首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used a long‐term fire experiment in south‐east Queensland, Australia, to determine the effects of frequent prescribed burning and fire exclusion on understorey vegetation (<7.5 m) richness and density in Eucalyptus pilularis forest. Our study provided a point in time assessment of the standing vegetation and soil‐stored vegetation at two experimental sites with treatments of biennial burning, quadrennial burning since 1971–1972 and no burning since 1969. Vegetation composition, density and richness of certain plant groups in the standing and soil‐stored vegetation were influenced by fire treatments. The density of resprouting plants <3 m in height was higher in the biennially burnt treatment than in the unburnt treatment, but resprouters 3–7.5 m in height were absent from the biennial burning treatment. Obligate seeder richness and density in the standing vegetation was not significantly influenced by the fire treatments, but richness of this plant group in the seed bank was higher in the quadrennial treatment at one site and in the long unburnt treatment at the other site. Long unburnt treatments had an understorey of rainforest species, while biennial burning at one site and quadrennial burning at the other site were associated with greater standing grass density relative to the unburnt treatment. This difference in vegetation composition due to fire regime potentially influences the flammability of the standing understorey vegetation. Significant interactions between fire regime and site, apparent in the standing and soil‐stored vegetation, demonstrate the high degree of natural variability in vegetation community responses to fire regimes.  相似文献   

2.
In order to reveal the role of soil seed banks in vegetation recovery after fire in savanna, the spatial distribution and temporal changes in the soil seed banks of regularly burning savanna in Gambella, western Ethiopia, was studied. The seedling emergence technique was employed to determine the species composition and density of the soil seed bank of six sites ranging in fire severity from wooded grassland with frequent fires over woodland with intermediate fire frequency to forest with absence of fires. Species composition and density of seeds in the soil were compared between seasons, depths and sites with different types of standing vegetation. Fourteen plant species were recorded in the soil seed bank from the grassland and woodland sites and 6 from the dry forests; 60 % of the taxa in the soil seed bank were annuals and 40 % were perennials. The soil seed banks were largely dominated by graminoids and 48–97 % of the soil seed bank in the grasslands and woodlands was of a single grass species, Hyparrhenia confinis , which was absent from the dry forests. The soil seed pools ranged from less than 100 to 4700 seeds per m2 depending upon the season. The soil seed bank of graminoids was nearly empty after the onset of the rainy season whereas seeds of broadleaved herbs and woody species able to germinate were still found after this time. Floristic composition, representation of life forms and density of seeds in soil did not correspond closely with that of the standing vegetation, but within graminoids there was a strong similarity between the soil seed bank and the standing vegetation. The current fire regime of Ethiopian savanna woodlands appears to maintain the dominance of graminoids over broadleaved herbs and woody plants both as seeds in the soil and in the standing vegetation.  相似文献   

3.
Questions: How do species composition and abundance of soil seed bank and standing vegetation vary over the course of a post‐fire succession in northern heathlands? What is the role of seed banks – do they act as a refuge for early successional species or can they simply be seen as a spillover from the extant local vegetation? Location: Coastal Calluna heathlands, Western Norway. Methods: We analysed vegetation and seed bank along a 24‐year post‐fire chronosequence. Patterns in community composition, similarity and abundances were tested using multivariate analyses, Sørensen's index of similarity, vegetation cover (%) and seedling counts. Results: The total diversity of vegetation and seed bank were 60 and 54 vascular plant taxa, respectively, with 39 shared species, resulting in 68% similarity overall. Over 24 years, the heathland community progressed from open newly burned ground via species rich graminoid‐ and herb‐dominated vegetation to mature Calluna heath. Post‐fire succession was not reflected in the seed bank. The 10 most abundant species constituted 98% of the germinated seeds. The most abundant were Calluna vulgaris (49%; 12 018 seeds m?2) and Erica tetralix (34%; 8 414 seeds m?2). Calluna showed significantly higher germination the first 2 years following fire. Conclusions: Vegetation species richness, ranging from 23 to 46 species yr?1, showed a unimodal pattern over the post‐fire succession. In contrast, the seed bank species richness, ranging from 21 to 31 species yr?1, showed no trend. This suggests that the seed bank act as a refuge; providing a constant source of recruits for species that colonise newly burned areas. The traditional management regime has not depleted or destroyed the seed banks and continued management is needed to ensure sustainability of northern heathlands.  相似文献   

4.

Questions

The degree to which renosterveld shrublands are fire‐dependent is currently unclear. To address this issue, the following questions were asked: (1) does smoke stimulate germination of soil‐stored seeds in renosterveld; (2) does recently‐burned renosterveld display changed composition and higher diversity than unburned vegetation; and (3) how do the species compositions of renosterveld soil seed banks and standing vegetation compare?

Location

Swartland, Cape Floristic Region, South Africa.

Methods

Soil seed bank samples from a north‐ and south‐facing slope were smoke‐treated and germinated to test for smoke‐stimulated germination. Burned standing vegetation was surveyed 16 months post‐fire, as was unburned vegetation on the same slopes. Seed bank species richness and density were compared between smoke‐treated and untreated samples within and between slopes. Burned and unburned standing vegetation were compared within and between slopes in terms of species richness, abundance and aerial cover. Compositional similarity of the seed banks and standing vegetation was assessed.

Results

Seed banks were dominated by annuals and graminoids. Smoke treatment had no effect, except for driving significantly higher species richness and seedling density in south‐facing slope perennial shrubs. Species richness and seedling density were significantly higher in seed banks on the south‐facing slope compared to the north‐facing slope. Burned standing vegetation exhibited significantly higher diversity than unburned vegetation. Annuals and graminoids displayed significantly higher species richness and aerial cover in burned renosterveld. The north‐facing slope contained less than half the number of species/m2 compared to the south‐facing slope. The seed banks and standing vegetation showed low to intermediate similarity (Sørensen = 31%–53%), but grouped close together on an NMDS plot, suggesting intermediate similarity overall.

Conclusions

Elevated germination of perennial shrubs in smoke‐treated seed bank samples and increased diversity of post‐fire standing vegetation suggest the renosterveld in this study shows elements of a fire‐driven system. Certain species only recruited in burned sites, suggesting fire‐stimulated germination. Aspect had a major influence on plant community composition, with the mesic south‐facing slope being more diverse than the xeric north‐facing slope. The similarity between the seed banks and standing vegetation was higher than previously shown for renosterveld, and appears to be higher than for fynbos.  相似文献   

5.
Restoration practices incorporating timber harvest (e.g. to remove undesirable species or reduce tree densities) may generate unmerchantable wood debris that is piled and burned for fuel reduction. Slash pile burns are common in longleaf pine ecosystem restoration that involves hardwood removal before reintroduction of frequent prescribed fire. In this context, long‐lasting effects of slash pile burns may complicate restoration outcomes due to unintended alterations to vegetation, soils, and the soil seed bank. In this study, our objectives were to (1) examine alterations to the soil seed bank, soil physical and chemical characteristics, and initial vegetation recolonization following burn and (2) determine the rate of return of soil and vegetation characteristics to pre‐burn conditions. We found that burning of slash piles (composed of scores of whole trees) results in elevated nutrient levels and significant impacts on vegetation and the soil seed bank, which remain evident for at least 6 years following burn. In this ecosystem, formerly weakly acidic soils become neutral to basic and levels of P remain significantly higher. Following an initial decrease after burn, total soil N increases with time since burn. These changes suggest that not only does pile burning create a fire scar initially devoid of biota, but it also produces an altered soil chemical environment, with possible consequences for long‐term ecosystem restoration efforts in landscapes including numerous fire scars. To facilitate restoration trajectories, further adaptive management to incorporate native plant propagules or suppress encroaching hardwoods within fire scars may be warranted in fire‐dependent ecosystems.  相似文献   

6.
Abstract Soil was investigated in a Cumberland Plain Woodland community to determine the presence of a soil seed‐bank and whether species richness and abundance of plants germinating from it were affected by heating such as that experienced in a fire. Soil samples were taken from the Holsworthy Military Area, in the south‐eastern region of the Sydney Basin, New South Wales, Australia, and one of four treatments was applied; soil was heated to 80°C, 40°C, unheated or unheated with litter not removed. Sixty‐eight species, representing 26 families including 11 exotic and 57 native species germinated from the soil. Herbs and grasses dominated and were in similar proportions to those surveyed in the above‐ground vegetation, suggesting that the soil seed‐bank reflected the current structure of the vegetation, although species composition differed. Species responded differently to heating. The seeds of some species germinated when heated at a higher temperature (80°C), particularly those from the family Fabaceae, whereas other species were more common in unheated or lightly heated samples (40°C). This suggests that fire is likely to change the species composition of the above‐ground vegetation and indicates that management must ensure that species that do not germinate when heated are maintained, as well as those species that germinate following heating. A large proportion of soil seed‐bank species showed low germination rates in the trials, and 112 above‐ground species did not germinate in the soil samples. We do not understand whether species of these two sets do not produce a soil‐stored seed‐bank or whether the seed‐bank has been depleted by past practices at Holsworthy. Further research is needed.  相似文献   

7.
Questions: The relationship between fire, aridity and seed banks is poorly understood in plant community ecology. We tested whether there was a close correspondence between the seed bank and standing vegetation composition with time‐since‐fire in a desert. We also examined whether longer‐lived species showed seed limitation relative to more ephemeral species, as this could influence grass‐woody ratios in a major biome. Location: Dune hummock grasslands/shrublands of central Australia. Methods: The effects of time‐since‐fire on floristic and functional group composition were examined by comparing plots unburned since 1984 against plots that had been burned in 2002. Three methods were used to quantify seed abundances: a germination trial using heat and smoke application, a flotation method, and a sieving method. Results: Seed bank densities were very low (<3000 m?2). Species similarity between the seed bank and standing vegetation was high at sites recently burned (0.86) and low in sites long‐since burned (0.52). The relative abundance of ephemeral species in the seed bank peaked in recently burned plots, but the relative abundance of seeds of woody species did not match the pattern of abundance in the standing vegetation. Remarkably, the dominant perennial grasses and woody species were either absent from the seed bank or present at extremely low abundances. Discussion: Differences in the relative abundance of ephemeral species between standing vegetation and seed bank relate to the post‐fire succession process. The small soil pool of seed from woody species may be explained by allocation to belowground carbohydrate storage over seed production. Field observations suggest, however, that production of strongly dormant seed can be prolific and that high levels of seed predation make this system strongly seed‐limited. The discovery of this seed bank syndrome indicates that shifts in grass‐woody ratios can be driven by the juxtaposition of unpredictable seed rain and fire events in these desert dunes. However, estimates of grass‐woody ratios due to changing fire regimes will be difficult to predict.  相似文献   

8.
Soil seed bank is an important source of resilience of plant communities who suffered disturbances. We analysed the effect of an intense fire in the soil seed bank of a semi‐arid shrubland of Córdoba Argentina. We asked if the fire affected seed abundance, floristic and functional composition of the soil seed bank at two different layers (0–5 cm and 5–10 cm), and if fire could compromise the role of the soil seed bank as a source of resilience for the vegetation. We collected soil samples from a burned site and from a control site that had not burned. Samples were installed in a greenhouse under controlled conditions. During 12 months, we recorded all germinated seedlings. We compare soil seed bank with pre‐fire vegetation in terms of floristic and functional composition. The high‐intensity fire deeply affected the abundance of seeds in the soil, but it did not affect its floristic or functional composition. Floristic and functional composition of soil seed banks – at burned and unburned sites‐ differed markedly from that of the pre‐fire vegetation, although a previous study at the same site indicated high resilience after fire of this plant community. Our results indicate that resilience of this system is not strongly dependent on direct germination from seeds buried in the soil. Other sources of resilience, like colonization from neighbouring vegetation patches and resprouting from underground organs appear to gain relevance after an intense fire.  相似文献   

9.
Abstract. Most species-rich grasslands dominated by Themeda triandra in southeastern Australia have been ungrazed and frequently burnt for decades. The seedling emergence technique was used to determine the size and taxonomic composition of the soil seed bank of five grasslands that had different fire histories (i.e. burnt at 1 yr, 3 yr and > 10 yr intervals) and this was compared to the standing vegetation at each site. A nested sampling design (subplot, plot, site) was used to determine the effect of spatial scale on the patterns observed in both the vegetation and the seed bank. Temporal variation in the seed bank was assessed by repeated soil sampling over a two year period. 61 native and 30 exotic species were recorded in the vegetation. Richness varied more between sites than within sites. Sites were therefore internally homogeneous for species richness. However, no correlation between burning frequency and richness was found. DCA ordination separated the sites into distinct groups, but sites with similar fire history did not necessarily group closely. 60 taxa germinated from the soil seed bank, comprising 32 native and 28 exotic species; 11 species, mostly therophytes, were restricted to the seed bank. The richness of the seed bank was significantly lower than the vegetation at all spatial scales. No correlation between seed bank richness and fire history was found. The seed bank of species-rich grasslands is dominated by a limited number of widespread, highly clumped, annual, native and exotic monocots. Most native hemicryptophytes, and perennials in general, were represented in the soil by a transient seed bank. Only 12 % of study species, all therophytes, were considered to form large, persistent seed banks, the size of which was greater in unburnt grasslands at all times of the year. The distinct floristic patterns observed in the vegetation are less clearly represented in the seed bank. The seed bank represents a floristically distinct (and less variable) component of the vegetation when compared to the standing flora. The size of the long-term soil seed bank suggests that it has little functional importance for many native species and probably contributes little to seedling regeneration processes following disturbance. Altering established fire regimes is likely to only change the composition and small-scale richness of the existing site vegetation and will not re-integrate species previously lost from the vegetation due to past management. It is suggested that the maintenance of vegetation remnants and processes that encompass a range of long-term burning histories will be necessary if the flora is to be conserved in situ. Restoration of degraded grasslands cannot rely on the soil seed bank but rather, will be dependent on the reintroduction of propagules.  相似文献   

10.
Aims Chalk grasslands are subject to vegetation dynamics that range from species-rich open grasslands to tall and encroached grasslands, and woods and forests. In grasslands, earthworms impact plant communities and ecosystem functioning through the modification of soil physical, chemical and microbiological properties, but also through their selective ingestion and vertical transportation of seeds from the soil seed bank. Laboratory experiments showed that seed–earthworm interactions are species specific, but little is known on the impact of seed–earthworm interactions in the field. The overall aim of this study was to better understand seed–earthworm interactions and their impact on the plant community. First we analyzed the composition of seedlings emerging from casts after earthworm ingestion. Then we compared seedling composition in casts to the plant composition of emerging seedlings from the soil and of the aboveground vegetation along four stages of the secondary succession of chalk grasslands.Methods Four stages of the secondary succession of a chalk grassland—from open sward to woods—were sampled in Upper Normandy, France, in February 2010. Within each successional stage (×3 replicates), we sampled the standing vegetation, soil seed bank at three soil depths (0–2, 2–5 and 5–10cm) and earthworm surface casts along transects. Soil and cast samples were water sieved before samples were spread onto trays and placed into a greenhouse. Emerging seedlings were counted and identified. Effect of successional stage and origin of samples on mean and variability of abundance and species richness of seedlings emerging from casts and soil seed banks were analyzed. Plant compositions were compared between all sample types. We used generalized mixed-effect models and a distance-based redundancy multivariate analysis.Important findings Seedling abundance was always higher in earthworm casts than in the soil seed bank and increased up to 5-fold, 4-fold and 3.5-fold, respectively, in the tall grassland, woods and encroached grassland compared to the soil surface layer. Species richness was also higher in earthworm casts than in the soil seed bank in all successional stages, with a 4-fold increase in the encroached grassland. The plant composition of the standing vegetation was more similar to that of seedlings from casts than to that of seedlings from the soil seed bank. Seedlings diversity emerging from casts in the tall and encroached grasslands tended toward the diversity found in woods. Our results indicate that earthworms may promote the emergence of seedlings. We also suggest that the loss of some plant species in the seed bank and the tall grass vegetation in intermediary successional stages modify the local conditions and prevent the further establishment of early-successional plant species.  相似文献   

11.
Fire severity affects vegetation and seed bank in a wetland   总被引:3,自引:0,他引:3  
Questions: How does the severity of prescribed fires affect vegetation and seed bank in a wetland? Location: A fire‐prone reed swamp in northern Japan (250 ha, 40°49′N, 141°22′E, <10 m a.s.l.). Methods: Vegetation, biomass and seed bank were monitored for the 2 yr after annual prescribed fires were discontinued. Plant communities were placed into three categories based on fire severity: high (H) – fire consumed litter completely; moderate (M) – fire removed standing litter but left wet fallen litter; and low (L) – fire incompletely removed standing litter and did not remove fallen litter. Soil samples were collected in autumn 2007 and early summer 2008, and germinable seed bank was investigated by greenhouse trials. Results: High fire severity increased diversity in the next growing season by the establishment of short herbs in the standing vegetation. The biomass of forbs and grasses was greater in H where Phragmites australis biomass was reduced. The density of seed bank was >30 000 seeds m?2 throughout all the treatments. Perennial plants were dominant in the vegetation, while annuals, biennials and rushes were dominant in the seed bank. Small seeds were more abundant in the soil than in the litter. Qualitative and quantitative similarities between seed bank and the vegetation were low, and tended to be higher in H. Conclusions: Fire contributed to the development of diverse standing vegetation via the positive effects on seed bank dynamics, and can be considered a tool to maintain species‐rich marshes.  相似文献   

12.

Questions

Are factors influencing plant diversity in a fire‐prone Mediterranean ecosystem of southeast Australia scale‐dependent?

Location

Heathy woodland, Otways region, Victoria, southeast Australia

Methods

We measured patterns of above‐ground and soil seed bank vegetation diversity and associated them with climatic, biotic, edaphic, topographic, spatial and disturbance factors at multiple scales (macro to micro) using linear mixed effect and generalized dissimilarity modelling.

Results

At the macro‐scale, we found species richness above‐ground best described by climatic factors and in the soil seed bank by disturbance factors. At the micro‐scale we found species richness best described above‐ground and in the soil seed bank by disturbance factors, in particular time‐since‐last‐fire. We found variance in macro‐scale β‐diversity (species turnover) best explained above‐ground by climatic and disturbance factors and in the soil seed bank by climatic and biotic factors.

Conclusions

Regional climatic gradients interact with edaphic factors and fire disturbance history at small spatial scales to influence species richness and turnover in the studied ecosystem. Current fire management regimes need to incorporate key climatic–disturbance–diversity interactions to maintain floristic diversity in the studied system.
  相似文献   

13.
Seed dispersal is a key process in plant community dynamics, and soil seed banks represent seed dispersal in time rather than in space. Despite their potential importance, seed bank dynamics in the Arctic are poorly understood. We investigated soil seed banks and corresponding plant community composition in three contrasting vegetation types in West Greenland, viz. dwarf shrub heaths, herb slopes and fell‐fields. Through germination testing, 31 species were documented in soil seed banks. All of these were herbaceous, while no dwarf‐shrub species, which represents the dominating growth form in the above‐ground vegetation, were emerging from the seed bank. Consequently, across vegetation types, the lowest similarity between seed bank and above‐ground vegetation was found in dwarf shrub heath. Nine plant species were exclusively found in seed bank, all of which were non‐clonal forbs. Seed bank size (total number of seeds) and species richness seemed to increase with the level of natural disturbance. Additionally, we examined the effect of different experimental light and temperature conditions on the quantity and diversity of germinating seeds. The difference in diversity in vegetation and seed bank at the species level will impact population dynamics, regeneration of vegetation after disturbances and its potential to respond to climate change.  相似文献   

14.
Abstract Analysis was performed of the richness and abundance of woody species, forbs, and annual grasses in the easily germinating soil seed bank (henceforth seed bank) in a mediterranean shrubland of central Chile. The effects of successional development after fire and by microsite type (underneath or outside shrubs) on the density of seeds in the soil, and the relationship of species abundance in the seed bank with its abundance in the above‐ground vegetation was examined. A total of 64 plant species were recorded in the seed bank, of which 44 were annual or biannual. Eight species were woody and another eight were perennial herbs. Four could not be identified to species level. The highest richness of established herbaceous species was recorded in late spring, with 31 species. The regeneration of the herbaceous vegetation was driven by the annual production of seeds and by a reserve of short‐lived propagules in the soil. Density of all germinating seeds was significantly higher during late spring and late summer. Density of grass seeds was greater during late spring, while that of all other species was greater during late summer. Annual grass seeds accumulated in higher proportion at exposed microsites rather than under woody canopy, and in young (< 5 years old) and intermediate‐age patches (10–20 years old) rather than in mature vegetation (30–50 years old). The abundance of established woody and herb species was uncorrelated with that of the seed bank.  相似文献   

15.
Questions: The assembly of arable weed communities is the result of local filtering by agricultural management and crop competition. Therefore, soil seed banks can reflect the effects of long‐term cumulative field management and crop sequences on weed communities. Moreover, soil seed banks provide strong estimates of future weed problems but also of potential arable plant diversity and associated ecological functions. For this, we evaluated the effects of different long‐term farming systems under the same crop rotation sequence on the abundance, diversity and community assembly of weed seed bank, as well as on the functional diversity and composition. Location: DOK (biodynamic [D], bioorganic [O], conventional [K]) long‐term trial, Therwil, Switzerland. Methods: The effects of long‐term contrasted farming systems (i.e., biodynamic, organic, conventional, mineral and unfertilised systems) and last crop sown (i.e., wheat and maize) were evaluated on different indicators of species and functional diversity and composition of the weed soil seed bank. Results: The results showed significant influences of 40 years of contrasted farming systems on the diversity and composition of the seed bank, with higher diversities being found in unfertilised and organic farming systems, but also higher abundances than those found under conventional systems. Organic farming also allowed higher functional richness, dispersion and redundancy. Different farming systems triggered shifts in species and functional assemblies. Conclusions: The results highlight the importance of organic management for the maintenance of a diverse arable plant community and its functions. However, such results emphasise the need for appropriate yearly management to reduce the abundance of settled weediness and prevent affecting crop production. The farm management filtered community composition based on functional traits. Although the soil seed bank buffers the long‐term farming and crop sequence, the last crop sown and, thus, the yearly management were important determinants of seed bank composition.  相似文献   

16.
Questions: 1. Do different management types (i.e. hay meadow, silage meadow, meadow‐pasture, pasture) have different impact on the size and composition of the seed bank of mesic grassland (Arrhenatheretalia)? 2. How strong is the effect of management on the seed bank in relation to above‐ground vegetation, edaphic factors and land‐use history? 3. Are there differences in C‐S‐R plant strategy types and seed longevity under different management regimes? Location: Lahn‐Dill Highlands in central‐western Germany. Methods: Above‐ground vegetation and the soil seed bank of 63 plots (at 21 sites) in mesic grasslands were studied. Differences between management types in quantitative seed bank traits and functional characteristics were tested by ANOVA. The impact of management, above‐ground vegetation, site conditions and land‐use history on seed bank composition were analysed by partial CCA. Results: Management had no significant impact on species richness and density of the seed bank but significantly influenced their floristic composition and functional characteristics. CCA revealed that even after adjustment for soil chemical parameters and above‐ground vegetation management still had significant impact on seed bank composition. ANOVA revealed that silage meadows contained higher proportions of R‐strategy compared to hay meadows. In contrast, in hay meadows and meadow‐pastures proportions of S‐strategy were higher than in silage meadows. Conclusions: The type of grassland management has little impact on quantitative seed bank traits. Management types with a high degree of disturbance lead to an increase of species following a ruderal strategy in the seed bank. Irrespective of management type only a limited proportion of characteristic grassland species is likely to re‐establish from the seed bank after disappearance from above‐ground vegetation.  相似文献   

17.
The species composition in the soil seed bank of degraded hillslopes in southern Wello, Ethiopia, was assessed using the seedling emergence method and compared with that of the standing vegetation. Surface soils were sampled at 0‐to 5‐cm depth from 49 plots of four physiognomic vegetation classes (hereafter vegetation classes): forests, shrublands, grasslands, and degraded sites. Soils were spread on sterile sand in a glasshouse and watered. Emerging seedlings were recorded for five months until no new seedlings emerged. A total of 3969 seedlings belonging to 71 species and 30 families germinated. The species composition of the seed bank was dominated by 53 herb species (75%) compared to 2 tree species which accounted for only 3 percent of the total number of species. Seedling density differed significantly among vegetation classes and ranged from 391 to 7807 seeds/m2. Mean species richness also differed significantly among the vegetation classes. Forty‐two species were found to be common to the seed banks and the standing vegetation; however, correspondence between species numbers and composition of the seed banks and the standing vegetation was poor. Although most of the species that germinated in the seed banks were herbs and grasses, they can develop a vegetative cover and contribute to reduction of soil erosion. Regeneration of the tree species (some of which have seed viability up to four years) however, requires both time and the presence of mature individuals. Together with hillside closure and soil conservation measures (e.g., terracing), planting of native woody seedlings might help to expedite rehabilitation of degraded hillslopes devoid of trees and shrubs.  相似文献   

18.
Question: How does the relationship between the viable soil seed bank species composition and the above‐ground vegetation in northern Arizona Pinus ponderosa forests differ under varying historical land use disturbances (low, intermediate, high)? Is above‐ground vegetation correlated to the viable soil seed bank immediately following soil disturbance from restoration thinning treatments? Location: Northern Arizona, USA. Methods: Soil seed bank samples were taken along replicated transects and collected with a 5‐cm diameter bulk density hammer. Samples included a 5 ‐cm diameter O‐horizon sample (at varying depths) plus the underlying mineral soil to a depth of 5 cm. The seedling emergent method was used to quantify seed bank species composition and density. The herbaceous and shrub plant community was quantified along the same transects using the point intercept method. Results: Early‐successional or ruderal species were common in the soil seed bank at all three disturbance sites. Non‐native species, notably Verbascum thapsus, were more numerous (up to 940 seeds/m2) under high disturbance with overgrazing and logging, and less common or absent under low disturbance. Most viable seeds were found in the O‐horizon and the upper 5 cm of mineral soil; there was little correlation between species in the soil seed bank and the above‐ground vegetation. Conclusions: We recommend that restoration plans be geared toward minimizing activities, such as severe soil disturbance, that may promote the spread of non‐native invasive species, and that manual seeding be explored as an option to restore plant species diversity and abundance.  相似文献   

19.
A model was developed to assess how the seed rain and fire regime affect seed bank dynamics and seedling establishment of three native shrub species (Acanthostyles buniifolius, Baccharis pingraea and Baccharis dracunculifolia) with different regeneration strategies, in temperate South American savanna. Seed bank and seed rain were quantified for each species under different fire regimes, and their relative roles in regeneration were evaluated. All species had short-term persistent seed banks and high annual variability in seed production. A high proportion of seeds deposited in the seed rain produced seedlings after fire; few entered the soil seed bank. Fire killed a high proportion of the seeds in the soil seed bank. Seedlings derived from the seed rain had a higher probability of surviving for 2 years than seedlings emerging from the soil seed bank. In the absence of fire, establishment depended on germination both from the seed rain and the soil seed bank, whereas with annual fire, establishment was primarily dependent on germination of seeds arriving in the annual seed rain, regardless of species’ regeneration strategies. These results help to explain changes in the vegetation of South American temperate savannas as a result of changes in fire regime and grazing management during the last 50 years. By revealing the crucial roles of the soil seed bank and seed rain in regeneration, this study provides vital information for the development of appropriate management practices to control populations of shrub species with different regeneration strategies in South American temperate savannas.  相似文献   

20.
Holmes  Patricia M.  Cowling  R. M. 《Plant Ecology》1997,133(1):107-122
We investigated vegetation-seed bank relationships at three fynbos sites on the Cape Peninsula, South Africa, and the impacts to these sites of invasion by the alien tree Acacia saligna. Soil-stored seed banks in uninvaded fynbos were of a similar density to those previously measured in fynbos (ca. 1100–1500 seeds m-2) and were dominated by mostly short-lived species. Lack of similarity between mature vegetation and seed banks, suggests that seed banks are poor predictors of mature vegetation composition and structure in fynbos. This lack of correspondence was attributed to the ephemerals (present only in the soil seed bank) and the dominance of serotinous (aerial seed bank) and sprouting (soil seed bank low to absent) species, in mature vegetation. Long-lived seeders were among the 10 most abundant species in the seed banks at all sites and at two sites shrub species contributed more to seed bank richness than any other growth form. Soil-stored seed banks, therefore, boost species richness and diversity both in early post-fire and later seral stages.There was a decline in fynbos species richness, diversity and abundance both in the standing vegetation and seed banks with increasing duration of invasion by the alien tree, Acacia saligna. However, the rate of decline was higher for the vegetation than the seed banks, suggesting that many fynbos species have long-term persistent seed banks. At two sites, there was no obvious shift in community composition associated with Acacia invasion: invaded sites were depauperate versions of the uninvaded site. However, at a third site, the vegetation composition shifted towards a community dominated by bird-dispersed thicket species and its seed bank shifted towards a community dominated by wind-dispersed perennials. Community composition of the soil seed banks under dense, recent Acacia was very similar to that of the corresponding uninvaded fynbos at all sites, indicating that there is good potential to return to species-rich fynbos vegetation after removal of the alien Acacia. Most seed bank species persisted in the soil seed bank of the long-invaded fynbos at low frequency and density, indicating high seed longevity in many species. We suggest that either a thick Acacia litter layer or a deep (>5 cm) burial moderated the fire and ambient temperature effects, preventing these seeds from germinating after fire and thus preventing loss from the seed bank.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号