首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim To examine the extent to which succession from tropical savanna to rain forest in the long‐term absence of fire is matched by successional changes in ant communities. This is done by describing ant community responses to 23 years of fire exclusion in a northern Australian tropical savanna, with a particular focus on the extent of colonization by specialist rain forest taxa. Location Solar Village, near Darwin in Australia's Northern Territory. Methods Ants were sampled within 12 plots located inside (‘unburnt’– protected from fire for 23 years) and outside (burnt every 1–2 years) Solar Village in ridge and slope habitat dominated by Eucalyptus spp. The litter, ground‐foraging and arboreal faunas were sampled separately, using Berlese funnels, unbaited pitfall traps and baited pitfall traps attached to tree trunks, respectively. Each species was assigned a forest‐association score ranging from 0 (open savanna species) to 3 (specialist forest species) based on their known habitat preferences in the region. Results A total of 85 ant species from 35 genera were recorded, with multivariate analysis demonstrating distinct litter, ground and arboreal communities. Ant communities also varied substantially with topographic position, which interacted strongly with fire exclusion. A total of 72 species were recorded in burnt habitat, compared with only 45 in unburnt, and the number of ant species records was also about twice as high in burnt compared with unburnt habitat. Fire exclusion has resulted in a dramatic increase in forest‐associated taxa (those occurring in forest and denser, but rarely open, savanna), with such species representing 51% of species records in unburnt habitat compared with 19% in burnt. However, only five specialist forest species were recorded, representing < 1% of total ant records. Main conclusions Fire exclusion at Solar Village has markedly increased the prevalence of forest‐associated ant species, but has led to only very minor incursions by specialist rain forest ant taxa. These responses match very closely those of the vegetation.  相似文献   

2.
Abstract Every year large proportions of northern Australia's tropical savanna landscapes are burnt, resulting in high fire frequencies and short intervals between fires. The dominant fire management paradigm in these regions is the use of low‐intensity prescribed fire early in the dry season, to reduce the incidence of higher‐intensity, more extensive wildfire later in the year. This use of frequent prescribed fire to mitigate against high‐intensity wildfire has parallels with fire management in temperate forests of southern Australia. However, unlike in southern Australia, the ecological implications of high fire frequency have received little attention in the north. CSIRO and collaborators recently completed a landscape‐scale fire experiment at Kapalga in Kakadu National Park, Northern Territory, Australia, and here we provide a synthesis of the effects of experimental fire regimes on biodiversity, with particular consideration of fire frequency and, more specifically, time‐since‐fire. Two recurring themes emerged from Kapalga. First, much of the savanna biota is remarkably resilient to fire, even of high intensity. Over the 5‐year experimental period, the abundance of most invertebrate groups remained unaffected by fire treatment, as did the abundance of most vertebrate species, and we were unable to detect any effect of fire on floristic composition of the grass‐layer. Riparian vegetation and associated stream biota, as well as small mammals, were notable exceptions to this general resilience. Second, the occurrence of fire, independent of its intensity, was often the major factor influencing fire‐sensitive species. This was especially the case for extinction‐prone small mammals, which have suffered serious population declines across northern Australia in recent decades. Results from Kapalga indicate that key components of the savanna biota of northern Australia favour habitat that has remained unburnt for at least several years. This raises a serious conservation concern, given that very little relatively long unburnt habitat currently occurs in conservation reserves, with most sites being burnt at least once every 2 years. We propose a conservation objective of increasing the area that remains relatively long unburnt. This could be achieved either by reducing the proportion of the landscape burnt each year, or by setting prescribed fires more strategically. The provision of appropriately long unburnt habitat is a conservation challenge for Australia's tropical savanna landscapes, just as it is for its temperate forests.  相似文献   

3.
Patches of fire‐sensitive vegetation often occur within fire‐prone tropical savannas, and are indicative of localized areas where fire regimes are less severe. These may act as important fire refugia for fire‐sensitive biota. The fire‐sensitive tree Callitris intratropica occurs in small patches throughout the fire‐prone northern Australian savannas, and is widely seen as an indicator of low‐severity fire regimes and of good ecosystem health. Here, we address the question: to what extent do Callitris patches act as refuges for other fire‐sensitive biota, and therefore play a broader conservation role? We contrast floral and faunal species composition between Callitris patches and surrounding eucalypt savanna, using three case studies. In the first case study, a floristic analysis of 47 Callitris patches across Western Australia's Kimberley region showed that woody species in these patches were overwhelmingly widespread, fire‐tolerant savanna taxa. No species of special conservation concern occurred disproportionately within Callitris patches. Similarly, there was no concentration of fire‐sensitive fauna or flora in five Callitris patches in the East Kimberley. Finally, there was no difference in ant species composition among 12 Callitris patches and surrounding eucalypt savannas in Kakadu National Park, Northern Territory, and there were no fire‐sensitive ant species in Callitris patches. Our three case studies from throughout the northwestern Australia provide no evidence that Callitris patches act as important refuges for fire‐sensitive flora or fauna within fire‐prone eucalypt savannas. This calls into question the notion that Callitris is a strong indicator of general ecosystem health.  相似文献   

4.
Bark damage resulting from elephant feeding is common in African savanna trees with subsequent interactions with fire, insects, and other pathogens often resulting in tree mortality. Yet, surprisingly little is known about how savanna trees respond to bark damage. We addressed this by investigating how the inner bark of marula (Sclerocarya birrea), a widespread tree species favoured by elephants, recovers after bark damage. We used a long‐term fire experiment in the Kruger National Park to measure bark recovery with and without fire. At 24 months post‐damage, mean wound closure was 98, 92, and 72%, respectively, in annual and biennial burns and fire‐exclusion treatments. Fire exclusion resulted in higher rates of ant colonization of bark wounds, and such ant colonization resulted in significantly lower bark recovery. We also investigated how ten common savanna tree species respond to bark damage and tested for relationships between bark damage, bark recovery, and bark traits while accounting for phylogeny. We found phylogenetic signal in bark dry matter content, bark N and bark P, but not in bark thickness. Bark recovery and damage was highest in species which had thick moist inner bark and low wood densities (Anacardiaceae), intermediate in species which had moderate inner bark thickness and wood densities (Fabaceae) and lowest in species which had thin inner bark and high wood densities (Combretaceae). Elephants prefer species with thick, moist inner bark, traits that also appear to result in faster recovery rates.  相似文献   

5.
1. Fire ants naturally invade some undisturbed ecosystems of high conservation value and may negatively impact co‐occurring ants. 2. Over 3 years, fire ants were added and removed from a longleaf pine savanna ecosystem that naturally supports a low density of fire ants. Impacts on co‐occurring ants were monitored using pitfall traps. 3. Treatments resulted in significant differences in average fire ant abundance across all plots only in the first year of the experiment. Fire ants had little discernible impact. The abundance and species richness of co‐occurring ants in removal plots never differed from unmanipulated control plots. The abundance of co‐occurring ants was very slightly lower and ant species richness was slightly higher where Solenopsis invicta Buren colonies were added, but neither contrast was significant. 4. The poor conditions in this habitat for many native ants may explain this outcome. More broadly, the impact of fire ants on ant assemblages still appears to be secondary and largely a consequence of human impacts on the environment.  相似文献   

6.
We used LANDIS, a model of forest disturbance and succession, to simulate successional dynamics of forests in the southern Appalachian Mountains. The simulated environments are based on the Great Smoky Mountains landscapes studied by Whittaker. We focused on the consequences of two contrasting disturbance regimes—fire exclusion versus frequent burning—for the Yellow pine (Pinus L., subgenus Diploxylon Koehne) and oak (Quercus L.) forests that occupy dry mountain slopes and ridgetops. These ecosystems are a conservation priority, and declines in their abundance have stimulated considerable interest in the use of fire for ecosystem restoration. Under fire exclusion, the abundance of Yellow pines is projected to decrease, even on the driest sites (ridgetops, south‐ and west‐facing slopes). Hardwoods and White pine (P. strobus L.) replace the Yellow pines. In contrast, frequent burning promotes high levels of Table Mountain pine (P. pungens Lamb.) and Pitch pine (P. rigida Mill.) on the driest sites and reduces the abundance of less fire‐tolerant species. Our simulations also imply that fire maintains open woodland conditions, rather than closed‐canopy forest. For oaks, fire exclusion is beneficial on the driest sites because it permits oaks to replace the pines. On moister sites (north‐ and east‐facing slopes), however, fire exclusion leads to a diverse mix of oaks and other species, whereas frequent burning favors Chestnut oak (Q. montana Willd.) and White oak (Q. alba L.) dominance. Our results suggest that reintroducing fire may help restore decadent pine and oak stands in the southern Appalachian Mountains.  相似文献   

7.
Grass populations in tropical savannas are highly resilient in relation to different fire regimes, but the mechanisms conferring such resilience have been poorly studied. Here we examine one such mechanism, high adult survival during fire, for three perennial grass species in an Australian savanna: Eriachne triseta Nees ex Steud, Eriachne avenacea R.Br and Chrysopogon latifolius S.T.Blake. The study examined survivorship after 3 years, at plots subject to experimental fire regimes (experiencing 0, 1, 2 or 3 fires over the study period) at the Territory Wildlife Park near Darwin in the Northern Territory, Australia. Mean survivorship was 79.9%, 64.3% and 62.0% for E. avenacea, E. triseta and C. latifolius respectively. For the two species of Eriachne, mean survivorship was highest (E. avenacea, 94.6%; E. triseta, 77.1%) in unburnt plots, whereas survivorship of C. latifolius was highest (71.7%) under highest fire frequency. However, variation in survivorship among fire regime treatments was not statistically significant for any of the study species. This negligible difference in survivorship among regimes points to fire tolerance (sprouting ability) as an important mechanism contributing to the resilience and persistence of perennial grasses in these savannas.  相似文献   

8.
We investigated the effects of the abiotic environment, plant community composition and disturbance by fire on ant assemblages in two distinct habitat types in the Siskiyou Mountains in northern California and southern Oregon, USA. Sampling over 2 years in burned and unburned Darlingtonia fens and their adjacent upland forests, we found that the effects of disturbance by fire depended on habitat type. In forests, fire intensity predicted richness in ant assemblages in both years after the fire, and plant community composition predicted richness 2 years after the fire. No factors were associated with richness in the species‐poor fen ant assemblages. Species‐specific responses to both habitat type and disturbance by fire were idiosyncratic. Assemblage composition depended on habitat type, but not disturbance by fire, and the composition of each assemblage between years was more dissimilar in burned than unburned sites.  相似文献   

9.
Abstract 1. This correlational study examines the relationship between the red imported fire ant (Solenopsis invicta) and native ants in a longleaf pine savanna. Fire ants are frequently associated with a decline in native ants throughout the invaded range, but fire ant invasion is often coupled with habitat disturbance. Invasion of fire ants into the longleaf pine savanna provides an opportunity to examine the structure of the ant community in the absence of habitat disturbance. 2. Pitfall trapping was conducted within the longleaf pine savanna as well as across a naturally occurring soil moisture gradient, in plots that had been artificially watered. 3. Species richness did not vary as a function of fire ant density. There was an inverse relationship between native ant density and fire ant density, but this abundance pattern does not necessarily imply a causal link between fire ant invasion and native ant decline. For individual species, fire ant densities were negatively correlated with the densities of only two native ant species, including Solenopsis carolinensis, a native species that potentially limits the invasion of fire ants. Additionally, fire ants and native ants respond differently to soil moisture, with native ants favouring drier conditions than fire ants. 4. The possible exclusion of fire ants by some native ants, as well as differences in habitat preferences, provide alternative explanations for the frequently observed negative correlation between fire ants and native ants.  相似文献   

10.
Fire is an important component of many natural ecosystems affecting plant communities and arthropods by mortality during combustion and/or indirectly through the modification of the habitat. The Iberá Natural Reserve (INR) is one of the most diverse ecosystems in northern Argentina; it is dominated by grasslands commonly affected by disturbances, such as grazing and fire. The objective of this work was to study the response of ground-foraging ant assemblages, particular species, and functional groups to an extended fire of high intensity in four natural INR habitats with >5 years of cattle exclusion (strict conservation area). A total of 12,798 ant workers of 67 species were captured in 39 sampling stations. The ant fauna was less abundant in burned sites only a few days after the fire; 6 months later, no effect was detected. Richness and abundance of ants differed among unburned habitats. However, fire effect on species richness and composition remained unclear. The rapid recovery of the ant fauna made these insects poor indicators of long-term fire-promoted changes on biodiversity in open habitats dominated by grassland, though some ant species showed a high level of habitat fidelity mainly in unburned habitats. These results agree with those from other areas of the world, indicating that ants are particularly unreliable biodiversity indicators, with the exception of severe disturbance with long-term habitat restoration. Management decisions at the INR should be oriented to preserve the closed savanna, one of the most diverse and threatened habitat of Argentina.  相似文献   

11.
Given that land‐use change is the main cause of global biodiversity decline, there is widespread interest in adopting land‐use practices that maintain high levels of biodiversity, and in restoring degraded land that previously had high biodiversity value. In this study, we use ant taxonomic and functional diversity to examine the effects of different land uses (agriculture, pastoralism, silviculture and conservation) and restoration practices on Cerrado (Brazilian savanna) biodiversity. We also examine the extent to which ant diversity and composition can be explained by vegetation attributes that apply across the full land management spectrum. We surveyed vegetation attributes and ant communities in five replicate plots of each of 13 land‐use and restoration treatments, including two types of native vegetation as reference sites: cerrado sensu stricto and cerradão. Several land‐use and restoration treatments had comparable plot richness to that of the native reference habitats. Ant species and functional composition varied systematically among land‐use treatments following a gradient from open habitats such as agricultural fields to forested sites. Tree basal area and grass cover were the strongest predictors of ant species richness. Losses in ant diversity were higher in land‐use systems that transform vegetation structure. Among productive systems, therefore, uncleared pastures and old pine plantations had similar species composition to that occurring in cerrado sensu stricto. Restoration techniques currently applied to sites that were previously Cerrado have focused on returning tree cover, and have failed to restore ant communities typical of savanna. To improve restoration outcomes for Cerrado biodiversity, greater attention needs to be paid to the re‐establishment and maintenance of the grass layer, which requires frequent fire. At the broader scale, conservation planning in agricultural landscapes, should recognize the value of land‐use mosaics and the risks of homogenization.  相似文献   

12.
Understanding mechanisms underlying fire regime effects on savanna fauna is difficult because of a wide range of possible trophic interactions and feedbacks. Yet, understanding mechanisms underlying fauna dynamics is crucial for conservation management of threatened species. Small savanna mammals in northern Australia are currently undergoing widespread declines and regional extinctions partly attributable to fire regimes. This study investigates mammal trophic and ecosystem responses to fire in order to identify possible mechanisms underlying these declines. Mammal trophic responses to fire were investigated by surveying mammal abundance, mammal diet, vegetation structure and non‐mammal fauna dynamics in savannas six times at eight sites over a period of 3 years. Known site‐specific fire history was used to test for trophic responses to post‐fire interval and fire frequency. Mammal and non‐mammal fauna showed only minor responses of post‐fire interval and no effect of fire frequency. Lack of fauna responses differed from large post‐fire vegetation responses. Dietary analysis showed that two mammal species, Dasyurus hallucatus and Isoodon auratus, increased their intake of large prey groups in recently burnt, compared to longer unburnt vegetation. This suggests a fire‐related change in trophic interactions among predators and their prey, after removal of ground‐layer vegetation. No evidence was found for other changes in food resource uptake by mammals after fire. These data provide support for a fire‐related top‐down ecosystem response among savanna mammals, rather than a bottom‐up resource limitation response. Future studies need to investigate fire responses among other predators, including introduced cats and dingoes, to determine their roles in fire‐related mammal declines in savannas of northern Australia.  相似文献   

13.
The behavioral adaptations of primates to fire‐modified landscapes are of considerable interest to anthropologists because fire is fundamental to life in the African savanna—the setting in which genus Homo evolved. Here we report the behavioral responses of a savanna‐dwelling primate, vervet monkeys (Chlorocebus aethiops), to fire‐induced ecological change. Using behavioral and spatial data to characterize ranging patterns prior to and postburn and between burn and nonburn years, we show that these primates inhabiting small, spatially bound, riverine habitats take advantage of newly burned savanna landscapes. When subjects encountered controlled fires, they did not flee but instead avoided the path of the fire seemingly unbothered by its approach. After fire, the primates' home range expanded into newly burned but previously unused areas. These results contribute to understanding the response of non‐human primates to fire‐modified landscapes and can shed light on the nature and scope of opportunities and constraints posed by the emergence of fire‐affected landscapes in the past. Results also expose deficiencies in our knowledge of fire‐related behavioral responses in the primate lineage and highlight the need for further investigation of these responses as they relate to foraging opportunities, migration, resource use, and especially fire‐centric adaptations in our own genus. Am J Phys Anthropol 154:554–560, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
Abstract The savannas of South America support a relatively diverse ant fauna, but little is known about the factors that influence the structure and dynamics of these assemblages. In 1998 and 2002, we surveyed the ground‐dwelling ant fauna and the fauna associated with the woody vegetation (using baits and direct sampling) from an Amazonian savanna. The aim was to evaluate the influence of vegetation structure, disturbance by fire and dominant ants on patterns of ant species richness and composition. Variations in the incidence of fires among our 39 survey plots had no or only limited influence on these patterns. In contrast, spatial variations in tree cover and cover by tall grasses (mostly Trachypogon plumosus), significantly affected ant species composition. Part of the variation in species richness among the study plots correlated with variations in the incidence of a dominant species (Solenopsis substituta) at baits. Ant species richness and composition also varied through time, possibly as an indirect effect of changes in vegetation cover. In many plots, and independently of disturbance by fire, there was a major increase in cover by tall grasses, which occupied areas formerly devoid of vegetation. Temporal changes in vegetation did not directly explain the observed increase in the number of ant species per plot. However, the incidence of S. substituta at baits declined sharply in 2002, especially in plots where changes in vegetation cover were more dramatic, and that decline was correlated with an increase in the number of ground‐dwelling species, a greater turnover of bait‐recruiting species and the appearance of the little fire ant Wasmannia auropunctata. The extent to which these changes in fact resulted from the relaxation of dominance by S. substituta is not clear. However, our results strongly suggest that the ant fauna of Amazonian savannas is affected directly and indirectly by the structure of the vegetation.  相似文献   

15.
Abstract The dry sclerophyll forest community of the Tomago Sandbeds, near Newcastle in New South Wales, has been subject to regular disturbances due to fire, clearing and strip mining for over 18 years. In this study we use chronosequence analysis to examine whether the structure of the ant community varies with the type of disturbance and the time since disturbance. We treat the recovery trajectory after fire as a control trajectory because fire is an endogenous disturbance. The main analyses were based on an ant fauna comprising 72 species sampled from 44 sites surveyed in December 1992. Comparison with samples taken in April and December 1991, and for cumulative records for all sites over this 20 month period, all show quantitatively similar responses. Results suggest that while fire has a minor effect on the composition of the ant community over time, the impact of clearing and mining is much more severe. Ant species richness at cleared and mined sites recovers rapidly, overshoots controls in mid-succession and returns to control levels by 18 years after disturbance. The cumulative number of species recorded over all sites (from the total recorded fauna of 82 species) for each different disturbance type were: burned, 61; cleared, 55; and mined 56. Species composition at cleared or mined sites, after 18 years, approaches but does not match controls. The recovery trend for mined sites lags slightly behind that for cleared sites, which have reached 49% similarity with the oldest burned sites, while mined sites have not exceeded 39% similarity of species composition. The main patterns in the ant community appear to be related to habitat variables. These results provide further evidence that the ant community may be used as a reliable bio-indicator for evaluating the extent of habitat damage and recovery after disturbance in these Australian forests.  相似文献   

16.
Mycorrhizal symbiosis is a key factor influencing aspects of grassland and savanna structure and functioning including plant growth, competition, population and community dynamics, and responses to fire and herbivory. This study assessed the effects of fire on mycorrhizal symbiosis and root system architecture (RSA) in South African savanna grasses. Eighteen grass species were sampled across contrasting fire frequency treatments in the Kruger National Park experimental burn plots. All eighteen species studied were highly colonized by arbuscular mycorrhizal fungi (AMF). Both mycorrhizal symbiosis and RSA were strongly affected by fire, with an increase in AMF colonization and a decrease in root branching and fine root development with decreasing fire frequency. Greater water limitation in frequently burned savanna may result in greater fine root development, thus reducing plant dependency on AMF for acquisition of soil resources. Reduced mycorrhizal colonization in frequently burned savanna may also be driven by higher phosphorus : nitrogen ratios, or indirect effects related to higher grazing intensities in frequently burned sites.  相似文献   

17.
The small rainforest fragments found in savanna landscapes are powerful, yet often overlooked, model systems to understand the controls of these contrasting ecosystems. We analyzed the relative effect of climatic variables on rainforest density at a subcontinental level, and employed high‐resolution, regional‐level analyses to assess the importance of landscape settings and fire activity in determining rainforest density in a frequently burnt Australian savanna landscape. Estimates of rainforest density (ha/km2) across the Northern Territory and Western Australia, derived from preexisting maps, were used to calculate the correlations between rainforest density and climatic variables. A detailed map of the northern Kimberley (Western Australia) rainforests was generated and analyzed to determine the importance of geology and topography in controlling rainforests, and to contrast rainforest density on frequently burnt mainland and nearby islands. In the northwestern Australian, tropics rainforest density was positively correlated with rainfall and moisture index, and negatively correlated with potential evapotranspiration. At a regional scale, rainforests showed preference for complex topographic positions and more fertile geology. Compared with mainland areas, islands had significantly lower fire activity, with no differences between terrain types. They also displayed substantially higher rainforest density, even on level terrain where geomorphological processes do not concentrate nutrients or water. Our multi‐scale approach corroborates previous studies that suggest moist climate, infrequent fires, and geology are important stabilizing factors that allow rainforest fragments to persist in savanna landscapes. These factors need to be incorporated in models to predict the future extent of savannas and rainforests under climate change.  相似文献   

18.
The composition of mammalian communities in Australia's Eucalyptus forests and woodlands is known to be affected by fire. However, there are few published studies that compare mammal assemblages in recently burnt and long‐unburnt forests because there are few areas with long‐term fire history data. Understanding the value of long‐unburnt forest is important because it is becoming rare in fire‐prone regions of the world, such as south‐eastern Australia, partly because of the widespread use of prescribed burning. We deployed wildlife cameras for 28 trap‐nights at each of 81 sites that ranged from 0.5 to at least 96 years since the last fire. We recorded a total of 15 native mammal species. At least one mammal species was recorded at 80 of the 81 sites. Significantly more species were detected at long‐unburnt sites (>96 years since fire) than sites 0.5–12 years since the last fire. Species composition varied significantly between sites 0.5–12 years and >96 years since the last fire but did not vary between sites 0.5–2 years and 6–12 years since the last fire. Although there was not one category of time since fire (i.e. 0.5–2 years, 6–12 years and >96 years) in which all 15 native mammal species were recorded, long‐unburnt sites were significantly more important for the occurrence of seven mammal species; intermediate and recently burnt sites were significantly more important for one species. Our results suggested that, while a diversity of fire ages is important for conserving mammalian diversity, long‐unburnt forests and woodlands (which comprised only 8% of our study area) are disproportionately important for mammal conservation. Our results add to a growing body of the literature from south‐eastern Australia, suggesting that remaining long‐unburnt forest should be afforded protection from fire and more forest should be transitioned to long unburnt.  相似文献   

19.
Fire regimes are changing throughout the world. Changed fire patterns across northern Australian savannas have been proposed as a factor contributing to recent declines of small‐ and medium‐sized mammals. Despite this, few studies have examined the mechanisms that underpin how species use habitat in fire‐affected landscapes. We determined the habitats and resources important to the declining golden‐backed tree‐rat (Mesembriomys macrurus) in landscapes partially burnt by recent intense fire. We aimed to (i) compare the relative use of rainforest and savanna habitats; (ii) examine the effect of fire history on use of savanna habitats; and (iii) identify key foraging and denning resources. Habitat selection was examined by comparing the availability of eight habitat types around real (used) and generated (available) location points. Individuals used a range of habitats, but consistently selected long unburnt rainforest in preference to recently burnt savanna (1–12 months post‐fire); however, recently burnt savanna was used in preference to long unburnt savanna. Tree‐rats foraged in Terminalia hadleyana, Planchonia rupestris, Celtis philippensis and Owenia vernicosa, tree species that are found in a variety of habitat types. Individuals used a range of den sites, including cliffs, trees, logs, scree and stags found throughout the study area. Although multiple factors may have led to the decline of Mes. macrurus across its range, these results are consistent with the idea that changes in the savanna structure as a consequence of contemporary fire patterns could also have a role. The continued persistence of Mes. macrurus in the northwest Kimberley may be supported by land management strategies that conserve fruiting and hollow‐bearing trees, and maintain the availability of fire‐sensitive vegetation types.  相似文献   

20.
The concurrent discussions of landscape scale restoration among restoration ecologists, and of historic disturbance pattern as a guideline for forest management among forest scientists, offer a unique opportunity for collaboration between these traditionally separated fields. The objective of this study was to review the environmental history, early restoration projects, and current plans to restore landscape patterns at broader scales in the 450,000 ha northwest Wisconsin Pine Barrens. The Pine Barrens offer an example of a landscape shaped by fire in the past. In northwestern Wisconsin historically the barrens were a mosaic of open prairie, savanna, and pine forests on very poor, sandy soils. The surrounding region of better soils was otherwise heavily forested. Six restoration sites have been managed since the middle of this century using prescribed burns to maintain the open, barrens habitat. However, these sites are not extensive enough to mimic the shifting mosaic of large open patches previously created by fire. Extensive clear‐cuts may be used as a substitute for these large fire patches so that presettlement landscape patterns are more closely approximated in the current landscape. We suggest that such silvicultural treatments can be suitable to restore certain aspects of presettlement landscapes, such as landscape pattern and open habitat for species such as grassland birds. We are aware that the effects of fire and clear‐cuts differ in many aspects and additional management tools, such as prescribed burning after harvesting, may assist in further approximating the effect of natural disturbance. However, the restoration of landscape pattern using clear‐cuts may provide an important context for smaller isolated restoration sites even without the subsequent application of fire, in this formerly more open landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号