首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial symbiosis is a ubiquitous aspect of life and was a major element in the ability of insects to explore several adverse environments. To date, the study of symbiosis in insects has been impaired by the unculturability of most symbionts. However, some molecular methods represent powerful tools to help understand insect-microorganism associations and to disclose new symbiont-host systems. Beyond playing an essential role in nutrition and development of the insects, symbionts can produce bioactive compounds that protect the host against adverse environmental conditions, predators and/or direct competitors. Since the search for natural bioactive products and new enzymes is a developing area, understanding the diversity and nature of symbiont-host relationships paves the way for the exploitation of new resources in biotechnology. Furthermore, genetic transformation of the symbionts with genes that code for compounds that are toxic for pathogenic and phytopathogenic agents is also a promising area of application of the insect-symbiont relationships. The search for new bioactive compounds, the use of symbionts for pest and disease control and the molecular strategies applied for these purposes are issues of particular interest for innovative biotechnological applications and are addressed in the present review.  相似文献   

2.
MYCETOCYTE SYMBIOSIS IN INSECTS   总被引:17,自引:0,他引:17  
1. Non-pathogenic microorganisms, known as mycetocyte symbionts, are located in specialized 'mycetocyte' cells of many insects that feed on nutritionally unbalanced or poor diets. The insects include cockroaches, Cimicidae and Lygaeidae (Heteroptera), the Homoptera, Anoplura, the Diptera Pupiparia, some formicine ants and many beetles. 2. Most mycetocyte symbionts are prokaryotes and a great diversity of forms has been described. None has been cultured in vitro and their taxonomic position is obscure. Yeasts have been reported in Cerambycidae and Anobiidae (Coleoptera) and a few planthoppers. They are culturable and those in anobiids have been assigned to the genus Torulopsis. 3. The mycetocyte cells may be associated with the gut, lie free in the abdominal haemocoel or be embedded in the fat body of the insect. The mycetocytes are large polyploid cells which rarely divide and the symbionts are restricted to their cytoplasm. 4. The mycetocyte symbionts are transmitted maternally from one insect generation to the next. In many beetles (Anobiidae, Cerambycidae, Chrysomelidae and cleonine Curculionidae), the microoganisms are smeared onto the eggs and consumed by the hatching larvae. In other insects, they are transferred from mycetocytes to oocytes in the ovary, a process known as transovarial transmission. The details of transmission in the different insect groups vary with the age of the mother (adult, larva or embryo) at which symbiont transfer to the ovary is initiated; whether isolated symbionts or intact mycetocytes are transferred; and the site of entry of symbionts to the egg (anterior, posterior or apolar). 5. Within an individual insect, the biomass of symbionts varies in a regular fashion with age, weight and sex of the insect. Suppression of symbiont growth rate and lysis of 'excess' microorganisms may contribute to the regulation of symbionts (including freshly-isolated preparations of unculturable forms) are used to investigate interactions between the partners. However, some methods to obtain aposymbiotic insects (e.g. antibiotics and lysozyme) deleteriously affect certain insects and aposymbionts may differ from the symbiont-containing stocks from which they were derived. 7. The mycetocyte symbionts have been proposed to synthesize various nutrients required by the insect. The symbionts of beetles and haematophagous insects may provide B vitamins and those in cockroaches and the Homoptera essential amino acids. The role of symbionts in the sterol nutrition of insects is equivocal. 8. Mycetocyte symbionts may have evolved from gut symbionts or guest microorganisms. The association is monophyletic in cockroaches but polyphyletic in many groups, including the sucking lice, beetles and scale insects.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The triatomine vectors of Chagas disease are obligate haematophagous insects, feeding on vertebrate blood throughout their entire developmental cycle. As a result of obtaining their nutrition from a single food source, their diet is devoid of certain vitamins and nutrients. Consequently, these insects harbour populations of bacterial symbionts within their intestinal tract, which provide the required nutrients that are lacking from their diet. We have isolated and characterised symbiont cultures from various triatomine species and developed a method for genetically transforming them. We can then reintroduce them into their original host species, thereby producing stable paratransgenic insects in which we are able to express heterologous gene products. Using this methodology, we have generated paratransgenic Rhodnius prolixus that are refractory for infection with Trypanosoma cruzi. Two examples of potentially refractory genes are currently being expressed in paratransgenic insects. These include the insect immune peptide cecropin A and active single chain antibody fragments. We have also developed an approach that would allow introduction of genetically modified bacterial symbionts into natural populations of Chagas disease vectors. This approach utilises the coprophagic behaviour of these insects, which is the way in which the symbionts are transmitted among bug populations in nature. The production and ultimate release of transgenic or paratransgenic insects for public health applications is potentially very promising but also worthy of much careful consideration with respect to environmental, political, and human safety concerns.  相似文献   

4.
共生菌普遍存在于昆虫体内,它们能够为宿主昆虫提供生长发育所必需的氨基酸、固醇类等营养物质,还能提高昆虫适应高温、寄生虫、病毒等不利环境因素的能力,昆虫则为共生菌提供稳定的生存环境和营养物质,昆虫与共生菌相互依存。多数情况下,共生菌通过垂直传播在宿主代次间进行传播,即共生菌由母代传递给子代。结合最近几年相关研究,本文综述了不同昆虫共生菌的垂直传播模式。除极少数肠道共生菌通过污染卵壳被宿主幼虫取食得以垂直传播外,垂直传播的共生菌多为经卵传播。根据侵染时期的不同,共生菌经卵传播模式多数可分为以下4种:侵染宿主昆虫幼虫中的生殖干细胞、侵染宿主昆虫年轻雌成虫中的生殖干细胞、侵染宿主昆虫雌成虫中的成熟卵母细胞以及侵染宿主昆虫囊胚期胚胎。其中,有些共生菌是以共生菌菌胞整体侵染的方式进入到宿主卵巢。另外,少数肠道共生菌也通过卵巢进行垂直传播,此类共生菌先侵染卵巢侧输卵管并在侧输卵管聚集,待卵排放至侧输卵管时再进入到卵中。在文中,我们也探讨了昆虫共生菌垂直传播过程中的细胞机制和免疫机制,包括共生菌避开宿主免疫反应、共生菌通过内吞作用进入卵巢以及不同共生菌间的协同作用等。  相似文献   

5.
Rhabditid nematodes are invertebrates that introduce pathogenic bacteria to the insects and molluscs they parasitise. Marketed as biopesticides, they provide safe and effective alternatives to chemical pesticides in several important sectors of horticulture. In Great Britain, the introduction of non-indigenous species of nematodes is strictly controlled, as is the contained use and deliberate release of genetically modified nematodes and their bacterial symbionts. Currently, indigenous, unmodified nematodes do not have to be registered for use as biopesticides in the UK, but in some other European countries registration is mandatory. The European Commission is seeking to harmonize procedures for the authorization of plant protection products, including rhabditid nematodes, under the provisions of Council Directive 91/414/EEC.  相似文献   

6.
Molecular interactions between bacterial symbionts and their hosts   总被引:3,自引:0,他引:3  
Dale C  Moran NA 《Cell》2006,126(3):453-465
Symbiotic bacteria are important in animal hosts, but have been largely overlooked as they have proved difficult to culture in the laboratory. Approaches such as comparative genomics and real-time PCR have provided insights into the molecular mechanisms that underpin symbiont-host interactions. Studies on the heritable symbionts of insects have yielded valuable information about how bacteria infect host cells, avoid immune responses, and manipulate host physiology. Furthermore, some symbionts use many of the same mechanisms as pathogens to infect hosts and evade immune responses. Here we discuss what is currently known about the interactions between bacterial symbionts and their hosts.  相似文献   

7.
转基因植物环境监测进展   总被引:2,自引:1,他引:1  
刘标  韩娟  薛堃 《生态学报》2016,36(9):2490-2496
近20年来,转基因植物的商业化应用规模越来越大,而转基因生物安全问题依然是转基因植物产业进一步发展的最主要制约因素。转基因植物在商业化应用之前虽然预先进行了风险评估,但是,包括环境监测在内的风险管理措施是确保转基因植物安全应用的必要手段。在转基因作物大规模应用近20年之后,其在靶标生物抗性、对生物多样性的影响、基因漂移、在生态系统中的长期存留等方面产生的环境风险已经渐渐显现出来,表明风险评估无法为转基因植物应用提供足够的安全保障,还必须通过开展系统而长期的环境监测,明确转基因植物在生产应用后的实际环境影响。联合国环境规划署和欧盟等已经制定了转基因植物环境监测的法规和技术指南,一些国家实施了系统的转基因植物环境监测。对转基因植物所产生的环境风险以及环境监测应包括的内容进行了综述。  相似文献   

8.
Symbiotic interactions between insects and bacteria have long fascinated ecologists. Aphids have emerged as the model system on which to study the effect of endosymbiotic bacteria on their hosts. Aphid‐symbiont interactions are ecologically interesting as aphids host multiple secondary symbionts that can provide broad benefits, such as protection against heat stress or specialist natural enemies (parasitic wasps and entomopathogenic fungi). There are nine common aphid secondary symbionts and individual aphids host on average 1–2 symbionts. A cost‐benefit trade‐off for hosting symbionts is thought to explain why not all aphids host every possible symbiont in a population. Both positive and negative associations between various symbionts occur, and this could happen due to increased costs when cohosting certain combinations or as a consequence of competitive interactions between the symbionts within a host. In this issue of Molecular Ecology, Mathé‐Hubert, Kaech, Hertaeg, Jaenike, and Vorburger (2019) use data on the symbiont status of field‐collected aphids to inform a model on the evolution of symbiont co‐occurrence. They vary the effective female population size as well as the rate of horizontal and maternal transmission to infer the relative impact of symbiont‐symbiont interactions versus random drift. Additional data analysis revisits an association between two symbionts in a fruit fly species using a long‐term data set to highlight that such interactions are not limited to aphids.  相似文献   

9.
A current perspective on insect gene transformation   总被引:5,自引:0,他引:5  
The genetic transformation of non-drosophilid insects is now possible with several systems, with germ-line transformation reported in published and unpublished accounts for about 12 species using four different transposon vectors. For some of these species, transformation can now be considered routine. Other vector systems include viruses and bacterial symbionts that have demonstrated utility in species and applications requiring transient expression, and for some, the potential exists for genomic integration. Many of these findings are quite recent, presenting a dramatic turning point in our ability to study and manipulate agriculturally and medically important insects. This review discusses these findings from the perspective of all the contributions that has made this technology a reality, the research that has yet to be done for its safe and efficient use in a broader range of species, and an overview of the available methodology to effectively utilize these systems.  相似文献   

10.
Bacterial symbionts are widespread in insects and other animals. Most of them are predominantly vertically transmitted, along with their hosts' genes, and thus extend the heritable genetic variation present in one species. These passengers have a variety of repercussions on the host's phenotypes: besides the cost imposed on the host for maintaining the symbiont population, they can provide fitness advantages to the host or manipulate the host's reproduction. We argue that insect symbioses are ideal model systems for community genetics. First, bacterial symbionts directly or indirectly affect the interactions with other species within a community. Examples include their involvement in modifying the use of host plants by phytophagous insects, in providing resistance to natural enemies, but also in reducing the global genetic diversity or gene flow between populations within some species. Second, one emerging picture in insect symbioses is that many species are simultaneously infected with more than one symbiont, which permits studying the factors that shape bacterial communities; for example, horizontal transmission, interactions between host genotype, symbiont genotype and the environment and interactions among symbionts. One conclusion is that insects' symbiotic complements are dynamic communities that affect and are affected by the communities in which they are embedded.  相似文献   

11.
昆虫共生菌的次级代谢产物研究进展   总被引:1,自引:0,他引:1  
微生物与昆虫的共生是一种普遍现象,昆虫种类繁多,与昆虫共生的微生物也多种多样。昆虫共生菌是活性次生代谢产物的重要来源。本文对自2008年以来已报道的177个昆虫共生菌的次级代谢产物进行了统计和分析,结果表明:61.6%的化合物为新天然产物(生物碱类新化合物最多),其中,约75%的新化合物来源于昆虫共生真菌,25%来源于细菌;醌酮类化合物是昆虫共生菌源天然产物的主要结构类型,占23.2%;47.5%的化合物具有显著的抗肿瘤、抗菌、除草和抗氧化等生物活性,且化合物中的主要活性类型是抗菌和抗肿瘤活性,活性范围覆盖面最广的结构类型是生物碱类。以上结果表明昆虫共生菌的次级代谢产物是先导性化合物的重要来源且具有丰富的生物活性类型。本文以天然产物的结构分类为切入点,结合其研究菌株来源、生物活性等进行综述,旨在为充分挖掘昆虫共生菌次级代谢产物提供重要参考。  相似文献   

12.
Mutualism meltdown in insects: bacteria constrain thermal adaptation   总被引:2,自引:0,他引:2  
Predicting whether and how organisms will successfully cope with climate change presents critical questions for biologists and environmental scientists. Models require knowing how organisms interact with their abiotic environment, as well understanding biotic interactions that include a network of symbioses in which all species are embedded. Bacterial symbionts of insects offer valuable models to examine how microbes can facilitate and constrain adaptation to a changing environment. While some symbionts confer plasticity that accelerates adaptation, long-term bacterial mutualists of insects are characterized by tight lifestyle constraints, genome deterioration, and vulnerability to thermal stress. These essential bacterial partners are eliminated at high temperatures, analogous to the loss of zooanthellae during coral bleaching. Recent field-based studies suggest that thermal sensitivity of bacterial mutualists constrains insect responses. In this sense, highly dependent mutualisms may be the Achilles' heel of thermal responses in insects.  相似文献   

13.
14.
This article is focused on the problems of reduction of the risk associated with the deliberate release of genetically modified microorganisms (GMMs) into the environment. Special attention is given to overview the most probable physiological and genetic processes which could be induced in the released GMMs by adverse environmental conditions, namely: (i) activation of quorum sensing and the functions associated with it, (ii) entering into a state of general resistance, (iii) activation of adaptive mutagenesis, adaptive amplifications and transpositions and (iv) stimulation of inter-species gene transfer. To reduce the risks associated with GMMs, the inactivation of their key genes responsible for stress-stimulated increase of viability and evolvability is proposed.  相似文献   

15.
长期以来,白蚁对木质纤维素的降解能力令人惊叹,毫无疑问,其在全球碳循环中扮演着一个十分重要的角色。这一强大功能的实现极大地依赖于一种特别的肠道"消化液(digestome)",它的构成不仅包括了来自白蚁自身产生的木质纤维素降解酶系统,还来源于独特与多样的肠道共生微生物的贡献(包括了古细菌、细菌、酵母以及其他真核生物),它们的协同作用能有效地将木质纤维素生物质高效转化为乙酸、甲烷、二氧化碳、氢气等物质。然而,到目前为止,我们对这类昆虫的独特肠道生物转化系统的认识还很不深入,特别是针对肠道内的那些各类共生微生物菌群的功能、白蚁与共生微生物间的相互关系、以及潜在的科学与应用价值还无法给予明确的科学解释,更不用说针对其肠道中的共生酵母菌群,一类通常被忽略的独特微生物。近20多年来,越来越多的研究证据表明,白蚁肠道共生酵母在与寄主的关系中表现了不可或缺的重要性与独特功能,已被证明广泛分布于不同白蚁及许多其他昆虫的肠道中。随着近20年来越来越多昆虫肠道共生微生物酵母群被发现和鉴定,他们潜在的功能以及与寄主的共生机制被逐步解析,这些研究结果进一步揭示了"隐身"的昆虫肠道酵母类微生物菌群与寄主的营养、关键生物质转化过程中的重要酶系统、转化过程中的关键中间产物的转化与利用、抵御外源性的重要病原物,甚至对白蚁种群繁衍的远缘交配等方面均可能发挥了重要和不可缺少的作用。本文将试图归纳相关研究的最新进展,系统总结与解析白蚁肠道来源共生酵母的重要科学价值及其在不同领域的潜在应用前景。  相似文献   

16.
This study assesses the policy/legal status of both multistream residues and potential secondary products (“symbiosis products”) and whether there could be environmental benefits associated with the utilization of residues from integrated pulp and paper and carbon steel mills as raw materials for such secondary products. Waste‐related European Union (EU) and Finnish policy and legal instruments were reviewed to identify potential constraints for, and suggested next steps in, the development of potential process industry residue‐based symbiosis products. The products were soil amendment pellets, low‐grade concrete, and mine filler. A global warming potential (GWP) assessment and an exergy analysis were applied to these potential symbiosis products. Some indicative GWP calculations of greenhouse gas emissions associating similar and/or analogous products based on virgin primary raw materials, more energy‐intensive processes, and the alternative treatment of these residues as wastes are also presented. This study addresses GWP, exergy, and legal aspects in a holistic manner to determine the potential environmental benefits of secondary products within the EU legal framework. The GWP assessment and exergy analysis indicate that the utilization of multistream residues causes very low environmental burdens in terms of GWP. The utilization option can have potential environmental benefits in terms of GWP through process replacement and avoided landfilling and waste treatment impacts, as well as potentially through emission reductions from product replacement if suitable and safe applications can be identified. Waste regulation does not define the legal requirements under which utilizing residues in such novel concepts as introduced in this study would be possible, nor how waste status could be removed and product‐based legislation be applied to the potential products instead.  相似文献   

17.
1. Many insects host secondary bacterial symbionts that are known to have wide‐ranging effects on their hosts, from host‐plant use to resistance against natural enemies. This has been most widely studied in aphids, which have become a model system to study insect–bacteria interactions. 2. While there is an increasing understanding of the role of symbionts in aphids from controlled laboratory studies, we are only beginning to explore the impact of hosting these symbionts on eco‐evolutionary dynamics in natural systems. To date, many research groups have identified bacterial symbionts from various aphid species, providing us with a bank of literature on aphid–symbiont associations in natural populations. 3. The role of secondary symbionts in aphids is discussed, and the taxonomic and geographical distribution of symbionts among aphids are summarised, and the potential reasons for the patterns observed. The need to test for multiple symbiont species (and co‐infections) across many individuals and the whole distribution range of an aphid is highlighted, including sampling on all known host‐plant species. 4. It is further important also to consider variation within the symbiont, the aphid‐host and the surrounding community, e.g. host‐plants or the natural enemies, to understand how these have the potential to mediate aphid–symbiont interactions. 5. Finally, the knowledge gained from experimental work should now be used to understand the role of aphid secondary symbionts in field systems, to fully understand the potentially far‐reaching consequences of aphid endosymbionts on community and ecosystem processes.  相似文献   

18.
Endosymbiotic gut bacteria play an essential role in the nutrition of many insects. Most of the nutritional interactions investigated so far involve gammaproteobacterial symbionts, whereas other groups have received comparatively little attention. Here, we report on the localization and the transmission route of the specific actinobacterial symbiont Coriobacterium glomerans from the gut of the red firebug, Pyrrhocoris apterus (Hemiptera: Pyrrhocoridae ). The symbionts were detected by diagnostic PCRs and FISH in the midgut section M3, in the rectum and in feces of the bugs as well as in the hemolymph of some females. Furthermore, adult female bugs apply the symbionts to the surface of the eggs during oviposition, from where they are later taken up by the hatchlings. Surface sterilization of egg clutches generated aposymbiotic insects and thereby confirmed the vertical transmission route via the egg surface. However, symbionts were readily acquired horizontally when the nymphs were reared in the presence of symbiont-containing eggshells, feces, or adult bugs. Using diagnostic PCRs and partial sequencing of the 16S rRNA gene, closely related bacterial symbionts were detected in the cotton stainer bug Dysdercus fasciatus (Hemiptera: Pyrrhocoridae ), suggesting that the symbiosis with Actinobacteria may be widespread among pyrrhocorid bugs.  相似文献   

19.
To elucidate the co-evolutionary relationships between phloem-feeding insects and their secondary, or facultative, bacterial symbionts, we explore the distributions of three such microbes--provisionally named the R-type (or PASS, or S-sym), T-type (or PABS), and U-type--across a number of aphid and psyllid hosts through the use of diagnostic molecular screening techniques and DNA sequencing. Although typically maternally transmitted, phylogenetic and pairwise divergence analyses reveal that these bacteria have been independently acquired by a variety of unrelated insect hosts, indicating that horizontal transfer has helped to shape their distributions. Based on the high genetic similarity between symbionts in different hosts, we argue that transfer events have occurred recently on an evolutionary timescale. In several instances, however, closely related symbionts associate with related hosts, suggesting that horizontal transfer between distant relatives may be rarer than transmission between close relatives. Our findings on the prevalence of these symbionts within many aphid taxa, along with published observations concerning their effects on host fitness, imply a significant role of facultative symbiosis in aphid ecology and evolution.  相似文献   

20.
Many plant-sap-feeding insects have maintained a single, obligate, nutritional symbiont over the long history of their lineage. This senior symbiont may be joined by one or more junior symbionts that compensate for gaps in function incurred through genome-degradative forces. Adelgids are sap-sucking insects that feed solely on conifer trees and follow complex life cycles in which the diet fluctuates in nutrient levels. Adelgids are unusual in that both senior and junior symbionts appear to have been replaced repeatedly over their evolutionary history. Genomes can provide clues to understanding symbiont replacements, but only the dual symbionts of hemlock adelgids have been examined thus far. Here, we sequence and compare genomes of four additional dual-symbiont pairs in adelgids. We show that these symbionts are nutritional partners originating from diverse bacterial lineages and exhibiting wide variation in general genome characteristics. Although dual symbionts cooperate to produce nutrients, the balance of contributions varies widely across pairs, and total genome contents reflect a range of ages and degrees of degradation. Most symbionts appear to be in transitional states of genome reduction. Our findings support a hypothesis of periodic symbiont turnover driven by fluctuating selection for nutritional provisioning related to gains and losses of complex life cycles in their hosts.Subject terms: Microbial ecology, Evolution, Genomics  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号