首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression patterns of three promoters preferentially active in the roots of Arabidopsis thaliana have been investigated in transgenic potato plants in response to plant parasitic nematode infection. Promoter regions from the three genes, TUB-1, ARSK1 and RPL16A were linked to the GUS reporter gene and histochemical staining was used to localize expression in potato roots in response to infection with both the potato cyst nematode, Globodera pallida and the root-knot nematode, Meloidogyne incognita. All three promoters directed GUS expression chiefly in root tissue and were strongly up-regulated in the galls induced by feeding M. incognita. Less activity was associated with the syncytial feeding cells of the cyst nematode, although the ARSK1 promoter was highly active in the syncytia of G. pallida infecting soil grown plants. Transgenic potato lines that expressed the cystatin OcIDeltaD86 under the control of the three promoters were evaluated for resistance against Globodera sp. in a field trial and against M. incognita in containment. Resistance to Globodera of 70 +/- 4% was achieved with the best line using the ARSK1 promoter with no associated yield penalty. The highest level of partial resistance achieved against M. incognita was 67 +/- 9% using the TUB-1 promoter. In both cases this was comparable to the level of resistance achieved using the constitutive cauliflower mosaic virus 35S (CaMV35S) promoter. The results establish the potential for limiting transgene expression in crop plants whilst maintaining efficacy of the nematode defence.  相似文献   

2.
Kwak MS  Oh MJ  Lee SW  Shin JS  Paek KH  Bae JM 《Plant cell reports》2007,26(8):1253-1262
To develop a strong constitutive gene expression system, the activities of ibAGP1 promoter and its transit peptide were investigated using transgenic Arabidopsis and a GUS reporter gene. The ibAGP1 promoter directed GUS expression in almost entire tissues including rosette leaf, inflorescence stem, inflorescence, cauline leaf and root, suggesting that the ibAGP1 promoter is a constitutive promoter. GUS expression mediated by ibAGP1 promoter was weaker than that by CaMV35S promoter in all tissue types, but when GUS protein was targeted to plastids with the aid of the ibAGP1 transit peptide, GUS levels increased to higher levels in lamina, petiole and cauline leaf compared to those produced by CaMV35S promoter. The enhancing effect of ibAGP1 transit peptide on the accumulation of foreign protein was tissue-specific; accumulation was high in lamina and inflorescence, but low in root and primary inflorescence stem. The transit peptide effect in the leaves was maintained highly regardless of developmental stages of plants. The ibAGP1 promoter and its transit peptide also directed strong GUS gene expression in transiently expressed tobacco leaves. These results suggest that the ibAGP1 promoter and its transit peptide are a strong constitutive foreign gene expression system for transgenesis of dicot plants.  相似文献   

3.
4.
Obligate sedentary endoparasitic nematodes, such as the root‐knot and cyst nematodes, elicit the differentiation of specialized nematode nurse or feeding cells [nematode feeding sites (NFS), giant cells and syncytia, respectively]. During NFS differentiation, marked changes in cell cycle progression occur, partly similar to those induced by some geminiviruses. In this work, we describe the activation of V‐sense promoters from the Maize streak virus (MSV) and Wheat dwarf virus (WDV) in NFS formed by root‐knot and cyst nematodes. Both promoters were transiently active in microinjection experiments. In tobacco and Arabidopsis transgenic lines carrying promoter–β‐glucuronidase fusions, the MSV V‐sense promoter was activated in the vascular tissues of aerial plant parts, primarily leaf and cotyledon phloem tissue and some floral structures. Interestingly, in roots, promoter activation was restricted to syncytia and giant cells tested with four different nematode populations, but undetectable in the rest of the root system. As the activity of the promoter in transgenic rootstocks should be restricted to NFS only, the MSV promoter may have utility in engineering grafted crops for nematode control. Therefore, this study represents a step in the provision of some of the much needed additional data on promoters with restricted activation in NFS useful in biotechnological nematode control strategies.  相似文献   

5.
6.
7.
The cDNA for a 73-mer peptide containing two locust serine proteinase inhibitors was cloned, fused to the constitutive CaMV35S promoter and introduced into potato by Agrobacterium-mediated transformation. From 23 independent transgenic lines, three with high mRNA level and proteinase inhibitory activity were propagated in vitro and transferred to pots. The peptide from the leaves was identified by its N-terminal sequence and by Ki values against chymotrypsin and trypsin. Colorado potato beetle larvae reared on transgenic plants grew slightly but significantly more slowly than those on control plants. This supports the notion that expression of multifunctional proteinase inhibitors of insect origin might be a good strategy to improve insect resistance in plants.  相似文献   

8.
A novel, constitutively expressed gene, designated MtHP, was isolated from the model legume species Medicago truncatula. Sequence analysis indicates that MtHP most likely belongs to the PR10 multi-gene family. The MtHP promoter was fused to a -glucuronidase gene to characterize its expression in different plant species. Transient assay by microprojectile bombardment and hairy root transformation by Agrobacterium rhizogenes revealed GUS expression in leaf, stem, radicle and root in M. truncatula. Detailed analysis in transgenic Arabidopsis plants demonstrated that the promoter could direct transgene expression in different tissues and organs at various developmental stages; its expression pattern was similar to that of CaMV35S promoter, and the level of expression was higher than the reporter gene driven by CaMV35S promoter. Deletion analysis revealed that even a 107 bp fragment of the promoter could still lead to a moderate level of expression. The promoter was further characterized in white clover (Trifolium repens), a widely grown forage legume species. Strong constitutive expression was observed in transgenic white clover plants. Compared with CaMV35S promoter, the level of GUS activity in transgenic white clover was higher when the transgene was driven by MtHP promoter. Thus, the promoter provides a useful alternative to the CaMV35S promoter in plant transformation for high levels of constitutive expression.  相似文献   

9.
Yi JY  Seo HW  Yang MS  Robb EJ  Nazar RN  Lee SW 《Planta》2004,220(1):165-171
PAL5, a tomato (Lycopersicon esculentum Mill.) plant defense gene that encodes phenylalanine ammonia-lyase, is known to respond to a variety of environmental stresses including pathogen infection and wounding. A shiva-1 gene recombinant that encodes a small synthetic antibacterial peptide under the PAL5 gene promoter was transformed into potato (Solanum tuberosum L.) and its ability to induce resistance to Erwinia carotovora was compared with a construct under the control of the constitutive and widely used cauliflower mosaic virus (CaMV) 35S promoter. The shiva-1 peptide, an analog of natural cecropin B, was shown previously to have high bactericidal activity in vitro, but when expressed in vivo under the control of the CaMV 35S promoter, the effects were very inconsistent. As observed previously, in the present studies a few transformants with the CaMV 35S promoter were highly resistant when assayed for susceptibility to soft rot disease. In marked contrast the majority of transformants with the PAL5 gene promoter were highly resistant. More-detailed analyses of the incorporated DNA indicated that most of the transformants with the CaMV 35S promoter contained multiple copies of the transforming DNA while all of the PAL5 recombinants contained single copies. The highly resistant CaMV 35S recombinant also was present as a single copy. The results indicate that, at least in this instance, a constitutive promoter may not be ideal for the effective expression of a foreign gene and suggest that multiple insertions may have negative consequences.  相似文献   

10.
11.
Plant terpene synthase genes (TPSs) have roles in diverse biological processes. Here, we report the functional characterization of one member of the soybean TPS gene family, which was designated GmAFS. Recombinant GmAFS produced in Escherichia coli catalysed the formation of a sesquiterpene (E,E)‐α‐farnesene. GmAFS is closely related to (E,E)‐α‐farnesene synthase gene from apple, both phylogenetically and structurally. GmAFS was further investigated for its biological role in defence against nematodes and insects. Soybean cyst nematode (SCN) is the most important pathogen of soybean. The expression of GmAFS in a SCN‐resistant soybean was significantly induced by SCN infection compared with the control, whereas its expression in a SCN‐susceptible soybean was not changed by SCN infection. Transgenic hairy roots overexpressing GmAFS under the control of the CaMV 35S promoter were generated in an SCN‐susceptible soybean line. The transgenic lines showed significantly higher resistance to SCN, which indicates that GmAFS contributes to the resistance of soybean to SCN. In soybean leaves, the expression of GmAFS was found to be induced by Tetranychus urticae (two‐spotted spider mites). Exogenous application of methyl jasmonate to soybean plants also induced the expression of GmAFS in leaves. Using headspace collection combined with gas chromatography–mass spectrometry analysis, soybean plants that were infested with T. urticae were shown to emit a mixture of volatiles with (E,E)‐α‐farnesene as one of the most abundant constituents. In summary, this study showed that GmAFS has defence roles in both below‐ground and above‐ground organs of soybean against nematodes and insects, respectively.  相似文献   

12.
13.
Purple carrots, the original domesticated carrots, accumulate highly glycosylated and acylated anthocyanins in root and/or petiole. Previously, a quantitative trait locus (QTL) for root‐specific anthocyanin pigmentation was genetically mapped to chromosome 3 of carrot. In this study, an R2R3‐MYB gene, namely DcMYB113, was identified within this QTL region. DcMYB113 expressed in the root of ‘Purple haze’, a carrot cultivar with purple root and nonpurple petiole, but not in the roots of two carrot cultivars with a purple root and petiole (Deep purple and Cosmic purple) and orange carrot ‘Kurodagosun’, which appeared to be caused by variation in the promoter region. The function of DcMYB113 from ‘Purple haze’ was verified by transformation in ‘Cosmic purple’ and ‘Kurodagosun’, resulting in anthocyanin biosynthesis. Transgenic ‘Kurodagosun’ carrying DcMYB113 driven by the CaMV 35S promoter had a purple root and petiole, while transgenic ‘Kurodagosun’ expressing DcMYB113 driven by its own promoter had a purple root and nonpurple petiole, suggesting that root‐specific expression of DcMYB113 was determined by its promoter. DcMYB113 could activate the expression of DcbHLH3 and structural genes related to anthocyanin biosynthesis. DcUCGXT1 and DcSAT1, which were confirmed to be responsible for anthocyanins glycosylation and acylation, respectively, were also activated by DcMYB113. The WGCNA identified several genes co‐expressed with anthocyanin biosynthesis and the results indicated that DcMYB113 may regulate anthocyanin transport. Our findings provide insight into the molecular mechanism underlying root‐specific anthocyanin biosynthesis and further modification in carrot and even other root crops.  相似文献   

14.
Traditional method of Agrobacterium‐mediated transformation through the generation of tissue culture had limited success for Setaria viridis, an emerging C4 monocot model. Here we present an efficient in planta method for Agrobacterium‐mediated genetic transformation of S. viridis using spike dip. Pre‐anthesis developing spikes were dipped into a solution of Agrobacterium tumefaciens strain AGL1 harboring the β‐glucuronidase (GUS) reporter gene driven by the cauliflower mosaic virus 35S (CaMV35S) promoter to standardize and optimize conditions for transient as well as stable transformations. A transformation efficiency of 0.8 ± 0.1% was obtained after dipping of 5‐day‐old S3 spikes for 20 min in Agrobacterium cultures containing S. viridis spike‐dip medium supplemented with 0.025% Silwet L‐77 and 200 μm acetosyringone. Reproducibility of this method was demonstrated by generating stable transgenic lines expressing β‐glucuronidase plus (GUSplus), green fluorescent protein (GFP) and Discosoma sp. red fluorescent protein (DsRed) reporter genes driven by either CaMV35S or intron‐interrupted maize ubiquitin (Ubi) promoters from three S. viridis genotypes. Expression of these reporter genes in transient assays as well as in T1 stable transformed plants was monitored using histochemical, fluorometric GUS activity and fluorescence microscopy. Molecular analysis of transgenic lines revealed stable integration of transgenes into the genome, and inherited transgenes expressed in the subsequent generations. This approach provides opportunities for the high‐throughput transformation and potentially facilitates translational research in a monocot model plant.  相似文献   

15.
16.
17.
Transgenic cotton lines were developed for high-level expression of a synthetic cry1EC gene from a wound inducible promoter. The tobacco pathogenesis related promoter PR-1a was modified by placing CaMV35S promoter on its upstream in reverse orientation. The resultant chimeric promoter CaMV35S(r)PR-1a expressed constitutively and was further up-regulated at the site of feeding by insects. It was induced more rapidly by treatment with salicylic acid (SA). The CaMV35S(r)PR-1a cry1EC expressing transgenic lines of cotton showed 100% mortality of Spodoptera litura larvae. The tightly regulated low-level expression of PR-1a was modified to a highly expressing constitutive expression by CaMV35S placed in reverse orientation. Salicylic acid treatment and wounding enhanced the expression further by the chimeric promoter. The leaves expressed more δ-endotoxin around the sites of insect bites. The levels of expression and induction varied among different transgenic lines, suggesting position effect. Some of the transgenic lines that expressed Cry1EC from the chimeric promoter at a low level also showed 100% mortality when induced with salicylic acid. A highly expressing insect bite and wound inducible promoter is desirable for developing insect resistant transgenic plants.  相似文献   

18.
Nematode effector proteins originating from esophageal gland cells play central roles in suppressing plant defenses and in formation of the plant feeding cells that are required for growth and development of cyst nematodes. A gene (GrUBCEP12) encoding a unique ubiquitin carboxyl extension protein (UBCEP) that consists of a signal peptide for secretion, a mono‐ubiquitin domain, and a 12 amino acid carboxyl extension protein (CEP12) domain was cloned from the potato cyst nematode Globodera rostochiensis. This GrUBCEP12 gene was expressed exclusively within the nematode's dorsal esophageal gland cell, and was up‐regulated in the parasitic second‐stage juvenile, correlating with the time when feeding cell formation is initiated. We showed that specific GrUBCEP12 knockdown via RNA interference reduced nematode parasitic success, and that over‐expression of the secreted GrΔSPUBCEP12 protein in potato resulted in increased nematode susceptibility, providing direct evidence that this secreted effector is involved in plant parasitism. Using transient expression assays in Nicotiana benthamiana, we found that GrΔSPUBCEP12 is processed into free ubiquitin and a CEP12 peptide (GrCEP12) in planta, and that GrCEP12 suppresses resistance gene‐mediated cell death. A target search showed that expression of RPN2a, a gene encoding a subunit of the 26S proteasome, was dramatically suppressed in GrΔSPUBCEP12 but not GrCEP12 over‐expression plants when compared with control plants. Together, these results suggest that, when delivered into host plant cells, GrΔSPUBCEP12 becomes two functional units, one acting to suppress plant immunity and the other potentially affecting the host 26S proteasome, to promote feeding cell formation.  相似文献   

19.
Summary Two different promoters, a cauliflower mosaic virus (CaMV) 35S promoter with a 5′-untranslated leader sequence from alfalfa mosaic virus RNA4 (designated as CaMV 35S/AMV) and an E-8 fruit-ripening-specific promoter, were compared to evaluate their effects on expression of the uidA reporter gene in transgenic tomato plants. In order to generate sufficient numbers of transgenic tomato plants, both a reliable regeneration system and an efficient Agrobacterium transformation protocol were developed using 8-d-old cotyledons of tomato (Lycopersicon ecsulentum Mill. cv. Swifty Belle). Two sets of constructs, both derivatives of the binary vector pBI121, were used in transformation of tomato whereby the uidA gene was driven either by the CaMV 35S/AMV or the E-8 fruit-ripening-specific promoter. Southern blot hybridization confirmed the stable integration of the chimeric uidA gene into the tomato genome. Fruit and leaf tissues were collected from T0 and T1 plants, and assayed for β-glucuronidase (GUS) enzyme activity. As expected, both vegetative and fruit tissues of transgenic plants carrying the uidA gene under the control of CaMV 35S/AMV showed varying levels of GUS activity, while no expression was observed in vegetative tissues of transgenic plants carrying the uidA gene driven by the E-8 promoter. All fruits from transgenic plants produced with both sets of constructs displayed expression of the uidA gene. However, when this reporter gene was driven by the CaMV 35S/AMV, GUS activity levels were significantly higher than when it was driven by the E-8 fruit-specific promoter. The presence/absence of the uidA gene in T1 plants segregated in a 3∶1 Mendelian ratio.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号