首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper and photosystem II: A controversial relationship   总被引:6,自引:0,他引:6  
Copper is an essential micronutrient for higher plants and algae and has a direct impact on photosynthesis. It is a constituent of the primary electron donor in photosystem I, the Cu-protein plastocyanin. Many authors have also described Cu as a constituent of photosystem II (PSII). However, high Cu concentrations inhibit the photosynthetic electron transport, especially in PSII. In addition, both Cu deficiency and Cu toxicity interfere with pigment and lipid biosynthesis and, consequently, with chloroplast ultrastructure thus negatively influencing the photosynthetic efficiency.
In this review, the different functions proposed for the metal in PSII are reviewed. With reference to the effect of toxic Cu on PSII, the polemic results concerning its mechanism of action and Cu-binding sites are discussed. Other effects of Cu toxicity and Cu deprivation on the thylakoid membrane are also briefly described.  相似文献   

2.
Copper effect on the protein composition of photosystem II   总被引:1,自引:0,他引:1  
We provide data from in vitro experiments on the polypeptide composition, photosynthetic electron transport and oxygen evolution activity of intact photosystem II (PSII) preparations under Cu(II) toxicity conditions. Low Cu(II) concentrations (Cu(II) per PSII reaction centre unit≤230) that caused around 50% inhibition of variable chlorophyll a fluorescence and oxygen evolution activity did not affect the polypeptide composition of PSII. However, the extrinsic proteins of 33, 24 and 17 kDa of the oxygen-evolving complex of PSII were removed when samples were treated with 300 μ M CuCl2 (Cu(II) per PSII reaction centre unit=1 400). The LHCII antenna complex and D1 protein of the reaction centre of PSII were not affected even at these Cu(II) concentrations. The results indicated that the initial inhibition of the PSII electron transport and oxygen-evolving activity induced by the presence of toxic Cu(II) concentrations occurred before the damage of the oxygen-evolving complex. Indeed, more than 50% inhibition could be achieved in conditions where its protein composition and integrity was apparently preserved.  相似文献   

3.
Significance of molecular crowding in grana thylakoids of higher plants on photosystem II function was studied by 'titrating' the naturally high protein density by fusing unilamellar liposomes of the native lipid mixture with isolated grana membranes (BBY). The incorporation of lipids was monitored by equilibrium density gradient centrifugation and two-dimensional thin layer chromatography. The excitonic coupling between light-harvesting (LHC) II and photosystem (PS) II was analysed by chlorophyll a fluorescence spectroscopy. The fluorescence parameters Fv/Fm and Fo clearly depend on the protein density indicating the importance of molecular crowding for establishing an efficient excitonic protein network. In addition the strong dependency of Fo on the protein density reveals weak interactions between LHCII complexes which could be important for dynamic adjustment of the photosynthetic apparatus in higher plants.  相似文献   

4.
We have performed time-resolved fluorescence measurements on photosystem II (PSII) containing membranes (BBY particles) from spinach with open reaction centers. The decay kinetics can be fitted with two main decay components with an average decay time of 150 ps. Comparison with recent kinetic exciton annihilation data on the major light-harvesting complex of PSII (LHCII) suggests that excitation diffusion within the antenna contributes significantly to the overall charge separation time in PSII, which disagrees with previously proposed trap-limited models. To establish to which extent excitation diffusion contributes to the overall charge separation time, we propose a simple coarse-grained method, based on the supramolecular organization of PSII and LHCII in grana membranes, to model the energy migration and charge separation processes in PSII simultaneously in a transparent way. All simulations have in common that the charge separation is fast and nearly irreversible, corresponding to a significant drop in free energy upon primary charge separation, and that in PSII membranes energy migration imposes a larger kinetic barrier for the overall process than primary charge separation.  相似文献   

5.
To understand the regulatory mechanisms underlying the biogenesis of photosystem II (PSII) we have characterized the nuclear mutant hcf136 of Arabidopsis thaliana and isolated the affected gene. The mutant is devoid of any photosystem II activity, and none of the nuclear- and plastome-encoded subunits of this photosystem accumulate to significant levels. Protein labelling studies in the presence of cycloheximide showed that the plastome-encoded PSII subunits are synthesized but are not stable. The HCF136 gene was isolated by virtue of its T-DNA tag, and its identity was confirmed by complementation of homozygous hcf136 seedlings. Immunoblot analysis of fractionated chloroplasts showed that the HCF136 protein is a lumenal protein, found only in stromal thylakoid lamellae. The HCF136 protein is produced already in dark-grown seedlings and its levels do not increase dramatically during light-induced greening. This accumulation profile confirms the mutational data by showing that the HCF136 protein must be present when PSII complexes are made. HCF136 homologues are found in the cyanobacterium Synechocystis species PCC6803 (slr2034) and the cyanelle genome of Cyanophora paradoxa (ORF333), but are lacking in the plastomes of chlorophytes and metaphytes as well as from those of rhodo- and chromophytes. We conclude that HCF136 encodes a stability and/or assembly factor of PSII which dates back to the cyanobacterial-like endosymbiont that led to the plastids of the present photosynthetic eukaryotes.  相似文献   

6.
This review covers the recent progress in the elucidation of the structure of photosystem II (PSII). Because much of the structural information for this membrane protein complex has been revealed by electron microscopy (EM), the review will also consider the specific technical and interpretation problems that arise with EM where they are of particular relevance to the structural data. Most recent reviews of photosystem II structure have concentrated on molecular studies of the PSII genes and on the likely roles of the subunits that they encode or they were mainly concerned with the biophysical data and fast absorption spectroscopy largely relating to electron transfer in various purified PSII preparations. In this review, we will focus on the approaches to the three-dimensional architecture of the complex and the lipid bilayer in which it is located (the thylakoid membrane) with special emphasis placed upon electron microscopical studies of PSII-containing thylakoid membranes. There are a few reports of 3D crystals of PSII and of associated X-ray diffraction measurements and although little structural information has so far been obtained from such studies (because of the lack of 3D crystals of sufficient quality), the prospects for such studies are also assessed.Abbreviations ATP adenosine triphosphate - Chl chlorophyll - CP chlorophyll-binding protein - EM electron microscopy - LHC light harvesting complex - NADP nicotinamide adenine dinucleotide phosphate - OEC oxygen evolution enhancing complex - PS photosystem - Tris tris-hydroxymethyl aminomethane  相似文献   

7.
A photosystem II (PSII) core complex lacking the internal antenna CP43 protein was isolated from the photosystem II of Synechocystis PCC6803, which lacks photosystem I (PSI). CP47-RC and reaction centre (RCII) complexes were also obtained in a single procedure by direct solubilization of whole thylakoid membranes. The CP47-RC subcore complex was characterized by SDS/PAGE, immunoblotting, MALDI MS, visible and fluorescence spectroscopy, and absorption detected magnetic resonance. The purity and functionality of RCII was also assayed. These preparations may be useful for mutational analysis of PSII RC and CP47-RC in studying primary reactions of oxygenic photosynthesis.  相似文献   

8.
The role of lipids in photosystem II   总被引:1,自引:0,他引:1  
The thylakoid membranes of photosynthetic organisms, which are the sites of oxygenic photosynthesis, are composed of monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG), and phosphatidylglycerol (PG). The identification of many genes involved in the biosynthesis of each lipid class over the past decade has allowed the generation and isolation of mutants of various photosynthetic organisms incapable of synthesizing specific lipids. Numerous studies using such mutants have revealed that deficiency of these lipids primarily affects the structure and function of photosystem II (PSII) but not of photosystem I (PSI). Recent X-ray crystallographic analyses of PSII and PSI complexes from Thermosynechococcus elongatus revealed the presence of 25 and 4 lipid molecules per PSII and PSI monomer, respectively, indicating the enrichment of lipids in PSII. Therefore, lipid molecules bound to PSII may play special roles in the assembly and functional regulation of the PSII complex. This review summarizes our present understanding of the biochemical and physiological roles of lipids in photosynthesis, with a special focus on PSII. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

9.
A highly active oxygen-evolving photosystem II (PSII) complex was purified from the HT-3 strain of the widely used cyanobacterium Synechocystis sp. PCC 6803, in which the CP47 polypeptide has been genetically engineered to contain a polyhistidine tag at its carboxyl terminus [Bricker, T. M., Morvant, J., Masri, N., Sutton, H. M., and Frankel, L. K. (1998) Biochim. Biophys. Acta 1409, 50-57]. These purified PSII centers had four manganese atoms, one calcium atom, and two cytochrome b(559) hemes each. Optical absorption and fluorescence emission spectroscopy as well as western immunoblot analysis demonstrated that the purified PSII preparation was devoid of any contamination with photosystem I and phycobiliproteins. A comprehensive proteomic analysis using a system designed to enhance resolution of low-molecular-weight polypeptides, followed by MALDI mass spectrometry and N-terminal amino acid sequencing, identified 31 distinct polypeptides in this PSII preparation. We propose a new nomenclature for the polypeptide components of PSII identified after PsbZ, which proceeds sequentially from Psb27. During this study, the polypeptides PsbJ, PsbM, PsbX, PsbY, PsbZ, Psb27, and Psb28 proteins were detected for the first time in a purified PSII complex from Synechocystis 6803. Five novel polypeptides were also identified in this preparation. They included the Sll1638 protein, which shares significant sequence similarity to PsbQ, a peripheral protein of PSII that was previously thought to be present only in chloroplasts. This work describes newly identified proteins in a highly purified cyanobacterial PSII preparation that is being widely used to investigate the structure, function, and biogenesis of this photosystem.  相似文献   

10.
Yu H  Aznar CP  Xu X  Britt RD 《Biochemistry》2005,44(36):12022-12029
The effect of adding azide to photosystem II (PS II) membrane samples (BBY preparation), with or without chloride, has been investigated using continuous wave (CW) and pulsed EPR spectroscopy. In the BBY samples with 25 mM chloride, we observed that the inhibition induced by azide is partly recovered by the addition of bicarbonate. Electron spin-echo envelope modulation (ESEEM) was used to search for spin transitions of 15N nuclei magnetically coupled to the S2 state Mn cluster (multiline EPR signal form) in 15N (single terminal label) azide-treated samples with negative results. However, an 15N ESEEM peak was observed in parallel chloride-depleted PS II samples when the 15N-labeled azide is added. However, this peak is absent in chloride-depleted samples incubated in buffer containing both chloride and [15N]azide. Thus these results demonstrate an azide binding site in the immediate vicinity of the Mn cluster, and since this site appears to be competitive with chloride, these results provide further evidence that chloride is bound proximal to the Mn cluster as well. Discussion on the possible interplay between azide, chloride, and bicarbonate is provided.  相似文献   

11.
Antenna systems of plants and green algae are made up of pigment-protein complexes belonging to the light-harvesting complex (LHC) multigene family. LHCs increase the light-harvesting cross-section of photosystems I and II and catalyze photoprotective reactions that prevent light-induced damage in an oxygenic environment. The genome of the moss Physcomitrella patens contains two genes encoding LHCb9, a new antenna protein that bears an overall sequence similarity to photosystem II antenna proteins but carries a specific motif typical of photosystem I antenna proteins. This consists of the presence of an asparagine residue as a ligand for Chl 603 (A5) chromophore rather than a histidine, the common ligand in all other LHCbs. Asparagine as a Chl 603 (A5) ligand generates red-shifted spectral forms associated with photosystem I rather than with photosystem II, suggesting that in P. patens, the energy landscape of photosystem II might be different with respect to that of most green algae and plants. In this work, we show that the in vitro refolded LHCb9-pigment complexes carry a red-shifted fluorescence emission peak, different from all other known photosystem II antenna proteins. By using a specific antibody, we localized LHCb9 within PSII supercomplexes in the thylakoid membranes. This is the first report of red-shifted spectral forms in a PSII antenna system, suggesting that this biophysical feature might have a special role either in optimization of light use efficiency or in photoprotection in the specific environmental conditions experienced by this moss.  相似文献   

12.
Two mutants of Chlamydomonas reinhardtii, mf1 and mf2, characterized by a marked reduction in their phosphatidylglycerol content together with a complete loss in its Delta3-trans hexadecenoic acid-containing form, also lost photosystem II (PSII) activity. Genetic analysis of crosses between mf2 and wild-type strains shows a strict cosegregation of the PSII and lipid deficiencies, while phenotypic analysis of phototrophic revertant strains suggests that one single nuclear mutation is responsible for the pleiotropic phenotype of the mutants. The nearly complete absence of PSII core is due to a severely decreased synthesis of two subunits, D1 and apoCP47, which is not due to a decrease in translation initiation. Trace amounts of PSII cores that were detected in the mutants did not associate with the light-harvesting chlorophyll a/b-binding protein antenna (LHCII). We discuss the possible role of phosphatidylglycerol in the coupled process of cotranslational insertion and assembly of PSII core subunits.  相似文献   

13.
Efficient photosynthetic energy transduction and its regulation depend on a precise supramolecular arrangement of the plant photosystem II (PSII) complex in grana membranes of chloroplasts. The topography of isolated photosystem II supercomplexes and the supramolecular organization of this complex in grana membrane preparations are visualized by high-resolution atomic force microscopy (AFM) in air in tapping mode with an active feedback control to minimize tip-sample interactions. Systematic comparison between topographic characteristics of the protrusions in atomic force microscopic images and well-established high-resolution and freeze-fracture electron microscopic data shows that the photosystem II organization can be properly imaged by AFM in air. Taking the protruding water-splitting apparatus as a topographic marker for PSII, its distribution and orientation in isolated grana membrane were analyzed. For the latter a new mathematical procedure was established, which revealed a preference for a parallel alignment of PSII that resembles the organization in highly ordered semicrystalline arrays. Furthermore, by analyzing the height of grana membrane stacks, we conclude that lumenal protrusions of adjacent photosystem II complexes in opposing membranes are displaced relative to each other. The functional consequences for lateral migration processes are discussed.  相似文献   

14.
Oxygenic photosynthesis produces various radicals and activeoxygen species with harmful effects on photosystem II (PSII).Such photodamage occurs at all light intensities. Damaged PSIIcentres, however, do not usually accumulate in the thylakoidmembrane due to a rapid and efficient repair mechanism. Theexcellent design of PSII gives protection to most of the proteincomponents and the damage is most often targeted only to thereaction centre D1 protein. Repair of PSII via turnover of thedamaged protein subunits is a complex process involving (i)highly regulated reversible phosphorylation of several PSIIcore subunits, (ii) monomerization and migration of the PSIIcore from the grana to the stroma lamellae, (iii) partial disassemblyof the PSII core monomer, (iv) highly specific proteolysis ofthe damaged proteins, and finally (v) a multi-step replacementof the damaged proteins with de novo synthesized copies followedby (vi) the reassembly, dimerization, and photoactivation ofthe PSII complexes. These processes will shortly be reviewedpaying particular attention to the damage, turnover, and assemblyof the PSII complex in grana and stroma thylakoids during thephotoinhibition–repair cycle of PSII. Moreover, a two-dimensionalBlue-native gel map of thylakoid membrane protein complexes,and their modification in the grana and stroma lamellae duringa high-light treatment, is presented. Key words: Arabidopsis thylakoid membrane proteome, assembly of photosystem II, D1 protein, light stress, photosystem II photoinhibition, repair of photosystem II  相似文献   

15.
Chloroplastic heterocomplex consisting of AtFtsH1, 2, 5 and 8 proteases, integrally bound to thylakoid membrane was shown to play a critical role in degradation of photodamaged PsbA molecules, inherent to photosystem II (PSII) repair cycle and in plastid development. As no one thylakoid bound apoproteins besides PsbA has been identified as target for the heterocomplex-mediated degradation we investigated the significance of this protease complex in degradation of apoproteins of the major light harvesting complex of photosystem II (LHCII) in response to various stressing conditions and in stress-related changes in overall composition of LHCII trimers of PSII-enriched membranes (BBY particles). To reach this goal a combination of approaches was applied based on immunoblotting, in vitro degradation and non-denaturing isoelectrofocusing. Exposure of Arabidopsis thaliana leaves to desiccation, cold and high irradiance led to a step-wise disappearance of Lhcb1 and Lhcb2, while Lhcb3 level remained unchanged, except for high irradiance which caused significant Lhcb3 decrease. Furthermore, it was demonstrated that stress-dependent disappearance of Lhcb1–3 is a proteolytic phenomenon for which a metalloprotease is responsible. No changes in Lhcb1–3 level were observed due to exposition of var1-1 mutant leaves to the three stresses clearly pointing to the involvement of AtFtsH heterocomplex in the desiccation, cold and high irradiance-dependent degradation of Lhcb1 and Lhcb2 and in high irradiance-dependent degradation of Lhcb3. Non-denaturing isoelectrofocusing analyses revealed that AtFtsH heterocomplex-dependent differential Lhcb1–3 disappearance behaviour following desiccation stress was accompanied by modulations in abundances of individual LHCII trimers of BBY particles and that LHCII of var1-1 resisted the modulations.  相似文献   

16.
Multiple functions of photosystem II   总被引:3,自引:0,他引:3  
The most important function of photosystem II (PSII) is its action as a water-plastoquinone oxido-reductase. At the expense of light energy, water is split, and oxygen and plastoquinol are formed. In addition to this most important activity, PSII has additional functions, especially in the regulation of (light) energy distribution. The downregulation of PSII during photoinhibition is a protection measure. PSII is an anthropogenic target for many herbicides. There is a unique action of bicarbonate on PSII. Decrease in the activity of PSII is the first effect in a plant under stress; this decreased activity can be most easily measured with fluorescence. PSII is a sensor for stress, and induces regulatory processes with different time scales: photochemical quenching, formation of a proton gradient, state transitions, downregulation by photoinhibition and gene expression.  相似文献   

17.
Chloroplasts are central to the provision of energy for green plants. Their photosynthetic membrane consists of two major complexes converting sunlight: photosystem I (PSI) and photosystem II (PSII). The energy flow toward both photosystems is regulated by light-harvesting complex II (LHCII), which after phosphorylation can move from PSII to PSI in the so-called state 1 to state 2 transition and can move back to PSII after dephosphorylation. To investigate the changes of PSI and PSII during state transitions, we studied the structures and frequencies of all major membrane complexes from Arabidopsis thaliana chloroplasts at conditions favoring either state 1 or state 2. We solubilized thylakoid membranes with digitonin and analyzed the complete set of complexes immediately after solubilization by electron microscopy and image analysis. Classification indicated the presence of a PSI-LHCII supercomplex consisting of one PSI-LHCI complex and one LHCII trimer, which was more abundant in state 2 conditions. The presence of LHCII was confirmed by excitation spectra of the PSI emission of membranes in state 1 or state 2. The PSI-LHCII complex could be averaged with a resolution of 16 A, showing that LHCII has a specific binding site at the PSI-A, -H, -L, and -K subunits.  相似文献   

18.
Green plant photosystem II (PSII) is involved in the light reactions of photosynthesis, which take place in the thylakoid membrane of the chloroplast. PSII is organized into large supercomplexes with variable amounts of membrane-bound peripheral antenna complexes. These supercomplexes are dimeric and contain usually 2-4 copies of trimeric LHCII complexes and have a further tendency to associate into megacomplexes or into crystalline domains, of which several types have been characterized. This review focuses on the overall composition and structure of the PSII supercomplex of green plants and its organization and interactions within the photosynthetic membrane. Further, we present the current knowledge how the thylakoid membrane is three-dimensionally organized within the chloroplast. We also discuss how the supramolecular organization in the thylakoid membrane and the PSII flexibility may play roles in various short-term regulatory mechanisms of green plant photosynthesis. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

19.
Pavel Pospíšil 《BBA》2009,1787(10):1151-1160
Photosysthetic cleavage of water molecules to molecular oxygen is a crucial process for all aerobic life on the Earth. Light-driven oxidation of water occurs in photosystem II (PSII) — a pigment-protein complex embedded in the thylakoid membrane of plants, algae and cyanobacteria. Electron transport across the thylakoid membrane terminated by NADPH and ATP formation is inadvertently coupled with the formation of reactive oxygen species (ROS). Reactive oxygen species are mainly produced by photosystem I; however, under certain circumstances, PSII contributes to the overall formation of ROS in the thylakoid membrane. Under limitation of electron transport reaction between both photosystems, photoreduction of molecular oxygen by the reducing side of PSII generates a superoxide anion radical, its dismutation to hydrogen peroxide and the subsequent formation of a hydroxyl radical terminates the overall process of ROS formation on the PSII electron acceptor side. On the PSII electron donor side, partial or complete inhibition of enzymatic activity of the water-splitting manganese complex is coupled with incomplete oxidation of water to hydrogen peroxide. The review points out the mechanistic aspects in the production of ROS on both the electron acceptor and electron donor side of PSII.  相似文献   

20.
AtCYP38 is a thylakoid lumen protein comprising the immunophilin domain and the phosphatase inhibitor module. Here we show the association of AtCYP38 with the photosystem II (PSII) monomer complex and address its functional role using AtCYP38-deficient mutants. The dynamic greening process of etiolated leaves failed in the absence of AtCYP38, due to specific problems in the biogenesis of PSII complexes. Also the development of leaves under short-day conditions was severely disturbed. Detailed biophysical and biochemical analysis of mature AtCYP38-deficient plants from favorable growth conditions (long photoperiod) revealed: (i) intrinsic malfunction of PSII, which (ii) occurred on the donor side of PSII and (iii) was dependent on growing light intensity. AtCYP38 mutant plants also showed decreased accumulation of PSII, which was shown not to originate from impaired D1 synthesis or assembly of PSII monomers, dimers and supercomplexes as such but rather from the incorrect fine-tuning of the oxygen-evolving side of PSII. This, in turn, rendered PSII centers extremely susceptible to photoinhibition. AtCYP38 deficiency also drastically decreased the in vivo phosphorylation of PSII core proteins, probably related to the absence of the AtCYP38 phosphatase inhibitor domain. It is proposed that during PSII assembly AtCYP38 protein guides the proper folding of D1 (and CP43) into PSII, thereby enabling the correct assembly of the water-splitting Mn4–Ca cluster even with high turnover of PSII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号