首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Increased settlement on bacterial biofilms has been demonstrated for a number of marine invertebrate larvae, but the nature of the cue(s) responsible is not well understood. We tested the hypothesis that the bay barnacle Balanus improvisus utilizes the bacterial signal molecules N‐acylhomoserine lactones (AHLs) as a cue for the selection of sites for permanent attachment. Single species biofilms of the AHL‐producing bacteria Vibrio anguillarum, Aeromonas hydrophila and Sulfitobacter sp. BR1 were attractive to settling cypris larvae of B. improvisus. However, when AHL production was inactivated, either by mutation of the AHL synthetic genes or by expression of an AHL‐degrading gene (aiiA), the ability of the bacteria to attract cyprids was abolished. In addition, cyprids actively explored biofilms of E. coli expressing the recombinant AHL synthase genes luxI from Vibrio fischeri (3‐oxo‐C6‐HSL), rhlI from Pseudomonas aeruginosa (C4‐HSL/C6‐HSL), vanI from V. anguillarum (3‐oxo‐C10‐HSL) and sulI from Sulfitobacter sp. BR1 (C4‐HSL, 3‐hydroxy‐C6‐HSL, C8‐HSL and 3‐hydroxy‐C10‐HSL), but not E. coli that did not produce AHLs. Finally, synthetic AHLs (C8‐HSL, 3‐oxo‐C10‐HSL and C12‐HSL) at concentrations similar to those found within natural biofilms (5 μm ) resulted in increased cyprid settlement. Thus, B. improvisus cypris exploration of and settlement on biofilms appears to be mediated by AHL‐signalling bacteria in the laboratory. This adds to our understanding of how quorum sensing inhibition may be used as for biofouling control. Nonetheless, the significance of our results for larvae settling naturally in the field, and the mechanisms that underlay the observed responses to AHLs, is as yet unknown.  相似文献   

3.
Bacteria from the genus Dickeya cause severe symptoms on numerous economically important plants. Dickeya solani is the Dickeya species most frequently found on infected potato plants in Europe. D. solani strains from different countries show high genetic homogeneity, but significant differences in their virulence level. Dickeya species possess two quorum sensing (QS) mechanisms: the Exp system based on classic N‐acyl‐homoserine lactone (AHL) signals and a specific system depending on the production and perception of a molecule of unknown structure, Virulence Factor Modulating (VFM). To study the interplay between these two QS systems, five D. solani strains exhibiting different virulence levels were selected. Mutants were constructed by inactivating genes coding for each QS system. Double mutants were obtained by simultaneous inactivation of genes coding for both QS systems. Most of the D. solani mutants showed an attenuation of chicory maceration and a decreased production of plant cell wall‐degrading enzymes (PCWDEs) and motility, but to different degrees depending on the strain. The VFM‐QS system seems to regulate virulence in both D. solani and Dickeya dadantii, but the AHL‐QS system has greater effects in D. solani than in D. dadantii. The inactivation of both QS systems in D. solani did not reveal any additive effect on the tested features. The inactivation of vfm genes generally has a more dominant effect relative to that of exp genes. Thus, VFM‐ and AHL‐QS systems do not work in synergy to modulate the production of diverse virulence factors and the ability to macerate plant tissue.  相似文献   

4.
Pseudomonas syringae pv. actinidiae (Psa) is an emerging phytopathogen causing bacterial canker disease in kiwifruit plants worldwide. Quorum sensing (QS) gene regulation plays important roles in many different bacterial plant pathogens. In this study we analyzed the presence and possible role of N-acyl homoserine lactone (AHL) quorum sensing in Psa. It was established that Psa does not produce AHLs and that a typical complete LuxI/R QS system is absent in Psa strains. Psa however possesses three putative luxR solos designated here as PsaR1, PsaR2 and PsaR3. PsaR2 belongs to the sub-family of LuxR solos present in many plant associated bacteria (PAB) that binds and responds to yet unknown plant signal molecules. PsaR1 and PsaR3 are highly similar to LuxRs which bind AHLs and are part of the canonical LuxI/R AHL QS systems. Mutation in all the three luxR solos of Psa showed reduction of in planta survival and also showed additive effect if more than one solo was inactivated in double mutants. Gene promoter analysis revealed that the three solos are not auto-regulated and investigated their possible role in several bacterial phenotypes.  相似文献   

5.
Psidium guajava L., which has been used traditionally as a medicinal plant, was explored for anti‐quorum sensing (QS) activity. The anti‐QS activity of the flavonoid (FL) fraction of P. guajava leaves was determined using a biosensor bioassay with Chromobacterium violaceum CV026. Detailed investigation of the effects of the FL‐fraction on QS‐regulated violacein production in C. violaceum ATCC12472 and pyocyanin production, proteolytic, elastolytic activities, swarming motility and biofilm formation in Pseudomonas aeruginosa PAO1 was performed using standard methods. Possible mechanisms of QS‐inhibition were studied by assessing violacein production in response to N‐acyl homoserine lactone (AHL) synthesis in the presence of the FL‐fraction in C. violaceum ATCC31532 and by evaluating the induction of violacein in the mutant C. violaceum CV026 by AHL extracted from the culture supernatants of C. violaceum 31532. Active compounds in the FL‐fraction were identified by liquid chromatography–mass spectrometry (LC–MS). Inhibition of violacein production by the FL‐fraction in a C. violaceum CV026 biosensor bioassay indicated possible anti‐QS activity. The FL‐fraction showed concentration‐dependent decreases in violacein production in C. violaceum 12472 and inhibited pyocyanin production, proteolytic and elastolytic activities, swarming motility and biofilm formation in P. aeruginosa PAO1. Interestingly, the FL‐fraction did not inhibit AHL synthesis; AHL extracted from cultures of C. violaceum 31532 grown in the presence of the FL‐fraction induced violacein in the mutant C. violaceum CV026. LC–MS analysis revealed the presence of quercetin and quercetin‐3‐O‐arabinoside in the FL‐fraction. Both quercetin and quercetin‐3‐O‐arabinoside inhibited violacein production in C. violaceum 12472, at 50 and 100 μg/mL, respectively. Results of this study provide scope for further research to exploit these active molecules as anti‐QS agents.  相似文献   

6.
Plant pathogenic bacteria utilize complex signalling systems to control the expression of virulence genes at the cellular level and within populations. Quorum sensing (QS), an important intercellular communication mechanism, is mediated by different types of small molecules, including N‐acyl homoserine lactones (AHLs), fatty acids and small proteins. AHL‐mediated signalling systems dependent on the LuxI and LuxR family proteins play critical roles in the virulence of a wide range of Gram‐negative plant pathogenic bacteria belonging to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. Xanthomonas spp. and Xylella fastidiosa, members of the Gammaproteobacteria, however, possess QS systems that are mediated by fatty acid‐type diffusible signal factors (DSFs). Recent studies have demonstrated that Ax21, a 194‐amino‐acid protein in Xanthomonas oryzae pv. oryzae, plays dual functions in activating a rice innate immune pathway through binding to the rice XA21 pattern recognition receptor and in regulating bacterial virulence and biofilm formation as a QS signal molecule. In xanthomonads, DSF‐mediated QS systems are connected with the signalling pathways mediated by cyclic diguanosine monophosphate (c‐di‐GMP), which functions as a second messenger for the control of virulence gene expression in these bacterial pathogens.  相似文献   

7.
8.
In Pseudomonas aeruginosa, a quorum sensing (QS) system regulates the expression of many virulence factors. N-acyl homoserine lactone (HSL) is the signal molecule of QS system. In order to find a novel HSL binder to interfere with QS signaling and to attenuate P. aeruginosa virulence, an amino lactam surrogate (ALS) of HSL was used as a target to screen HSL aptamers with the technique of systematic evolution of ligands by exponential enrichment (SELEX). Eight HSL aptamers with high affinities for 3O-C12-HSL (20 nM ≤ K d < 35 nM) or C4-HSL (25 nM < K d < 50 nM) were finally obtained. In vitro QS-inhibiting study of P. aeruginosa showed that HSL aptamers could inhibit virulence in a dose-dependent manner. ALSap-8 which bound C4-HSL primarily acted on the rhl system and inhibited the secretion of pyocyanin. ALSap-5 which bound 3O-C12-HSL not only showed strong inhibitory activity on biofilm formation as well as secretions of LasA protease and LasB elastase, but also reduced pyocyanin secretion. Since the las system is capable of activating the rhl system mildly, we speculated that ALSap-5 can simultaneously interfere with the las and rhl systems. High-affinity aptamers against HSL in this study are novel QS and virulence-inhibitors, and may have potential as drug candidates for the treatment of P. aeruginosa infection.  相似文献   

9.
QscR is a quorum‐sensing (QS) signal receptor that controls expression of virulence genes in the prevalent opportunistic pathogen, Pseudomonas aeruginosa. Unlike the previously reported LuxR‐type QS receptor proteins, that is, LasR and TraR, QscR can be obtained as an apo‐protein that can reversibly form an active complex in vitro with its cognate signal molecule, 3‐oxododecanoyl‐homoserine lactone (3OC12‐HSL), and subsequently bind to target promoter DNA sequences. To search for potential QS inhibitors, an in vitro gel retardation assay was developed using the purified QscR. Both the in vitro assay and the in vivo cell‐based assay using QscR‐overproducing recombinant strains were applied in the screening process. Furanones were chosen for testing the activity as QS inhibitors because they have been reported to strongly inhibit expression of QS‐related genes in Agrobacterium tumefaciens. Among more than a hundred furanones tested, three compounds showed strong and dose‐dependent inhibitory effects on QscR in both assays. One compound in particular, designated as F2, could completely inhibit the 3OC12‐HSL‐dependent QscR activity in vitro at a concentration of 50‐fold molar excess over 3OC12‐HSL. However, with the furanones F3 and F4, which are structurally similar to F2 but with a nitro group instead of the amine moiety, significantly decreased activities were observed. These results suggest that (i) the in vitro assay is a sensitive and reliable tool for screening QS inhibitors, and (ii) furanones are potentially important QS inhibitors for many LuxR‐type receptor proteins. Biotechnol. Bioeng. 2010; 106: 119–126. © 2010 Wiley Periodicals, Inc.  相似文献   

10.
11.
12.
13.
14.

Background  

Only a small number of Pseudomonas putida strains possess the typical N-acyl homoserine lactone quorum sensing system (AHL QS) that consists of a modular LuxR family protein and its cognate LuxI homolog that produces the AHL signal. Moreover, AHL QS systems in P. putida strains are diverse in the type of AHLs they produce and the phenotypes that they regulate.  相似文献   

15.
16.
Eukaryotes such as plants and the unicellular green alga Chlamydomonas reinhardtii P. A. Dang. produce and secrete compounds that mimic N‐acyl homoserine lactone (AHL) bacterial quorum‐sensing (QS) signals and alter QS‐regulated gene expression in the associated bacteria. Here, we show that the set of C. reinhardtii signal‐mimic compounds that activate the CepR AHL receptor of Burkholderia cepacia are susceptible to inactivation by AiiA, an AHL lactonase enzyme of Bacillus. Inactivation of these algal mimics by AiiA suggests that the CepR‐stimulatory class of mimics produced by C. reinhardtii may have a conserved lactone ring structure in common with AHL QS signals. To examine the role of AHL mimic compounds in the interactions of C. reinhardtii with bacteria, the aiiA gene codon optimized for Chlamydomonas was generated for the expression of AiiA as a chimeric fusion with cyan fluorescent protein (AimC). Culture filtrates of transgenic strains expressing the fusion protein AimC had significantly reduced levels of CepR signal‐mimic activities. When parental and transgenic algae were cultured with a natural pond water bacterial community, a morphologically distinct, AHL‐producing isolate of Aeromonas veronii was observed to colonize the transgenic algal cultures and form biofilms more readily than the parental algal cultures, indicating that secretion of the CepR signal mimics by the alga can significantly affect its interactions with bacteria it encounters in natural environments. The parental alga was also able to sequester and/or destroy AHLs in its growth media to further disrupt or manipulate bacterial QS.  相似文献   

17.
Gram-negative bacteria communicate with each other by producing and sensing diffusible signaling molecules. This mechanism is called quorum sensing (QS) and regulates many bacterial activities from gene expression to symbiotic/pathogenic interactions with hosts. Therefore, the elucidation and control of bacterial QS systems have been attracted increasing attention over the past two decades. The most common QS signals in Gram-negative bacteria are N-acyl homoserine lactones (AHLs). There are also bacteria that employ different QS systems, for example, the plant pathogen Ralstonia solanacearum utilizes 3-hydroxy fatty acid methyl esters as its QS signals. The QS system found in the endosymbiotic bacterium associated with the fungus Mortierella alpina, the development of an affinity pull-down method for AHL synthases, and the elucidation of a unique QS circuit in R. solanacearum are discussed herein.  相似文献   

18.
Many bacteria are now believed to produce small signal molecules in order to communicate in a process called quorum sensing (QS), which mediates cooperative traits and a co-ordinated behaviour. Pseudomonads have been extensively studied for their QS response highlighting that it plays a major role in determining their lifestyle. The main QS signal molecules produced by Pseudomonas belong to the family of N-acyl-homoserine lactones (AHLs); these are synthesized by a LuxI-family synthase and sensed by a LuxR-family regulator. Most often in Pseudomonas, repressor genes intergenically located between luxI and luxR form an integral part of QS system. Recent studies have highlighted an important role of these repressors (called RsaL and RsaM) in containing the QS response within cost-effective levels; this is central for pseudomonads as they have very versatile genomes allowing them to live in constantly changing and highly dynamic environments. This review focuses on the role played by RsaL and RsaM repressors and discusses the important implications of this control of the QS response.  相似文献   

19.
Aims: To investigate roles of quorum‐sensing (QS) system in Acinetobacter sp. strain DR1 and rifampicin‐resistant variant (hereinafter DR1R). Methods and Results: The DR1 strain generated three putative acyl homoserine lactones (AHLs), while the DR1R produced only one signal and QS signal production was abrogated in the aqsI (LuxI homolog) mutant. The hexadecane‐degradation and biofilm‐formation capabilities of DR1, DR1R, and aqsI mutants were compared, along with their proteomic data. Proteomics analysis revealed that the AHL lactonase responsible for degrading QS signal was highly upregulated in both DR1R and aqsI mutant, also showed that several proteins, including ppGpp synthase, histidine kinase sensors, might be under the control of QS signalling. Interestingly, biofilm‐formation and hexadecane‐biodegradation abilities were reduced more profoundly in the aqsI mutant. These altered phenotypes of the aqsI mutant were restored via the addition of free wild‐type cell supernatant and exogenous C12‐AHL. Conclusions: The QS system in strain DR1 contributes to hexadecane degradation and biofilm formation. Significance and Impact of the Study: This is the first report to demonstrate that a specific QS signal appears to be a critical factor for hexadecane degradation and biofilm formation in Acinetobacter sp. strain DR1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号