首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Miquel, J., Torres, J., Foronda, P. and Feliu, C. 2010. Spermiogenesis and spermatozoon ultrastructure of the davaineid cestode Raillietina micracantha. — Acta Zoologica (Stockholm) 91 : 212–221 The spermiogenesis and the ultrastructural organization of the spermatozoon of the davaineid cestode Raillietina micracantha are described by means of transmission electron microscopy. Spermiogenesis begins with the formation of a zone of differentiation containing two centrioles. One of the centrioles develops a free flagellum that later fuses with a cytoplasmic extension. The nucleus migrates along the spermatid body after the proximodistal fusion of the flagellum and the cytoplasmic extension. During advanced stages of spermiogenesis a periaxonemal sheath and intracytoplasmic walls appear in the spermatids. Spermiogenesis finishes with the appearance of two helicoidal crested bodies at the base of spermatids and, finally, the narrowing of the ring of arched membranes detaches the fully formed spermatozoon. The mature spermatozoon of R. micracantha is a long and filiform cell, tapered at both ends, which lacks mitochondria. It exhibits two crested bodies of different lengths, one axoneme of the 9 + ‘1’ pattern of trepaxonematan Platyhelminthes, twisted cortical microtubules, a periaxonemal sheath, intracytoplasmic walls, granules of glycogen and a spiralled nucleus. The anterior extremity of the spermatozoon is characterized by the presence of an electron‐dense apical cone and two spiralled crested bodies while the posterior extremity of the male gamete exhibits only the axoneme and an electron‐dense posterior tip.  相似文献   

2.
Spermiogenesis in M. herpestisbegins with the formation of a differentiation zone which contains two centrioles associated with an electron–dense, finely granular material. This granular material very quickly becomes striated, a median cytoplasmic extension forms, one of the centrioles becomes laterally oriented in a cytoplasmic bud and the other gives rise to a flagellum. After the migration of the nucleus, a helicoidal crested–like body forms, then the old spermatid separates from the residual cytoplasm. The mature M. herpestisspermatozoon exhibits an apical cone of electron–dense material, a crested–like body and cortical microtubules which are electron–dense centred and spiralized except at their posterior extremity where they are parallel to the spermatozoon axis. The axoneme is of the 9 + ‘1’ pattern. It reaches the posterior extremity of the gamete where the cytoplasm is very electron–dense. The presence of centrioles flanked by ‘striated roots’ has never, to our knowledge, been reported in a platyhelminth. Likewise, a nucleus with an annular cross–section and unevenly distributed electron–dense peri–axonemal material has never been described in a cestod.  相似文献   

3.
Spermiogenesis in the proteocephalidean cestode Barsonella lafoni de Chambrier et al., 2009 shows typical characteristics of the type I spermiogenesis. These include the formation of distal cytoplasmic protrusions forming the differentiation zones, lined by cortical microtubules and containing two centrioles. An electron-dense material is present in the apical region of the differentiation zone during the early stages of spermiogenesis. Each centriole is associated to a striated rootlet, being separated by an intercentriolar body. Two free and unequal flagella originate from the centrioles and develop on the lateral sides of the differentiation zone. A median cytoplasmic process is formed between the flagella. Later these flagella rotate, become parallel to the median cytoplasmic process and finally fuse proximodistally with the latter. It is interesting to note that both flagellar growth and rotation are asynchronous. Later, the nucleus enlarges and penetrates into the spermatid body. Finally, the ring of arching membranes is strangled and the young spermatozoon is detached from the residual cytoplasm.The mature spermatozoon presents two axonemes of the 9 + ‘1’ trepaxonematan pattern, crested body, parallel nucleus and cortical microtubules, and glycogen granules. Thus, it corresponds to the type II spermatozoon, described in almost all Proteocephalidea. The anterior extremity of the gamete is characterized by the presence of an apical cone surrounded by the lateral projections of the crested body. An arc formed by some thick and parallel cortical microtubules appears at the level of the centriole. They surround the centriole and later the first axoneme. This arc of electron-dense microtubules disorganizes when the second axoneme appears, and then two parallel rows of thin cortical microtubules are observed. The posterior extremity of the male gamete exhibits some cortical microtubules. This type of posterior extremity has never been described in proteocephalidean cestodes. The ultrastructural features of the spermatozoon/spermiogenesis of the Proteocephalidea species are analyzed and compared.  相似文献   

4.
The ultrastructure of spermiogenesis and the mature spermatozoon in Catenotaenia pusilla (Cestoda: Catenotaeniidae) is described. Spermiogenesis is characterized by the presence of a single axoneme which grows on the outside of a cytoplasmic extension at an angle of 45 degrees. Flagellar rotation and proximodistal fusion are produced in this process. The centrioles lack striated roots and an intercentriolar body. In the mature spermatozoon four different regions are described. The anterior extremity is capped by an apical cone and presents two helical crest-like bodies of unequal length. The axoneme, of the 9 + '1' pattern of the Trepaxonemata, presents a periaxonemal sheath. The cortical microtubules form a spiral pattern at an angle of about 40 degrees to the hypothetical spermatozoon axis. The nucleus is kidney- to horseshoe-shaped in cross section. Granules and proteinaceus walls are not observed in the spermatozoon of C. pusilla.  相似文献   

5.
Yoneva, A., Georgieva, K., Mizinska, Y., Nikolov, P. N., Georgiev, B. B. and Stoitsova, S. R. 2010. Ultrastructure of spermiogenesis and mature spermatozoon of Anonchotaenia globata (von Linstow, 1879) (Cestoda, Cyclophyllidea, Paruterinidae). — Acta Zoologica (Stockholm) 91 : 184–192 The ultrastructure of spermiogenesis and of the spermatozoon of a species of the family Paruterinidae is described for the first time. The spermiogenesis of Anonchotaenia globata starts with the formation of a differentiation zone with two centrioles associated with thin striated roots. One of the centrioles gives rise to a free flagellum followed by a slight flagellar rotation and a proximodistal fusion of the flagellum with the cytoplasmic protrusion. This pattern corresponds to Type III spermiogenesis in cestodes. The spermatozoon consists of five distinct regions. The anterior extremity possesses an apical cone and a single helically coiled crested body. The cortical microtubules are spirally arranged. The axoneme is surrounded by a periaxonemal sheath and a thin layer of cytoplasm filled with electron‐dense granules in Regions I–V. The periaxonemal sheath is connected with the peripheral microtubules by transverse intracytoplasmic walls in Regions III and IV. The nucleus is spirally coiled around the axoneme. Anonchotaenia globata differs from Dilepididae (where paruterinids have previously been classified) in the type of spermiogenesis, the lack of glycogen inclusions and the presence of intracytoplasmic walls. The pattern of spermiogenesis is similar to that in Metadilepididae and Taeniidae, which are considered phylogenetically close to Paruterinidae.  相似文献   

6.
The mature spermatozoon of Anomotaenia quelea exhibits an apical cone of electron-dense material and two helicoidal crest-like bodies. The apical cone near its base is surrounded by a lucent cytoplasm and a spiraled layer of cortical microtubules. The crest-like bodies are of different lengths, spiraled and make an angle of 30–40° to the hypothetical spermatozoon axis. The axoneme is of the 9 + ‘1’ trepaxonematan pattern and is surrounded by a periaxonemal sheath of electron-dense material. The cytoplasm contains in regions III and IV numerous electron-dense granules situated between the periaxonemal sheath and the cortical microtubules. The posterior extremity of the spermatozoon of A. quelea exhibits a nucleus and a disorganized axoneme and cortical microtubules. This type of posterior extremity of the mature spermatozoon has never been described previously in a Dilepididae. Similarly, two crest-like bodies have not been observed before in a dilepidid cestode.  相似文献   

7.
《Zoologischer Anzeiger》2014,253(2):119-125
The mature spermatozoon of Anomotaenia quelea exhibits an apical cone of electron-dense material and two helicoidal crest-like bodies. The apical cone near its base is surrounded by a lucent cytoplasm and a spiraled layer of cortical microtubules. The crest-like bodies are of different lengths, spiraled and make an angle of 30–40° to the hypothetical spermatozoon axis. The axoneme is of the 9 + ‘1’ trepaxonematan pattern and is surrounded by a periaxonemal sheath of electron-dense material. The cytoplasm contains in regions III and IV numerous electron-dense granules situated between the periaxonemal sheath and the cortical microtubules. The posterior extremity of the spermatozoon of A. quelea exhibits a nucleus and a disorganized axoneme and cortical microtubules. This type of posterior extremity of the mature spermatozoon has never been described previously in a Dilepididae. Similarly, two crest-like bodies have not been observed before in a dilepidid cestode.  相似文献   

8.
Spermiogenesis in Mesostoma viaregginum begins with the formation of a zone of differentiation containing striated rootlets, two centrioles, and an intercentriolar body in-between. These centrioles generate two parallel free-flagella with the 9+“1” pattern of the Trepaxonemata growing out in opposite directions. Spermatid differentiation is characterised by a 90° latero-ventral rotation of flagella and a subsequent disto-proximal centriolar rotation, with a distal cytoplasmic projection. The former rotation involves the compression of a row of cortical microtubules and allows recognising a flagellar side and an aflagellar side in the late spermatid and in the mature spermatozoon. At the end of the differentiation, centrioles and microtubules lie parallel to the spermatid axis. The disto-proximal centriolar rotation is proposed as a synapomorphy for the Rhabdocoela. The modifications of the intercentriolar body during spermiogenesis and the migration of the nucleus and the centrioles towards the cytoplasmic distal projection are also described. The mature spermatozoon of M. viaregginum is filiform and tapered at both ends and presents many features found in the Rhabdocoela gametes. The nucleus disappears before the flagellar insertion and a density gradient of mitochondria is observed along the sperm axis. The anterior end of the spermatozoon of M. viaregginum is characterised by a tapering capped by a membrane expansion. This study has enabled us to describe precisely the orientation of spermatozoa in the Rhabdocoela in general: the centriolar extremity is proposed as the anterior one for the Rhabdocoela.  相似文献   

9.
The Avitellina centripunctataspermatozoon is filiform, tapered at both ends and lacks mitochondria. The anterior extremity exhibits an apical cone and a crested–like body 150–200 nm thick. The axoneme is surrounded by a fine layer of lucent cytoplasm and a sheath of electron–dense material. The cytoplasm is slightly electron–dense at the anterior tip of the apical cone and in region IV of the spermatozoon. Over the rest of the gamete it is subdivided into numerous electron–lucent compartments by irregularly spaced walls. The nucleus is electron–dense. It interposes itself between the cortical microtubules which are all electron–dense centred and spiralized along their whole length. An apical zone containing spiralized microtubules, cortical microtubules which are all electron–dense centred and stop before reaching the posterior extremity of the nucleus, as well as the subdivision into cavities by intracytoplasmic proteinaceous material, have never been described before in a cestod. Moreover, the crested–like body of Avitellina centripunctatais the thickest of those which have been described to date in the cestods.  相似文献   

10.
Spermiogenesis and spermatozoa were studied by transmission and scanning electron microscopy in Troglocaridicolasp., a scutariellid epizoic on a cavernicolous freshwater shrimp. Spermiogenesis involves elongation of the spermatid in which the nucleus elongates, but remains close to the common cytoplasmic mass. Flagella first grow in opposite direction and at a right angle to the cytoplasmic shaft, and centrioles show associate structures. Later, the two centrioles rotate and the flagella emerge parallel, but still perpendicular to the shaft. An apical process elongates at the extremity of the spermatid shaft. The spermatozoon shows active flagellar beating and undulations of the sperm body. The spermatozoon comprises an anterior ‘corkscrew’ region, the flagellar insertion region, a cytoplasmic region and a posterior nuclear region. The corkscrew contains an electron dense structure, not membrane-bound, originating from the apical process of the spermatid. The flagella show the 9+‘1’ pattern, usual in Platyhelminthes. The cytoplasmic and nuclear regions show a cortical row of about 50 twisted longitudinal microtubules surrounding a row of electron dense, and not membrane-bound, 25-nm granules. These granules are original structures and seem to be known only in a few Platyhelminthes species in which a non-flagellar movement of the spermatozoon occurs. Thus, it is hypothesised that the 25-nm granules play a role in cellular motility. Sperm ultrastructure in Troglocaridicolashows major differences to that in the temnocephalids. It is therefore concluded that the phylogenetic position of the scutariellids within the Temnocephalidea should be reinvestigated.  相似文献   

11.
Levron, C., Yoneva, A. and Kalbe, M. 2011. Spermatological characters in the diphyllobothriidean Schistocephalus solidus (Cestoda). —Acta Zoologica (Stockholm) 00 : 1–8. The spermiogenesis and the mature spermatozoon of Schistocephalus solidus (Cestoda: Diphyllobothriidea) are described using transmission electron microscopy. Spermiogenesis in S. solidus begins with the formation in the spermatid of a differentiation zone surrounded by cortical microtubules and delimited by arching membranes. This conical area presents two centrioles associated with striated rootlets and a median cytoplasmic extension between them. The centrioles are separated by an intercentriolar body composed of three electron‐dense plates dividing four electron‐lucent plates. The centrioles give rise to two flagella that undergo a rotation and later fuse proximodistally with the median cytoplasmic expansion. The presence of an electron‐dense material in the distal part of the differentiation zone is observed in the early stage of spermiogenesis. This pattern corresponds to Type I spermiogenesis according to the classification proposed by Bâ and Marchand (Mémoires du Muséum National d’Histoire Naturelle 1995; 166 : 87). The mature spermatozoon of S. solidus presents the Type I pattern defined by Levron et al. (Biological Reviews 2010; 85 : 523). It consists of five regions that exhibit two axonemes, parallel cortical microtubules, nucleus and electron‐dense zones. The anterior tip of the spermatozoon possesses only a few singlets. The axonemes are of a 9 + ’1’ trepaxonematan pattern and do not reach the posterior extremity of the mature spermatozoon.  相似文献   

12.
Electron microscopy of the testes of the free-living flatworm Mesocastrada fuhrmanni collected from temporary freshwater ponds shows stages of spermiogenesis that are like other species of the Typhloplanidae. Spermiogenesis in Mesocastrada fuhrmanni is characterized by the presence, in the spermatid, of a differentiation zone underlain by peripheral microtubules and centered on two centrioles with an intercentriolar body. Two flagella of the 9+“1” pattern of the Trepaxonemata grow out in opposite directions from the centrioles. The flagella undergo a latero-ventral rotation, and a subsequent disto-proximal rotation of centrioles occurs in the spermatid. The former rotation involves the compression and the detachment of a row of cortical microtubules, and allows us to recognize a ventral from a dorsal side. Two features are of special interest at the end of differentiation: peripheral cortical microtubules lie parallel to the sperm axis near the anterior tip, but microtubules become twisted (about 40° with reference to the gamete axis) near the posterior extremity; in the same way, the posterior tip of the nucleus is spiralled. As far as we know, these features are observed for the first time in the Typhloplanidae. The pattern of spermiogenesis and the ultrastructural organization of the spermatozoon are compared with the available data on Typhloplanoida and in particular, species of the Typhloplanidae family.  相似文献   

13.
Spermiogenesis in Robphildollfusium fractum begins with the formation of a differentiation zone containing: two centrioles, each bearing striated rootlets, nucleus, several mitochondria and an intercentriolar body constituted by seven electron-dense layers. The two centrioles originate two free flagella growing orthogonally to the median cytoplasmic process. Later, the free flagella rotate and undergo proximodistal fusion with the median cytoplasmic process. Nuclear and mitochondrial migrations occur before this proximodistal fusion. Finally, the young spermatozoon detaches from the residual cytoplasm after the constriction of the ring of arched membranes. The spermatozoon of R. fractum exhibits two axonemes of different length of the 9 + ‘1’ trepaxonematan pattern, nucleus, two mitochondria, two bundles of parallel cortical microtubules, external ornamentation of the plasma membrane, spine-like bodies and granules of glycogen. Additionally, a shorter axoneme, which does not reach the nuclear region, the presence of an electron-dense material in the anterior spermatozoon extremity and the morphologies of both spermatozoon extremities characterize the mature sperm of R. fractum.  相似文献   

14.
Spermiogenesis and the ultrastructural characters of the spermatozoon of Mesocestoides lineatus are described by means of transmission electron microscopy, including cytochemical analysis for glycogen. Materials were obtained from a golden hamster (Mesocricetus auratus) after experimental infection with tetrathyridia metacestodes obtained from naturally infected lizards (Anolis carolinensis) from Louisiana. Spermiogenesis in M. lineatus is characterized by the orthogonal growth of a free flagellum, a flagellar rotation, and a proximodistal fusion. The zone of differentiation contains 2 centrioles associated with striated rootlets and a reduced intercentriolar body. The mature spermatozoon of M. lineatus lacks a mitochondrion, and it is characterized by the presence of (1) a single, spiraled, crested body 150 nm thick; (2) a single axoneme of the 9+'1' pattern of trepaxonematan Platyhelminthes; (3) a parallel and reduced row of submembranous cortical microtubules; (4) a spiraled cordon of glycogen granules; and (5) a spiraled nucleus encircling the axoneme.  相似文献   

15.
Spermiogenesis of Corallobothrium solidum Fritsch 1886, has been investigated by transmission electron microscopy. The zone of differentiation contains the two centrioles, each with one thin root, being orientated in the same plane only when a single intercentriolar body (ICB) appears between them. A median cytoplasmic process (MCP) develops distally to the two flagella, which are of unequal length, get longer and rotate towards the MCP. The nucleus penetrates into the spermatid body after the fusion of both flagella with the MCP has started. Flagellar roots occur occasionally in some spermatids. New for the Eucestoda are the following findings: 1. cortical microtubules (CMs) are arranged in two short parallel rows in one‐axoneme region of some spermatids; 2. the crested body of spermatid consists either of electron‐dense tubular elements and interposes itself between CMs, or it is rather homogeneous and situated more peripherally above one continuous semicircle of CMs. The present results support previous data that the type of spermiogenesis in proteocephalideans resembles mostly that observed in tetraphyllideans (Onchobothriidae and Phyllobothriidae), thus supporting the view of a close phylogenetic relationship of tetraphyllidean and proteocephalidean cestodes.  相似文献   

16.
This paper describes the ultrastructure of the male gamete of Glossobothrium sp. (Bothriocephalidea: Triaenophoridae). The mature spermatozoon of Glossobothrium sp. is filiform and possesses two axonemes, a single helicoidal crested body, a parallel nucleus, parallel cortical microtubules and granules of glycogen. In Glossobothrium sp. we describe for first time a 200-250 nm thick crest-like body in the Bothriocephalidean. The anterior part of the spermatozoon exhibits a ring of 27 electron-dense cortical microtubules encircling the first axoneme. This structure persists until the appearance of the second axoneme. When the ring of electron-dense cortical microtubules disappears, the spermatozoon exhibits two bundles of thin cortical microtubules. The posterior part of the spermatozoon contains the posterior extremity of the second axoneme, the posterior extremity of the nucleus and few cortical microtubules. Soon nucleus disappears and the axoneme is disorganized. Thus the posterior extremity of the spermatozoon of Glossobothrium sp. exhibits only singlets produced by the disorganization of the doublets of the second axoneme and few cortical microtubules. This type of posterior extremity of the mature spermatozoon has never been described previously in the Triaenophoridae.  相似文献   

17.
Spermiogenesis of Bothriocephalus scorpii (Cestoda, Pseudophyllidea) includes an orthogonal development of two flagella, followed by a flagellar rotation and a proximo-distal fusion with the median cytoplasmic process. The fusion occurs at the level of four attachment zones. The presence of dense material in the apical region of the differentiation zone in the early stage of spermiogenesis appears to be a characteristic feature for the Pseudophyllidea. The mature spermatozoon possesses two axonemes of 9+"1" pattern of the Trepaxonemata, nucleus, cortical microtubules, electron-dense granules and crested body. The anterior part of the gamete exhibits a centriole surrounded by electron-dense tubular structures arranged as incomplete spiral. When the crested body disappears, the electron-dense tubular structures are arranged into a ring encircling the axoneme. The electron-dense tubular structures and their arrangement appear to be a specific feature for the clade "Bothriocephalidea". The organization of the posterior extremity of the gamete with the nucleus is described for the first time in the Pseudophyllidea.  相似文献   

18.
Using transmission electron microscopy, spermiogenesis and the spermatozoon ultrastructural organization are described in Ligula intestinalis (Linnaeus, 1758) (Diphyllobothriidea), a parasite of the great crested grebe Podiceps cristatus (Linnaeus, 1758). Spermiogenesis starts with the differentiation zone of 2 striated rootlets, 2 centrioles giving rise to 2 flagella, and an intercentriolar body. The latter is composed of 5 electron-dense layers separating 4 electron-lucent layers. In the early stages of spermiogenesis, an electron-dense material is present in the apical region of the differentiation zone. Later, the flagella undergo a rotation and fuse with the cytoplasmic extension in a proximo-distal process. The spermatozoon contains 2 axonemes with a 9 + "1" trepaxonematan pattern, the nucleus, the cortical microtubules, and an electron-dense zone. The spermatozoon anterior extremity in L. intestinalis is characterized by the absence of crested bodies and a ring of electron-dense cortical microtubules. Some characters of spermiogenesis and spermatozoon in L. intestinalis confirm the recent splitting of "Pseudophyllidea" into 2 new orders, i.e., Bothriocephalidea and Diphyllobothriidea. The process of spermiogenesis is similar in both orders for the "type I" of spermiogenesis and the presence of electron-dense material. However, the intercentriolar body is clearly more developed in the Diphyllobothriidea than in the Bothriocephalidea. Moreover, these 2 orders seem to differ in the presence or absence of a ring of electron-dense cortical microtubules in the anterior extremity of the spermatozoon.  相似文献   

19.
The mature spermatozoon of Bothriocotyle sp. is filiform and tapered at both extremities. It possesses 2 axonemes of unequal length, showing the 9 + "1" pattern of Trepaxonemata. The anterior extremity exhibits a crest-like body. Thereafter, the crest-like body disappears, and the first axoneme is surrounded by a ring of cortical microtubules (about 27 units) that persist until the appearance of the second axoneme. This ring of cortical microtubules is characteristic only for species of Bothriocephalidea and represents a very useful phylogenetic character. The spermatozoon cytoplasm is slightly electron-dense and contains numerous electron-dense granules of glycogen in several regions. The anterior and posterior extremities of the spermatozoon lack cortical microtubules. The posterior extremity of the spermatozoon of Bothriocotyle sp. possesses a nucleus and a disorganized axoneme, which also characterizes spermatozoa of the Echinophallidae studied to date.  相似文献   

20.
本项研究应用光学显微镜、扫描和透射电子显微镜,观察了扩张莫尼茨绦虫的精细胞分化、精子形成全过程及精子的精细结构。扩张莫尼茨绦虫的精细胞分化过程为:1)初级精原细胞主要发生于幼节的睾丸滤泡中;2)次级精原细胞发生不完全分裂形成16个细胞一簇的初级精母细胞群,以共同的中央细胞质相连;3)初级精母细胞的特征为细胞核中出现联会复合体结构;4)紧接着的第二次成熟分裂,产生64个由中央细胞质相连的细胞核较小的精细胞。精子形成始于精细胞中分化区的形成,成熟精子缺乏线粒体,具有质膜和冠状体、1—4个领域排布的质膜下皮层微管,细胞质中存在电子致密的颗粒状物质,具一个不规则形态的细胞核,具有“9 1”类型的轴丝构造,缺乏轴丝周围鞘。从精子的纵切面上可将精子区分为5个区段(Ⅰ一Ⅴ区)。在精子形成过程中,中心粒基部出现螺旋形小根结构在寄生虫中为首次报导;成熟精子具有游离鞭毛,在绦虫中为首次发现[动物学报49(3):370—379,2003]。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号