首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously reported that a chicken polyubiquitin gene (Ub II) not expressed under normal or heat shock conditions in chick fibroblasts is transcribed during spermatogenesis [(1987) Nucleic Acids Res. 15, 9604]. The level of Ub II mRNA is several-fold higher in testis cells than in somatic tissues. The gene Ub II possesses characteristic features not seen in the polyubiquitin gene expressed in heat shock conditions (Ub I). The 5' noncoding region of Ub II shows the consensus cAMP regulatory element (CRE) followed immediately downstream by a CA dinucleotide. It has been proposed that this extended CRE may be involved in the coordinate expression of various genes during spermatogenesis.  相似文献   

2.
Ubiquitin is a heat shock protein in chicken embryo fibroblasts.   总被引:61,自引:10,他引:51       下载免费PDF全文
Clones containing heat-inducible mRNA sequences were selected from a cDNA library prepared from polyadenylated RNA isolated from heat-shocked chicken embryo fibroblasts. One recombinant DNA clone, designated clone 7, hybridized to a 1.2-kilobase RNA that was present in normal cells and increased fivefold during heat shock. Clone 7 also hybridized to an RNA species of 1.7 kilobases that was present exclusively in heat-shocked cells. In vitro translation of mRNA hybrid selected from clone 7 produced a protein product with a molecular weight of approximately 8,000. Increased synthesis of a protein of similar size was detected in chicken embryo fibroblasts after heat shock. DNA sequence analysis of clone 7 indicated its protein product has amino acid sequences identical to bovine ubiquitin. In addition, clone 7 contains tandem copies of the ubiquitin sequences contiguous to each other with no untranslated sequences between them. We discuss some possible roles for ubiquitin in the heat shock response.  相似文献   

3.
UbC is one of two stress-inducible polyubiquitin genes in mammals and is thought to supplement the constitutive UbA genes in maintaining cellular ubiquitin (Ub) levels during episodes of cellular stress. We have generated mice harboring a targeted disruption of the UbC gene. UbC(-/-) embryos die between embryonic days 12.5 and 14.5 in utero, most likely owing to a severe defect in liver cell proliferation. Mouse embryonic fibroblasts from UbC(-/-) embryos exhibit reduced growth rates, premature senescence, increased apoptosis and delayed cell-cycle progression, with slightly, but significantly, decreased steady-state Ub levels. UbC(-/-) fibroblasts are hypersensitive to proteasome inhibitors and heat shock, and unable to adequately increase Ub levels in response to these cellular stresses. Most, but not all of the UbC(-/-) phenotypes can be rescued by providing additional Ub from a poly hemagglutinin-tagged Ub minigene expressed from the Hprt locus. We propose that UbC is regulated by a process that senses Ub pool dynamics. These data establish that UbC constitutes an essential source of Ub during cell proliferation and stress that cannot be compensated by other Ub genes.  相似文献   

4.
5.
6.
7.
8.
9.
The natural gene for a steroid inducible 108K heat shock protein has been isolated from a lambda genomic library prepared from hen oviduct tissue. Genomic DNA blots indicate that it exists as a single copy gene in the chick oviduct haploid genome. The 9.9 kilobase gene codes for a messenger RNA of 2733bp (21) and is split into 18 exons as established by sequence comparison of cDNA and genomic clones. The 3' end of the gene contains a repetitive element which shares homology with the CR1 family of repeats. The first exon contains both the untranslated leader and coding regions of the gene. The promoter region is rich in G + C residues (70%) and the dinucleotide CG. This 5' flanking segment contains bases similar both in sequence and location to the Goldberg-Hogness TATA homology and consensus sequence CCAAT. A consensus sequence located upstream of steroid hormone responsive chicken genes is found at -267 and on a reverse orientation at -593. The structure of this gene is of interest since the presence of introns in heat shock genes is rare in any species examined to date. Furthermore, this gene lacks the previously described heat shock promoter consensus sequence (C-GAA-TTC-G) present in other species.  相似文献   

10.
11.
Ubiquitin is a multifunctional 76-amino-acid protein which plays critical roles in many aspects of cellular metabolism. In Caenorhabditis elegans, the major source of ubiquitin RNA is the polyubiquitin locus, UbiA. UbiA is transcribed as a polycistronic mRNA which contains 11 tandem repeats of ubiquitin sequence and possesses a 2-amino-acid carboxy-terminal extension on the final repeat. The UbiA locus possesses several unusual features not seen in the ubiquitin genes of other organisms studied to date. Mature UbiA mRNA acquires a 22-nucleotide leader sequence via a trans-splicing reaction involving a 100-nucleotide splice leader RNA derived from a different chromosome. UbiA is also unique among known polyubiquitin genes in containing four cis-spliced introns within its coding sequence. Thus, UbiA is one of a small class of genes found in higher eucaryotes whose heterogeneous nuclear RNA undergoes both cis and trans splicing. The putative promoter region of UbiA contains a number of potential regulatory elements: (i) a cytosine-rich block, (ii) two sequences resembling the heat shock regulatory element, and (iii) a palindromic sequence with homology to the DNA-binding site of the mammalian steroid hormone receptor. The expression of the UbiA gene has been studied under various heat shock conditions and has been monitored during larval moulting and throughout the major stages of development. These studies indicate that the expression of the UbiA gene is not inducible by acute or chronic heat shock and does not appear to be under nutritional or developmental regulation in C. elegans.  相似文献   

12.
13.
The dynamic state of heat shock proteins in chicken embryo fibroblasts   总被引:22,自引:7,他引:15       下载免费PDF全文
Subcellular fractionation and immunofluorescence microscopy have been used to study the intracellular distributions of the major heat shock proteins, hsp 89, hsp 70, and hsp 24, in chicken embryo fibroblasts stressed by heat shock, allowed to recover and then restressed. Hsp 89 was localized primarily to the cytoplasm except during the restress when a portion of this protein concentrated in the nuclear region. Under all conditions, hsp 89 was readily extracted from cells by detergent. During stress and restress, significant amounts of hsp 70 moved to the nucleus and became resistant to detergent extraction. Some of this hsp 70 was released from the insoluble form in an ATP-dependent reaction. Hsp 24 was confined to the cytoplasm and, during restress, aggregated to detergent-insoluble perinuclear phase-dense granules. These granules dissociated during recovery and hsp 24 could be solubilized by detergent. The nuclear hsps reappeared in the cytoplasm in cells allowed to recover at normal temperatures. Sodium arsenite also induces hsps and their distributions were similar to that observed after a heat shock, except for hsp 89, which remained cytoplasmic. We also examined by immunofluorescence the cytoskeletal systems of chicken embryo fibroblasts subjected to heat shock and found no gross morphological changes in cytoplasmic microfilaments or microtubules. However, the intermediate filament network was very sensitive and collapsed around the nucleus very shortly after a heat shock. The normal intermediate filament morphology reformed when cells were allowed to recover from the stress. Inclusion of actinomycin D during the heat shock--a condition that prevents synthesis of the hsps--did not affect the intermediate filament collapse, but recovery of the normal morphology did not occur. We suggest that an hsp(s) may aid in the formation of the intermediate filament network after stress.  相似文献   

14.
15.
16.
17.
We previously found that rat liver mannan-binding protein (L-MBP) is encoded by two species of mRNA of 1.4 and 3.5 kb long. In this study, the structure of the gene encoding rat L-MBP was determined from the sequences of isolated genomic DNA clones and PCR amplified DNA fragments. Rat L-MBP is encoded by at least three species of mRNA, the differences among which are generated by an alternative splicing at the 5'-nontranslated region and an alternative utilization of polyadenylation sites. The rat L-MBP gene consists of six exons separated by five introns. The coding region of rat L-MBP mRNA is encoded by four exons (Exons III-VI), the 5'-noncoding region by Exons I and II, and the 3'-noncoding region by Exon VI. The exon-intron boundaries of L-MBP are completely identical to those of rat serum and human MBP, suggesting that all three MBPs are derived from a common ancestral gene.  相似文献   

18.
Insulin-like growth factor II (IGF-II) is a mitogenic polypeptide present in rat plasma at high levels during fetal and early postnatal life and is believed to play an important, although as yet undefined, role in fetal development. Both in humans and rats, expression of the IGF-II gene results in the appearance of several mRNA species. In the present study, cDNA and synthetic oligonucleotide probes were used to isolate and characterize the rat IGF-II gene from genomic libraries. The rat IGF-II gene extends over 12 kilobase pairs and contains two 5'-noncoding exons and three protein-coding exons. The two 5' exons represent alternative 5' regions of different mRNA molecules and are expressed from two distinct promoters. The two promoters are transcribed with different efficiencies but exhibit similar tissue-specific expression and regulation with developmental age.  相似文献   

19.
One of the effects of a temperature increase above 35 degrees C on Drosophila melanogaster is a rapid switch in selectivity of the translational apparatus. Protein synthesis from normal, but not from heat shock, mRNA is much reduced. Efficient translation at high temperature might be a result of the primary sequence of heat shock genes. Alternatively a mRNA modification mechanism, altered as a consequence of heat shock, might allow for efficient high temperature translation of any mRNA synthesized during a heat shock. The gene for alcohol dehydrogenase (Adh) was fused to the controlling elements of a heat shock protein 70 (hsp70) gene. Authentic Adh mRNA, synthesized from this fusion gene at elevated temperatures was not translated during heat shock. A second Adh fusion gene in which the mRNA synthesized contained the first 95 nucleotides of the Hsp70 non-translated leader sequence gave rise, at high temperature, to mRNA which was translated during the heat shock. Thus, the signal(s) in the mRNAs controlling translation efficiency at heat shock temperatures is encoded within the heat shock genes.  相似文献   

20.
The methyl-sensitive restriction endonucleases HpaII and HhaI as well as the methyl-insensitive enzyme MspI were used to examine the methylation status of the pro-alpha 1(II) collagen gene of cartilage. Five different cell types with varying abilities to express type II collagen were studied. Chick embryo chondrocytes express type II collagen, while 5-bromodeoxyuridine-treated chondrocytes, retinoic acid-treated chondrocytes, chick embryo fibroblasts, and erythrocytes do not synthesize type II collagen. Both cDNA and genomic probes for the pro-alpha 1(II) collagen gene were used, covering the complete 3' end of the gene and its flanking sequences. The pro-alpha 1(II) collagen DNA was undermethylated in chondrocytes, compared to either fibroblasts or erythrocytes. However, the methylation of the 5-bromodeoxyuridine-treated and retinoic acid-treated chondrocytes was identical to that of control chondrocytes. The methylation pattern of two regions of the gene of the pro-alpha 2(I) collagen chain was identical in all cell types tested, whether or not the gene was expressed. Our results indicate that genes for these collagen chains differ in their methylation pattern. The type II collagen gene shows reduced methylation in expressing cartilage, but does not acquire an increase in methylation in "dedifferentiated" chondrocytes. The changes in DNA methylation that occur during cell differentiation do not appear to be sufficient to explain gene activation and deactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号