首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecological restoration often attempts to promote native species while managing for disturbances such as fire and non‐native invasions. The goal of this research was to investigate whether restoration of a non‐native, invasive Megathyrsus maximus (guinea grass) tropical grassland could simultaneously promote native species and reduce fire potential. Megathyrsus maximus was suppressed with herbicide, and three suites of native species—each including the same groundcover and shrub, and one of three tree species—were outplanted in a randomized, complete block design that also included herbicide control (herbicide with no outplantings) and untreated control treatments. Fuels were quantified 27 months after outplanting, and potential fire behavior (rate of spread and flame length) was modeled with BehavePlus. Compared with untreated controls, native outplant treatments reduced M. maximus cover by 76–91% and M. maximus live and dead fuel loads by greater than 92 and 68%, respectively. Despite reductions in M. maximus fuels, neither treatment‐level (grass + native) total fuel loads and fuel moistures, nor modeled fire behavior differed between outplant treatments and controls. The best performing native woody species (Dodonaea viscosa) had significantly lower average individual plant live fuel moisture (84%) than M. maximus (156%) or other native woody outplant species (201–328%), highlighting the need for careful species selection. These results demonstrate that restoring native species to degraded tropical dry forests is possible, but that ecological restoration will not necessarily alter the potential for fire, at least in the short term, making selection of species with beneficial fuel properties and active fire management critical components of ongoing restoration.  相似文献   

2.
Abstract. Questions: This paper examines the long‐term change in the herbaceous layer of semi‐arid vegetation since grazing ceased. We asked whether (1) there were differences in the temporal trends of abundance among growth forms of plants; (2) season of rainfall affected the growth form response; (3) the presence of an invasive species influenced the abundance and species richness of native plants relative to non‐invaded plots, and (4) abundance of native plants and/or species richness was related to the time it took for an invasive species to invade a plot. Location: Alice Springs, Central Australia. Methods: Long‐term changes in the semi‐arid vegetation of Central Australia were measured over 28 years (1976–2004) to partition the effects of rainfall and an invasive perennial grass. The relative abundance (biomass) of all species was assessed 25 times in each of 24 plots (8 m × 1 m) across two sites that traversed floodplains and adjacent foot slopes. Photo‐points, starting in 1972, were also used to provide a broader overview of a landscape that had been intensively grazed by cattle and rabbits prior to the 1970s. Species’abundance data were amalgamated into growth forms to examine their relationship with environmental variation in space and time. Environmental variables included season and amount of rainfall, fire history, soil variability and the colonization of the plots by the exotic perennial grass Cenchrus ciliaris (Buffel grass). Results: Constrained ordination showed that season of rainfall and landscape variables relating to soil depth strongly influenced vegetation composition when Cenchrus was used as a covariate. When Cenchrus was included in constrained ordination, it was strongly related to the decline of all native growth forms over time. Univariate comparisons of non‐invaded vs impacted plots over time revealed unequivocal evidence that Cenchrus had caused the decline of all native growth form groups and species richness. They also revealed a contrasting response of native plants to season of rainfall, with a strong response of native grasses to summer rainfall and forbs to winter rainfall. In the presence of Cenchrus these responses were strongly attenuated. Discussion: Pronounced changes in the composition of vegetation were interpreted as a response to removal of grazing pressure, fluctuations in rainfall and, most importantly, invasion of an exotic grass. Declines in herbaceous species abundance and richness in the presence of Cenchrus appear to be directly related to competition for resources. Indirect effects may also be causing the declines of some woody species from changed fire regimes as a result of increased fuel loads. We predict that Cenchrus will begin to alter landscape level processes as a result of the direct and indirect effects of Cenchrus on the demography of native plants when there is a switch from resource limited (rainfall) establishment of native plants to seed limited recruitment.  相似文献   

3.
Invasive non‐native species can create especially problematic restoration barriers in subtropical and tropical dry forests. Native dry forests in Hawaii presently cover less than 10% of their original area. Many sites that historically supported dry forest are now completely dominated by non‐native species, particularly grasses. Within a grass‐dominated site in leeward Hawaii, we explored the mechanisms by which non‐native Pennisetum setaceum, African fountain grass, limits seedlings of native species. We planted 1,800 seedlings of five native trees, three native shrubs, and two native vines into a factorial field experiment to examine the effects of grass removal (bulldozed vs. clipped plus herbicide vs. control), shade (60% shade vs. full sun), and water (supplemental vs. ambient) on seedling survival, growth, and physiology. Both grass removal and shade independently increased survival and growth, as well as soil moisture. Seedling survival and relative growth rate were also significantly dependent on soil moisture. These results suggest that altering soil moisture may be one of the primary mechanisms by which grasses limit native seedlings. Grass removal increased foliar nitrogen content of seedlings, which resulted in an increase in leaf‐level photosynthesis and intrinsic water use efficiency. Thus in the absence of grasses, native species showed increased productivity and resource acquisition. We conclude that the combination of grass removal and shading may be an effective approach to the restoration of degraded tropical dry forests in Hawaii and other ecologically similar ecosystems.  相似文献   

4.
Protecting native biodiversity is a difficult prospect in extremely modified landscapes, especially where high‐impact exotic species are widespread. Using new data and a review of the literature, this paper comments on the use of livestock grazing to manage the invasive and highly combustible pasture grass species, Buffel Grass (Cenchrus ciliaris) and thereby help conserve fire‐sensitive Brigalow (Acacia harpophylla) vegetation in reserves in Queensland, Australia. We cite evidence that shows that grazing is a potentially useful management tool in such cases and its use can be compatible with the protection of both fire‐sensitive vegetation and other native plant species within the understorey. However, there are limitations in implementing grazing within conservation reserves including the lack of a clear understanding of the influence of grazing on biodiversity and resource condition. Importantly, we highlight secondary invasion by the exotic grass Indian Couch (Bothriochloa pertusa) as a key emerging threat that may undermine the biodiversity benefits gained by grazing in reserves. Grazing can be a useful tool for conservation management in particular scenarios, but the associated risks demand accompanying monitoring and reporting of positive and negative impacts to ensure the fundamental aim of biodiversity protection is being achieved.  相似文献   

5.
Aim This study aimed to quantify changes in fire severity resulting from the invasion of Australia’s tropical savannas by the African grass Andropogon gayanus Kunth. (gamba grass). Location Mesic savannas of the Northern Territory, Australia. Method Byram’s fire‐line intensity (If), fuel load and architecture, and two post‐fire indicators of fire intensity – scorch height (SH) and char height (CH) of woody vegetation – were determined for fires in native grass savanna and A. gayanus invaded savanna. Leaf scorch is the height at which the fire’s radiant heat browns leaf tissue, and leaf char is the height that radiant heat blackens or consumes leaf tissue and provides an indirect measure of flame height. These data, and 5 years of similar data collected from the Kapalga Fire Project in Kakadu National Park, were used to develop empirical relationships between If and the post‐fire indices of fire intensity. Results A relationship between A. gayanus If and SH could not be developed because complete canopy scorch occurred in most A. gayanus fires, even at low If. In contrast, A. gayanus If was strongly correlated with CH. This empirical relationship was substantially different from that for native grass fires. For a given If, there was a significantly greater CH in invaded sites. This increase in radiant heat is attributable to the increased biomass (mean 3.6 t ha?1 in native grasses compared to 11.6 t ha?1 in A. gayanus) and height (approximately 0.5 m in native grasses compared to 4 m in A. gayanus) of the standing fine fuel. Main conclusion Andropogon gayanus invasion resulted in substantial changes in fire behaviour. This has important regional implications owing to the current (10,000–15,000 km2) and predicted (380,000 km2) area of invasion and the negative consequences for the native savanna biota that has evolved with frequent but relatively low‐intensity fire.  相似文献   

6.
Aim Using a long‐term data set we investigated the response of semi‐desert grasslands to altered disturbance regimes in conjunction with climate patterns. Specifically, we were interested in the response of a non‐native grass (Eragrostis lehmanniana), mesquite (Prosopis velutina), and native species to the reintroduction of fire and removal of livestock. Location The study site is located on the 45,360‐ha Buenos Aires National Wildlife Refuge (31°32′ N, 110°30′ W) in southern Arizona, USA. In 1985, livestock were removed and prescribed fires were reintroduced to this semi‐desert grassland dominated by non‐native grasses and encroaching mesquite trees. Methods Plant species cover was monitored along 38, 30‐m transects five times over a period of 15 years. Data were analysed using principal components analysis on the variance–covariance and correlation matrix, multivariate analysis of variance for changes over time in relation to environmental data, and analysis of variance for altered disturbance regimes. Results Reintroduction of fire and removal of livestock have not led to an increase in native species diversity or a decrease in non‐native grasses or mesquite. The cover of non‐native grass was influenced by soil type in 1993. Main conclusions Variability of plant community richness, diversity, and cover over time appear to be most closely linked to fluctuations in precipitation rather than human‐altered disturbance regimes. The effects of altered grazing and fire regimes are likely confounded by complex interactions with climatic factors in systems significantly altered from their original physiognomy.  相似文献   

7.
The exclusion of regular fire and the introduction of livestock grazing have altered native grassland composition on Victoria's volcanic plains, commonly resulting in spear‐grass and wallaby‐grass pastures replacing Kangaroo Grass grasslands. The effect of reintroducing fire to these pastures is currently unknown, although it may be an important part of restoring this ecosystem. We measured the changes in basal area of the dominant grasses in a mixed Spear‐grass/Wallaby‐grass pastures after a summer wildfire, which we assume burnt a relatively homogenous grass sward. We found a 90–95% reduction in the basal area of live spear‐grass tussocks in burnt plots compared with unburned controls, due to the mortality of tussocks. This suggests that caution and structured experimentation should be applied when using fire to manage spear‐grass‐dominated grasslands.  相似文献   

8.
Aim Biological invasions facilitate ecosystem transformation by altering the structure and function, diversity, dominance and disturbance regimes. A classic case is the grass–fire cycle in which grass invasion increases the frequency, scale and/or intensity of wildfires and promotes the continued invasion of invasive grasses. Despite wide acceptance of the grass–fire cycle, questions linger about the relative roles that interspecific plant competition and fire play in ecosystem transformations. Location Sonoran Desert Arizona Upland of the Santa Catalina Mountains, Arizona, USA. Methods We measured species cover, density and saguaro (Carnegiea gigantea) size structure along gradients of Pennisetum ciliare invasion at 10 unburned/ungrazed P. ciliare patches. Regression models quantified differences in diversity, cover and density with respect to P. ciliare cover, and residence time and a Fisher’s exact test detected demographic changes in saguaro populations. Because P. ciliare may have initially invaded locations that were both more invasible and less diverse, we ran analyses with and without the plots in which initial infestations were located. Results Richness and diversity decreased with P. ciliare cover as did cover and density of most dominant species. Richness and diversity declined with increasing time since invasion, suggesting an ongoing transformation. The proportion of old‐to‐young Carnegiea gigantea was significantly lower in plots with dominant P. ciliare cover. Main conclusions Rich desert scrub (15–25 species per plot) was transformed into depauperate grassland (2–5 species per plot) within 20 years following P. ciliare invasion without changes to the fire regime. While the onset of a grass–fire cycle may drive ecosystem change in the later stages and larger scales of grass invasions of arid lands, competition by P. ciliare can drive small‐scale transformations earlier in the invasion. Linking competition‐induced transformation rates with spatially explicit models of spread may be necessary for predicting landscape‐level impacts on ecosystem processes in advance of a grass–fire cycle.  相似文献   

9.
Australian savannas lack native megaherbivores (>500 kg body mass), but since the commencement of European colonisation in the 19th century bovine livestock, such as cattle (Bos sp.) and water buffalo (Bubalus bubalis), have established large feral populations that continue to geographically expand. The largest extant native herbivores are marsupials in the family Macropodidae (henceforth 'macropods': common wallaroo, Osphranter robustus [c. 40 kg]; antilopine wallaroo, O. antilopinus [c. 35 kg] and agile wallaby, Notamacropus agilis [c. 20 kg]). These species occur at low densities, with evidence that some species are in decline, the cause of which remains uncertain. We tested the hypothesis that bovines and macropods compete for nutritious forage in the North Kimberley, Western Australia by using carbon isotope analysis of feral cattle and native macropod dung (as a proxy for the relative contribution of C4 grass to their diet) and nutrient analysis of standing herbaceous biomass. Grass consumption varied between macropod species and was highest in larger wallaroo species and lowest in the smaller agile wallaby reflecting its broader diet. Grass consumption by wallaroos was maximal on fertile sites. The relative abundance of grass in the diet of cattle was lowest in the middle of the dry season with an interaction between fire and substrate fertility where grass consumption was highest on fertile sites, particularly those recently burnt. Grass consumption by cattle and wallaroos was negatively correlated with fibre content of live biomass, which was lowest on fertile and burnt sites. Introduced bovines shift their diets to non‐grasses as quality of herbaceous biomass declines with increasing fibre content, and by contrast, the largest macropod herbivores do not have this dietary flexibility. We conclude a plausible mechanism for the success of bovines and the decline of large macropods in Australian savannas is competition for nutritious grass that is abundant immediately after fire.  相似文献   

10.
Non‐native plants are invading terrestrial ecosystems across the globe, yet little is known about how invasions impact carbon (C) cycling or how these impacts will be influenced by climate change. We quantified the effect of a non‐native C4 grass invasion on soil C pools and fluxes in a Hawaiian tropical dry forest over 2 years in which annual precipitation was average (Year 1) and ~60% higher than average (Year 2). Work was conducted in a series of forested plots where the grass understory was completely removed (removal plots) or left intact (grass plots) for 3 years before experiment initiation. We hypothesized that grass invasion would: (i) not change total soil C pools, (ii) increase the flux of C into and out of soils, and (iii) increase the sensitivity of soil C flux to variability in precipitation. In grass plots, grasses accounted for 25–34% of litter layer C and ~70% of fine root C. However, no differences were observed between treatments in the size of any soil C pools. Moreover, grass‐derived C constituted a negligible fraction of the large mineral soil C pool (< 3%) despite being present in the system for ≥50 years. Tree litterfall was ~45% lower in grass plots, but grass‐derived litterfall more than compensated for this reduction in both years. Annual cumulative soil‐surface CO2 efflux (Rsoil) was ~40% higher in grass plots in both years, and increased in both treatments by ~36% in the wetter Year 2. Despite minimal grass‐derived mineral soil C, > 75% of Rsoil in grass plots was of C4 (i.e. grass) origin. These results demonstrate that grass invasion in forest ecosystems can increase the flux of C into and out of soils without changing total C pools, at least over the short term and as long as the native tree canopy remains intact, and that invasion‐mediated changes in belowground C cycling are sensitive to precipitation.  相似文献   

11.
Exotic Grass Competition in Suppressing Native Shrubland Re-establishment   总被引:4,自引:0,他引:4  
Disturbance of coastal sage scrub in southern California has led to extensive displacement of native shrubs by exotic annual grasses. The initial conversion from shrubland to exotic grassland is typically associated with disturbance caused by intense grazing, high fire frequency, or mechanical vegetation removal. While native shrubs have been shown to recolonize annual grasslands under some conditions, other annual grasslands are persistent and show no evidence of shrub recolonization. This study examined the mechanisms by which annual grasses may exclude native shrubs and persist after release from disturbance. Grass density was manipulated in experimental plots to achieve a series of prescribed densities. Artemisia californica, a dominant native shrub, was seeded or planted into the plots and responses to the grass density treatments were measured over two growing seasons. A. californica germination, first season growth, and survival were all negatively related to the density of neighboring annual grasses. The most probable mechanism underlying the reduction of first season growth and survival was depletion of soil water by the grasses. The effects of the grasses on A. californica were no longer significant in the second season. The results of this study indicate that Mediterranean annual grasses reduce recruitment and can persist by inhibiting post-disturbance establishment of A. californica from seed. Although succession alone may not return disturbed annual grasslands to their former shrubland composition, the results suggest that restoration can be achieved by using container plantings or grass removal followed by seeding.  相似文献   

12.
Termites have a large influence on ecosystem functioning. Understanding what drives termite activity patterns improves understanding of nutrient cycling, productivity, and heterogeneity in savannas. We present a mechanistic framework that relates the interactive effects of rainfall, grassland structure, large herbivore presence, and soil factors to termite activity. To test this framework, we used grass litterbags to monitor termite activity at ten sites across Hluhluwe‐iMfolozi Park, South Africa. We assessed the effects of abiotic and biotic factors on termite activity at two scales: the large (landscape) scale, variation in bait removal among 300 m2 plots that were distributed across the park and at the small (within‐plot) scale (1–300 m2). Half of our sites were located inside large herbivore exclosures to test for the effect of mammalian herbivore presence. At the landscape scale, termite grass removal declined towards higher rainfall and in the presence of mammalian herbivores. Removal did not depend on soil factors. At the small scale, removal declined with increasing grass height, particularly in the 1 m surrounding the bait bag. Resource quality did not affect bait removal. We suggest that competition for forage drives the negative effect of mammalian herbivores on termites, whereas lower bait removal in taller swards may be due to direct negative effects from rainfall, fire and/or competition with free‐living microbes. Ultimately, we suggest that the impact of termites on nutrient cycling is most pronounced when abiotic (rainfall) and biotic conditions (mammalian herbivory) limit grass removal by fire and decomposition by free‐living microbes.  相似文献   

13.
Summary Methods for floodplain revegetation using native species were investigated, following clearance of the invasive shrub Mimosa pigra L. (Mimosaceae) in the Northern Territory of Australia. Prolific revegetation occurred naturally and several species were identified that have potential for revegetation at sites where natural regeneration is poor, namely: Spiny Mud Grass, Pseudoraphis spinescens, Awnless Barnyard Grass, Echinochloa colona, and an unidentified Panicum species. However, it may still be desirable to plant native perennial grasses, of which most species did not establish naturally. Stolons of the native floodplain grass Hymenachne acutigluma (Steud) Gilliland (Poaceae) established well when planted in wet mud and shallow water during the early dry season, as seasonal floodwaters subsided. Similar plantings during the early wet season were less successful. Sowing seed of several floodplain grasses and Eliocharis dulcis was unsuccessful in both seasons. Planting stolons of H. acutigluma as seasonal floodwaters subside may provide a reliable alternative to exotic floodplain grasses, Para Grass (Urochloa mutica), and Amity Aleman Grass (Echinochloa polystachya), which are also currently propagated vegetatively in Australia. However, planting H. acutigluma stolons had no tangible benefits in terms of suppressing Mimosa establishment, which was low in all treatments. Revegetation should not be considered an alternative to the diligent control of Mimosa seedlings; regenerating following control of Mimosa thickets.  相似文献   

14.
The impact that an exotic species can have on the composition of the community it enters is a function of its abundance, its particular species traits and characteristics of the recipient community. In this study we examined species composition in 14 sites burned in fires fuelled by non‐indigenous C4 grasses in Hawaii Volcanoes National Park, Hawaii. We considered fire intensity, time since fire, climatic zone of site, unburned grass cover, unburned native cover and identity of the most abundant exotic grass in the adjacent unburned site as potential predictor variables of the impact of fire upon native species. We found that climatic zone was the single best variable for explaining variation in native cover among burned sites and between burned and unburned pairs. Fire in the eastern coastal lowlands had a very small effect on native plant cover and often stimulated native species regeneration, whereas fire in the seasonal submontane zone consistently caused a decline in native species cover and almost no species were fire tolerant. The dominant shrub, Styphelia tameiameia, in particular was fire intolerant. The number of years since fire, fire intensity and native cover in reference sites were not significantly correlated with native species cover in burned sites. The particular species of grass that carried the fire did however, have a significant effect on native species recovery. Where the African grass Melinis minutiflora was a dominant or codominant species, fire impacts were more severe than where it was absent regardless of climate zone. Overall, the impacts of exotic grass‐fuelled fires on native species composition and cover in seasonally dry Hawaiian ecosystems was context specific. This specificity is best explained by differences between the climatic zones in which fire occurred. Elevation was the main physical variable that differed among the climatic zones and it alone could explain a large percentage of the variation in native cover among sites. Rainfall, by contrast, did not vary systematically with elevation. Elevation is associated with differences in composition of the native species assemblages. In the coastal lowlands, the native grass Heteropogon contortus, was largely responsible for positive changes in native cover after fire although other native species also increased. Like the exotic grasses, this species is a perennial C4 grass. It is lacking in the submontane zone and there are no comparable native species there and almost all native species in the submontane zone were reduced by fire. The lack of fire tolerant species in the submontane zone thus clearly contributes to the devastating impact of fire upon native cover there.  相似文献   

15.
Prescribed burning is an important tool for managing and restoring prairies and other ecosystems. One effect of fire is plant litter removal, which can influence seedling establishment. Four experimental treatments (burned, clipped and raked to remove litter, burned with litter reapplied, and unmanipulated) were applied to 2 × 2.5–m plots in three western Oregon, United States, upland prairies to determine how burning affects seedling establishment. Seeds of common exotic and native prairie species were sowed into the experimental plots after treatments. Seedlings were censused the following spring. The experiment was repeated on each of the three sites, representing three common types of prairie vegetation: an Annual Exotic Grass site, a Perennial Exotic Grass site, and a Native Bunchgrass site. In both the Annual Exotic Grass and the Perennial Exotic Grass sites, burning significantly improved native, but not exotic, seedling establishment over those on unburned plots. Litter removal was a significant component of this burn effect, particularly on the Perennial Exotic Grass site. In these winter‐moist systems, the net effect of litter is to inhibit seedling establishment. Burning treatments on the Native Bunchgrass site significantly increased seedling establishment only of short‐lived exotic species. These results suggest that in prairie ecosystems similar to the Annual and Perennial Exotic Grass sites, prescribed burning followed by sowing native seeds can be an effective restoration technique. Burning alone or sowing alone would be counter‐productive, in the first case because increased establishment would come from exotic species and in the second case because establishment rates are low in unburned plots.  相似文献   

16.
Question. Can strategic burning, targeting differing ecological characteristics of native and exotic species, facilitate restoration of native understorey in weed‐invaded temperate grassy eucalypt woodlands? Location. Gippsland Plains, eastern Victoria, Australia. Methods. In a replicated, 5‐year experimental trial, the effects of repeated spring or autumn burning were evaluated for native and exotic plants in a representative, degraded Eucalyptus tereticornis grassy woodland. Treatments aimed to reduce seed banks and modify establishment conditions of exotic annual grasses, and to exhaust vegetative reserves of exotic perennial grasses. Treatments were applied to three grassland patch types, dominated by the native grass Austrodanthonia caespitosa, ubiquitous exotic annuals, or the common exotic perennial grass Paspalum dilatatum. Results. The dominant native grass Austrodanthonia caespitosa and native forbs were resilient to repeated fires, and target exotic annuals and perennials were suppressed differentially by autumn and spring fires. Exotic annuals were also suppressed by drought, reducing the overall treatment effects but indicating important opportunities for restoration. The initially sparse exotic geophyte Romulea rosea increased in cover with fire and the impact of this species on native forbs requires further investigation. There was minimal increase in diversity of subsidiary natives with fire, probably owing to lack of propagules. Conclusions. While fire is often considered to increase ecosystem invasibility, our study showed that strategic use of fire, informed by the relative responses of available native and exotic taxa, is potentially an effective step towards restoration of weed‐invaded temperate eucalypt woodlands.  相似文献   

17.
M. Vil  F. Lloret 《植被学杂志》2000,11(4):597-606
Abstract. In Mediterranean shrublands, post‐fire accumulation of above‐ground biomass of resprouters is faster than that of seeders. This suggests that resprouters may have a competitive advantage. To test this hypothesis, we used a removal experiment to study the effect of the presence of the dominant tussock‐grass Ampelodesmos mauritanica on the resprouting shrubs Erica multiflora and Globularia alypum and on the seeders Rosmarinus officinalis and Pinus halepensis three and four years after a wildfire. Water potential of target plants was also measured to see if Ampelodesmos removal increased water availability. Ampelodesmos marginally reduced growth of all target species but did not influence survival or water potential of any target species. Our results suggest that the effect of climatically influenced water stress was stronger than the effect of Ampelodesmos neighbours. Plant‐plant interactions in this Mediterranean community are weak after fire and the magnitude of the Ampelodesmos effect does not differ between seeders and resprouters.  相似文献   

18.
Abstract

Phytoremediation of heavy metal contaminated soils represents a promising technique and salt-tolerant hyperaccumulators for multiple metals are the need of time. Therefore, phytoremediation potential of four salt-tolerant grass species [Dhab (Desmostachya bipinnata), Kallar (Leptochloa fusca), Para (Brachiaria mutica) and Sporobolus (Sporobolus arabicus Boiss)] was evaluated for cadmium (Cd) and lead (Pb) in a hydroponic study. The plants were harvested after a growth period of 3 months in a nutrient solution containing different levels of Cd (0, 5, and 25?mg?L?1) and Pb (0, 25, and 125?mg L?1). Results indicated that Dhab grass showed the highest root and shoot dry matter yield followed by Para, Kallar and Sporobolus grass irrespective of metal or its level under which they were grown. All the grass species showed considerable Cd-accumulating potential with an accumulation of >150?mg kg?1of shoot dry matter at a higher level of Cd-contamination (25?mg?L?1). While in case of shoot Pb-accumulation only Para grass performed well and accumulated Pb >1000?mg kg?1 of shoot dry matter at the higher level of Pb-contamination (125?mg?L?1). Moreover, Para and Dhab grasses performed better for shoot Cd-uptake, while only Para grass showed promising shoot Pb uptake potential. In conclusion, these grass species could be penitentially used for phytoremediation of salt-affected Cd and Pb contaminated soils.  相似文献   

19.
Grass populations in tropical savannas are highly resilient in relation to different fire regimes, but the mechanisms conferring such resilience have been poorly studied. Here we examine one such mechanism, high adult survival during fire, for three perennial grass species in an Australian savanna: Eriachne triseta Nees ex Steud, Eriachne avenacea R.Br and Chrysopogon latifolius S.T.Blake. The study examined survivorship after 3 years, at plots subject to experimental fire regimes (experiencing 0, 1, 2 or 3 fires over the study period) at the Territory Wildlife Park near Darwin in the Northern Territory, Australia. Mean survivorship was 79.9%, 64.3% and 62.0% for E. avenacea, E. triseta and C. latifolius respectively. For the two species of Eriachne, mean survivorship was highest (E. avenacea, 94.6%; E. triseta, 77.1%) in unburnt plots, whereas survivorship of C. latifolius was highest (71.7%) under highest fire frequency. However, variation in survivorship among fire regime treatments was not statistically significant for any of the study species. This negligible difference in survivorship among regimes points to fire tolerance (sprouting ability) as an important mechanism contributing to the resilience and persistence of perennial grasses in these savannas.  相似文献   

20.
Non‐native, invasive grasses have been linked to altered grass‐fire cycles worldwide. Although a few studies have quantified resulting changes in fire activity at local scales, and many have speculated about larger scales, regional alterations to fire regimes remain poorly documented. We assessed the influence of large‐scale Bromus tectorum (hereafter cheatgrass) invasion on fire size, duration, spread rate, and interannual variability in comparison to other prominent land cover classes across the Great Basin, USA. We compared regional land cover maps to burned area measured using the Moderate Resolution Imaging Spectroradiometer (MODIS) for 2000–2009 and to fire extents recorded by the USGS registry of fires from 1980 to 2009. Cheatgrass dominates at least 6% of the central Great Basin (650 000 km2). MODIS records show that 13% of these cheatgrass‐dominated lands burned, resulting in a fire return interval of 78 years for any given location within cheatgrass. This proportion was more than double the amount burned across all other vegetation types (range: 0.5–6% burned). During the 1990s, this difference was even more extreme, with cheatgrass burning nearly four times more frequently than any native vegetation type (16% of cheatgrass burned compared to 1–5% of native vegetation). Cheatgrass was also disproportionately represented in the largest fires, comprising 24% of the land area of the 50 largest fires recorded by MODIS during the 2000s. Furthermore, multi‐date fires that burned across multiple vegetation types were significantly more likely to have started in cheatgrass. Finally, cheatgrass fires showed a strong interannual response to wet years, a trend only weakly observed in native vegetation types. These results demonstrate that cheatgrass invasion has substantially altered the regional fire regime. Although this result has been suspected by managers for decades, this study is the first to document recent cheatgrass‐driven fire regimes at a regional scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号