3-phosphohistidine- and phospholysine-containing amino acid homopolymers. This multifunctional potential also was apparent in samples of PP1-cyano1 and PP1-cyano2 isolated from M. aeruginosa. Catalytic activity was insensitive to okadaic acid or the cyanobacterially produced cyclic heptapeptide, microcystin-LR, both potent inhibitors of mammalian PP1 and PP2A. PP1-cyano1 and PP1-cyano2 displayed diadenosine tetraphosphatase activity in vitro. Diadenosine tetraphosphatases share conserved sequence features with PPP family protein phosphatases. The diadenosine tetraphosphatase activity of PP1-cyano1 and PP1-cyano2 confirms that these enzymes share a common catalytic mechanism.  相似文献   

20.
A novel series of 3-(substituted)-aryl-5-(9-methyl-3-carbazole)-1H-2-pyrazolines (5a-o) has been synthesized and the structures of newly synthesized compounds were characterized by IR, (1)H NMR and mass spectral analysis. All the synthesized compounds were evaluated for their in vitro and in vivo anti-inflammatory activity, and also for their antioxidant activity. Compounds 5b, 5c, 5d and 5n were found to be selective COX-2 inhibitors. Compound 5c was found to potent inhibitor of the carrageenin induced paw edema in rats. Most of the compounds exhibited good DPPH and superoxide radical scavenging activity, while compounds 5c, 5d, 5i and 5k exhibited good hydroxyl radical scavenging activity. Molecular docking result, along with the biological assay data, suggested that compound 5c was a potential anti-inflammatory agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号