首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The equilibrium constant (KX) for the reaction D-serine dehydratase + pyridoxamine-P in equilibrium KX D-serine apodehydratase: pyridoxamine-P + pyridoxal-P was determined. At 25 degreees, pH 7.80, KX increases from 5.4 times 10-minus 5 to 21 times 10-minus 5 as T/2 is increased from 0.33 to 0.66. A value of 1.3 times 10-minus 4 M at 25 degrees, pH 7.80, T/2 0.33 for the equilibrium constant (KPMP) for dissociation of pyridoxamine-P from D-serine apodehydratase was determined from the ratio of the equilibrium constant for dissociation of pyridoxal-P from holoenzyme to KX. Pyridoxamine-P and the thiazolidine, formed from pyridoxal-P and cysteine, were found to have similar affinities for D-serine apodehydratase. Using the affinities of these derivatives as a measure of the noncovalent interactions between cofactor and protein, it was possible to estimate the contribution of the Schiff base linkage to the stability of the complex formed between pyridoxal-P and protein. The covalent Schiff base linkage in the holoenzyme was found to be no more stable than the Schiff base linkage formed between 6-aminocaproic acid and pyridoxal-P. The contribution of noncovalent interactions to the stability of the cofactor-protein complex was shown to be at least 20 to 40 times greater than the contribution of the covalent Schiff base linkage.  相似文献   

2.
Pyridoxamine is a vitamin B6 derivative involved in biological reactions such as transamination, and can also act as inhibitor in protein glycation. In both cases, it has been reported that Schiff base formation between pyridoxamine and carbonyl compounds is the main step. Nevertheless, few studies on the Schiff base formation have been reported to date. In this work, we conduct a comparative study of the reaction of pyridoxamine and 4-picolylamin (a pyridoxamine analog) with various carbonyl compounds including propanal, formaldehyde and pyruvic acid. Based on the results, 4-picolylamin forms a Schiff base as end-product of its reactions with propanal and pyruvic acid, but a carbinolamine with formaldehyde. On the other hand, pyridoxamine forms a Schiff base with the three reagents, but the end-product is in equilibrium with its hemiaminal form, which results from the attack of the phenolate ion of the pyridine ring on the imine carbon. This isomeric equilibrium should be considered in studying reactions involving amine derivatives of vitamin B6.  相似文献   

3.
It has been proposed in the literature that Schiffs reagent reacts with aldehydes to form one of the following types of compounds: alkylsulfonic acids, N-sulfinic acid derivatives, or Schiff bases. Model compounds whose structures are consistent with those proposed in the literature have been synthesized and subjected to infrared analysis. Also, actual products of Schiff reagent reactions with various aldehydes have been isolated and examined using infrared spectroscopy. Comparison of the spectra of the model compounds with those of Schiff-aldehyde reaction products yielded the following conclusions: 1. The reaction of simple organic aldehydes with Schiff's reagent produces an alkylsulfonate-type reaction product. 2. The reaction of periodate-oxidized glycogen with Schiff's reagent probably involves the formation of an alklsulfonate-type compound. 3. The product of the Schiff-aldehyde reaction exists as neither an N-sulfinic acid nor a Schiff base derivative of the fuchsin molecule.  相似文献   

4.
5.
Kinch LN  Phillips MA 《Biochemistry》2000,39(12):3336-3343
Trypanosoma cruzi S-adenosylmethionine decarboxylase (AdoMetDC) catalyzes the pyruvoyl-dependent decarboxylation of S-adenosylmethionine (AdoMet), which is an important step in the biosynthesis of polyamines. The time course of the AdoMetDC reaction under single-turnover conditions was measured to determine the rate of the slowest catalytic step up to and including decarboxylation. Analysis of this single-turnover data yields an apparent second-order rate constant for this reaction of 3300 M(-1) s(-1) in the presence of putrescine, which corresponds to a catalytic rate of >6 s(-1). This rate is minimally 100-fold faster than the steady-state rate suggesting that product release, which includes Schiff base hydrolysis, limits the overall reaction. AdoMetDC exhibits an inverse solvent isotope effect on the single-turnover kinetics, and the pH profile predicts a pK(a) of 8.9 for the basic limb. These results are consistent with a Cys residue functioning as a general acid in the rate-determining step of the single-turnover reaction. Mutation of Cys-82 to Ala reduces the rate of the single turnover reaction to 11 M(-1) s(-1) in the presence of putrescine. Further, a solvent isotope effect is not observed for the mutant enzyme. Reduction of the wild-type enzyme with cyanoborohydride traps the Schiff base between the enzyme and decarboxylated substrate, while little Schiff base species of either substrate or product was trapped with the C82A mutant. These data suggest that Cys-82 functions as a general acid/base to catalyze Schiff base formation and hydrolysis. The solvent isotope and pH effects are mirrored in single-turnover analysis of reactions without the putrescine activator, yielding an apparent second-order rate constant of 150 M(-1) s(-1). The presence of putrescine increases the single-turnover rate by 20-fold, while it has relatively little effect on the affinity of the enzyme for product. Therefore, putrescine likely activates the T. cruzi AdoMetDC enzyme by accelerating the rate of Schiff base exchange.  相似文献   

6.
During the 1860’s, Hugo Schiff studied many reactions between amines and aldehydes, some of which have been used in histochemistry, at times without credit to Schiff. Much controversy has surrounded the chemical structures and reaction mechanisms of the compounds involved, but modern analytical techniques have clarified the picture. I review these reactions here. I used molecular modeling software to investigate dyes that contain primary amines representing eight chemical families. All dyes were known to perform satisfactorily for detecting aldehydes in tissue sections. The models verified the correct chemical structures at various points in their reactions and also determined how decolorization occurred in those with “leuco” forms. Decolorization in the presence of sulfurous acid can occur by either adduction or reduction depending on the dye. The final condensation product with aldehyde was determined to be either a C-sulfonic acid adduct on the carbonyl carbon atom or an aminal at the same atom. Based on the various outcomes, I have placed the dyes and their reactions into five categories. Because Hugo Schiff studied the reactions between aldehydes and amines with and without various acids or alcohol, it is only proper to call each of them Schiff reactions that used various types of Schiff reagents.  相似文献   

7.
Lys-258 of aspartate aminotransferase forms a Schiff base with pyridoxal phosphate and is responsible for catalysis of the 1,3-prototropic shift central to the transamination reaction sequence. Substitution of arginine for Lys-258 stabilizes the otherwise elusive quinonoid intermediate, as assessed by the long wavelength absorption bands observed in the reactions of this mutant with several amino acid substrates. The external aldimine intermediate is not detectable during reactions of this mutant with amino acids, although the inhibitor alpha-methylaspartate does slowly and stably form this species. These results suggest that external aldimine formation is one of the rate-determining steps of the reaction. The pyridoxamine-5'-phosphate-like enzyme form (330-nm absorption maximum) is unreactive toward keto acid substrates, and the coenzyme bound to this species is not dissociable from the protein.  相似文献   

8.
A 13 mers abasic oligonucleotide was synthetized. It was therefore possible to compare thermal stability and reactivity of duplex oligonucleotides either with an apurinic/apyrimidinic site or without any lesion. An important decrease in the melting temperature appeared for duplexes with an abasic site. The chemical reaction of these modified oligonucleotides with the intercalating agent 9-aminoellipticine was studied by gel electrophoresis and by fluorescence. The formation of a Schiff base between 9-aminoellipticine and abasic sites was rapid and complete with duplexes at 11 degrees C. Schiff base related fluorescence and beta-elimination cleavage were more important with the apyrimidinic sites than with the apurinic ones. When compared to previous results obtained with the model d(TprpT) some unexpected behaviours appeared with longer and duplex oligonucleotides. For instance only partial beta-elimination cleavage was observed. It is likely that stacking parameters in the double helix play a great role in the studied reaction.  相似文献   

9.
5-Aminolaevulinic acid dehydratase: structure, function, and mechanism.   总被引:6,自引:0,他引:6  
delta-Aminolaevulinic acid dehydratase catalyses the synthesis of porphobilinogen. The enzyme has a molecular mass of 285000 and is composed of eight similar subunits of molecular mass 35000. The N-terminal amino acid is acylated, and the number of peptides found on tryptic digestion equals the number of lysine and arginine residues per mass of 35000. The eight subunits are apparently arranged at the corners of a cube and therefore have dihedral (D4) symmetry. The bovine liver enzyme which has been cystallized contains 4--6 atoms of zinc per mole of enzyme. The apo-enzyme obtained on prolonged hydrolysis can be reactivated by the addition of zinc or cadmium ions. The dialysed enzyme must be first treated with dithiothreitol. There are two very active SH groups in a total of 6--7-SH groups per subunit. The substrate forms a Schiff base with the epsilon-amino group of a lysine residue. Reduction of the Schiff base with NaBH4 should reveal the number of active sites per mole of enzyme. It appears that only four of the eight subunits form a Schiff base with the substrate indicating that the enzyme exhibits the phenomenon of either half-site reactivity or negative cooperativity. The enzyme appears to have a strong subunit-subunit interaction for an immobilized preparation remained stable for at least a month. An immobilized enzyme preparation was treated in a manner so that it dissociated into tetramers. Both the eluate and protein still attached to the Sepharose on a column were enzymically active. The bound enzyme could not reassociate under assay conditions but still contained about 50% of the original enzyme activity. It would seem that the enzyme is active when composed with less than eight subunits.  相似文献   

10.
R Miura  D E Metzler 《Biochemistry》1976,15(2):283-290
The 5-trans-vinylcarboxylic acid analogue of pyridoxal 5'-phosphate has been prepared. Its pKa values were determined as 3.08, 4.10, and 7.33. The third pKa, that of the pyridinium nitrogen, is considerably lower than that of 8.2 observed for the corresponding saturated compound, 5'-carboxymethyl-5'-deoxypyridoxal. Absorption spectra of individual ionic forms have been resolved into component bands using lognormal distribution curves. The vinylcarboxylic acid analogue inactivates apoaspartate aminotransferase slowly at pH 8.3. An initial product absorbs at 26 kK (385 nm) and is converted slowly to a species with a narrow absorption band at 24.0 kK (417 nm). Meanwhile, the circular dichroism in the same region changes from positive to negative. At pH 5.2 the product abosrbs at 25.2 kK (397 nm). The 24.0-kK (417 nm) form is not reducible with sodium borohydride and the tightly bound chromophore is not released from the protein during denaturation by acid, base, or heat. L-Glutamate and erythro-beta-hydroxyaspartate both facilitate the formation of the 24.0-kK form. The reaction of the analogue with apoenzyme in the presence of erythro-beta-hydroxyaspartate is also accompanied by transient peaks, presumably representing quinonoid forms, at 19.0 kK (526 nm) and 20.3 kK (492 nm). The analogue reacts at basic pH with arginine, alpha-amino-gamma-guanidinobutyric acid, ornithine, cysteine, alpha, gamma-diaminobutyric acid, eh narrow absorption bands centered in the 24.0-24.4-kK (417-410 nm) region and resembling the product formed with the apoenzyme. Nuclear magnetic resonance and absorption spectroscopy indicate that the reaction with alpha- gamma-diaminobutyric acid proceeds via a hexahydropyrimidine derivative to a substituted tetrahydropyrimidine (a cyclic Schiff base) which is the final product. A similar reaction sequence with the apoenzyme is postulated and a structure with an unknown X group from the enzyme replacing the gamma-amino group of alpha, gamma-diaminobutyric acid is proposed for the 24.0-kK (417 nm) chromophore obtained with the apoenzyme. The proposed reactions are closely related to enzymatic and nonenzymatic reactions of pyridoxal 5'-sulfate (Yang, I. -Y., Khomutov, R. M., and Metzler, D. E. (1974), Biochemistry 13, 3877).  相似文献   

11.
Oxidative deamination of the epsilon-amino group of lysyl residues to form allysine is the initial reaction in the cross-linking of collagen and elastin in vertebrates. The allysyl residues, generated by lysyl oxidase in this reaction, condense with either other allysyl residues or epsilon-amino groups of lysyl or hydroxylysyl to form aldol or Schiff base cross-links. This paper presents evidence that similar allysyl residues and Schiff base cross-links are synthesized in cell envelopes of Escherichia coli. Acid hydrolysis followed by amino acid analysis of envelopes either reduced with NaB[3H]4 or labeled with [14C]lysine and reduced with NaBH4 yielded allysine and two labeled fragments with elution profiles and molecular weights (250 and 330) consistent with Schiff base products derived at least in part from allysine. When [6-3H]lysine-labeled cell envelopes were incubated at 37 degrees C, gradual release of tritiated water occurred. This suggests that an enzymatic reaction catalyzes the deamination of lysine in E. coli membranes and that the higher molecular weight proteins detected in stationary phase or in log phase cell envelopes after NaBH4 reduction occur as a result of formation of Schiff base cross-links.  相似文献   

12.
Pyridoxal-5-phosphate (in a lesser degree, pyridoxal) interacts with both non-protonated and protonated exposed epsilon-amino groups of lysine residues and with alpha-amino groups in human serum albumin and pancreatic ribonuclease A. The reaction of Schiff base formation proceeds within a wide pH range--from 3.0 to 12.0. At a great pyridoxal-5-phosphate excess in ribonuclease A in neutral or slightly acidic aqueous media all the ten epsilon-amino groups of lysine residues and the alpha-amino groups of Lys-1 become modified. The formation of aldimine bonds of pyridoxal-5-phosphate with protonated amino groups in acidic media is determined by ionization of its phenol hydroxyl and phosphate residues. Acetaldehyde, propionic aldehyde and pyridine aldehyde interact only with non-protonated amino groups of the proteins. The equilibrium constants of pyridoxal-5-phosphate and other aldehydes binding to proteins and amino acids were determined. The rate constants of Schiff base formation for pyridoxal-5-phosphates with some amino acids and primary sites of proteins for direct and reverse reactions were calculated.  相似文献   

13.
L M Abell  M H O'Leary 《Biochemistry》1988,27(9):3325-3330
The nitrogen isotope effect on the decarboxylation of glutamic acid by glutamate decarboxylase from Escherichia coli has been measured by comparison of the isotopic composition of the amino nitrogen of the product gamma-aminobutyric acid isolated after 10-20% reaction with that of the starting glutamic acid. At pH 4.7, 37 degrees C, the isotope effect is k14/k15 = 0.9855 +/- 0.0006 when compared to unprotonated glutamic acid. Interpretation of this result requires knowledge of the equilibrium nitrogen isotope effect for Schiff base formation. This equilibrium isotope effect is k14/k15 = 0.9824 for the formation of the unprotonated Schiff base between unprotonated valine and salicylaldehyde. Analysis of the nitrogen isotope effect on decarboxylation of glutamic acid and of the previously measured carbon isotope effect on this same reaction [O'Leary, M.H., Yamada, H., & Yapp, C.J. (1981) Biochemistry 20, 1476] shows that decarboxylation and Schiff base formation are jointly rate limiting. The enzyme-bound Schiff base between glutamate and pyridoxal 5'-phosphate partitions approximately 2:1 between decarboxylation and return to the starting state. The nitrogen isotope effect also reveals that the Schiff base nitrogen is protonated in this intermediate.  相似文献   

14.
Prostaglandin H(2) has been demonstrated to rearrange to gamma-ketoaldehyde prostanoids termed levuglandins E(2) and D(2). As gamma-dicarbonyl molecules, the levuglandins react readily with amines. We sought to characterize the adducts formed by synthetic levuglandin E(2) and prostaglandin H(2)-derived levuglandins with lysine. Using liquid chromatography/electrospray mass spectrometry, we found that the reaction predominantly produces lysyl-levuglandin Schiff base adducts that readily dehydrate to form lysyl-anhydrolevuglandin Schiff base adducts. These adducts were characterized by examination of their mass spectra, by analysis of the products of their reaction with sodium cyanide, sodium borohydride, and methoxylamine and by the mass spectra derived from collision-induced dissociation in tandem mass spectrometry. The Schiff base adducts also are formed on peptide-bound lysyl residues. In addition, synthetic levuglandin E(2) and prostaglandin H(2)-derived levuglandins produced pyrrole-derived lactam and hydroxylactam adducts upon reaction with lysine as determined by tandem mass spectrometry. A marked time dependence in the formation of these adducts was observed: Schiff base adducts formed very rapidly and robustly, whereas the lactam and hydroxylactam adducts formed more slowly but accumulated throughout the time of the experiment. These findings provide a basis for investigating protein modification induced by oxygenation of arachidonic acid by the cyclooxygenases.  相似文献   

15.
Nonenzymatic glycation of proteins has been implicated in various diabetic complications and age-related disorders. Proteins undergo glycation at the N-terminus or at the epsilon-amino group of lysine residues. Glycation of proteins proceeds through the stages of Schiff base formation, conversion to ketoamine product and advanced glycation end products. Gramicidin S, which has two ornithine residues, was used as a model system to study the various stages of glycation of proteins using electrospray ionization mass spectrometry. The proximity of two ornithine residues in the peptide favors the glycation reaction. Formation of advanced glycation end products and diglycation on ornithine residues in gramicidin S were observed. The formation of Schiff base adduct is reversible, whereas the Amadori rearrangement to the ketoamine product is irreversible. Nucleophilic amines and hydrazines can deglycate the Schiff base adduct of glucose with peptides and proteins. Hydroxylamine, isonicotinic acid hydrazide and aminoguanidine effectively removed glucose from the Schiff base adduct of gramicidin S. Hydroxylamine is more effective in deglycating the adduct compared with isonicotinic acid hydrazide and aminoguanidine. The observation that the hydrazines are effective in deglycating the Schiff base adduct even in the presence of high concentrations of glucose, may have a possible therapeutic application in preventing complications of diabetes mellitus. Hydrazines may be used to distinguish between the Schiff base and the ketoamine products formed at the initial stages of glycation.  相似文献   

16.
Treponema denticola cystalysin is a pyridoxal 5'-phosphate (PLP) enzyme that catalyzes the alpha,beta-elimination of l-cysteine to pyruvate, ammonia, and H2S. Similar to other PLP enzymes, an active site Lys residue (Lys-238) forms an internal Schiff base with PLP. The mechanistic role of this residue has been studied by an analysis of the mutant enzymes in which Lys-238 has been replaced by Ala (K238A) and Arg (K238R). Both apomutants reconstituted with PLP bind noncovalently approximately 50% of the normal complement of the cofactor and have a lower affinity for the coenzyme than that of wild-type. Kinetic analyses of the reactions of K238A and K238R mutants with glycine compared with that of wild-type demonstrate the decrease of the rate of Schiff base formation by 103- and 7.5 x 104-fold, respectively, and, to a lesser extent, a decrease of the rate of Schiff base hydrolysis. Thus, a role of Lys-238 is to facilitate formation of external aldimine by transimination. Kinetic data reveal that the K238A mutant is inactive in the alpha,beta-elimination of l-cysteine and beta-chloro-l-alanine, whereas K238R retains 0.3% of the wild-type activity. These data, together with those derived from a spectral analysis of the reaction of Lys-238 mutants with unproductive substrate analogues, indicate that Lys-238 is an essential catalytic residue, possibly participating as a general base abstracting the Calpha-proton from the substrate and possibly as a general acid protonating the beta-leaving group.  相似文献   

17.
Prevention of lens protein glycation by taurine   总被引:5,自引:0,他引:5  
Modifications in lens protein structure and function due to nonenzymic glycosylation and oxidation have been suggested to play a significant role in the pathogenesis of sugar and senile cataracts. The glycation reaction involves an initial Schiff base formation between the protein NH2 groups and the carbonyl group of a reducing sugar. The Schiff base then undergoes several structural modifications, via some oxidative reactions involving oxygen free radicals. Hence certain endogenous tissue components that may inhibit the formation of protein-sugar adduct formation may have a sparing effect against the cataractogenic effects of sugars and reactive oxygen. The eye lens is endowed with significant concentration of taurine, a sulfonated amino acid, and its precursor hypotaurine. It is hypothesized that taurine and hypotaurine may have this purported function of protecting the lens proteins against glycation and subsequent denaturation, in addition to their other functions. The results presented herein suggest that these compounds are indeed capable of protecting glycation competitively by forming Schiff bases with sugar carbonyls, and thereby preventing the glycation of lens proteins per se. In addition, they appear to prevent oxidative damage by scavenging hydroxyl radicals. This was apparent by their preventive effect against the formation of the thiobarbituric acid reactive material generated from deoxy-ribose, when the later was exposed to hydroxyl radicals generated by the action of xanthine oxidase on hypoxanthine in presence of iron.  相似文献   

18.
Thermodynamic and kinetic parameters for Schiff base formation of pyridoxal 5'-phosphate and pyridoxal with epsilon-aminocaproic acid as well as of pyridoxal 5'-phosphate with L-serine were obtained in 0.1 M sodium pyrophosphate buffer as a function of temperature. Changes in enthalpy, which were determined by direct microcalorimetry, were small at 25 degrees C, but varied strongly with pH for the reaction of pyridoxal 5'-phosphate with the amino acids. In contrast to the fast Schiff base formation of pyridoxal 5'-phosphate, a very slow reaction was found for pyridoxal and epsilon-aminocaproic acid concomitant with a larger change in enthalpy. By preventing hemiacetal formation the phosphate moiety plays a crucial role.  相似文献   

19.
To establish the state of protonation of quinonoid species formed nonenzymically from pyridoxal phosphate (PLP) and diethyl aminomalonate, we have studied absorption spectra of the rapidly established steady-state mixture of species. We have evaluated the formation constant and the spectrum of the mixture of Schiff base and quinonoid species. For N-methyl-PLP a singly protonated species with a peak at 464 nm is formed from the unprotonated aldehyde and the conjugate acid of diethyl aminomalonate with a formation constant Kf of 240 M-1. The very intense absorption band with characteristic vibrational structure (most evident as a shoulder at 435 nm) is accompanied by a weaker, structured band at about 380 nm and a weak, broad band at 330 nm. We suggest that the 380-nm band may represent a tautomeric form of the quinonoid compound. Protonation of the phosphate group appears to affect the spectrum only slightly. The corresponding mixture of Schiff base and quinonoid species formed from PLP has a very similar spectrum at pH 6-7. It has a formation constant Kf of 230 M-1 and a pKa of 7.8, which must be attributed to the ring nitrogen atom. The dissociated species, which may be largely carbanionic, has a strong structured absorption band at 430 nm and a weaker one, again possibly a tautomer, in the 330-nm region. The analysis establishes that in all species a proton remains on either the phenolic oxygen or the imine nitrogen. Proton NMR spectroscopy, under some conditions, reveals only two components: free PLP and what appears to be Schiff base. However, we suggest that the latter may, in fact, be a quinonoid form, either alone or in rapid equilibrium with the Schiff base. Absorption spectra of quinonoid species formed in enzymes are analyzed and compared with the spectra of the nonenzymic species.  相似文献   

20.
We report the first example of chemical cross-linking of 5-formyl-2'-deoxyuridine containing oligonucleotides with oligopeptides through a Schiff base formation. Twenty amino acid residue peptides investigated here were derived from the DNA binding site of RecA protein. We have demonstrated that the lysine residue placed at the 6th or 8th position from the N-terminus of the peptide directly contacts with DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号