首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Stitt  Mark  Scheible  Wolf-Rüdiger 《Plant and Soil》1998,201(2):259-263
Most previous analyses of shoot-root allocation have investigated correlations between changes in putative signals and shoot-root allocation. It is argued that studies of shoot-root allocation need to be extended to include investigations of mutants with specific lesions in nutrient metabolism, to identify the compounds that are sensed as indicators for the plant nutrient status and act as the starting point for specific transduction pathways. The mechanisms of nutrient sensing can then be investigated using molecular and genetic strategies analogous to those that have been successfully used to investigate other signal transduction events. Investigations of shoot-root allocation should also pay more attention to the way in which root architecture is modified in response to nutrient supply, and need to be designed and interpreted in the light of molecular and genetic analyses of root development.  相似文献   

3.
How does time‐since‐fire influence the structural recovery of semi‐arid, eucalypt‐dominated Murray‐Mallee shrublands after fire, and is recovery affected by spatial variation in climate? We assessed the structure and dynamics of a hummock grass, Triodia scariosa N.T. Burb, and mallee eucalypts – two key structural components of mallee shrublands – using a >100 year time‐since‐fire chronosequence. The relative influence of climatic variables, both individually and combined with time‐since‐fire, was modelled to account for spatial variation in the recovery of vegetation structural components. Time‐since‐fire was the primary determinant of the structural recovery of T. scariosa and eucalypts. However, climate, notably mean annual rainfall and rainfall variability, also influenced the recovery of the eucalypt overstorey, T. scariosa cover and mean hummock height. We observed that (i) the mean number of live eucalypt stems per individual decreased while mean individual basal area increased, (ii) cover of T. scariosa peaked at ~30 years post‐fire and gradually decreased thereafter, and (iii) the ‘hummock’ form of T. scariosa occurred throughout the chronosequence, whereas the ‘ring’ form tended not to occur until ~30 years post‐fire. Time‐since‐fire was the key determinant of the structural recovery of eucalypt‐dominated mallee shrublands, but there is geographical variation in recovery related to rainfall and its variability. Fire regimes are likely to have different effects across the geographic range of mallee shrublands.  相似文献   

4.
5.
In semi‐arid climates, plant population dynamics are strongly influenced by the amount and temporal distribution of rainfall. We monitored a population of the tree species Cordia oncocalyx (Boraginaceae) for 24 months in the dry thorny woodland of semi‐arid northeastern Brazil, to investigate which life‐history traits allow this tree to be locally dominant. We used horizontal life tables and a Lefkovitch matrix and tested for relationships among demographic parameters of seedling, infant, juvenile, immature, virginile and reproductive ontogenetic stages with rainfall and canopy openness. Germination and recruitment occurred in the rainy months, and dry‐season mortality occurred only in seedlings (76% and 100%, first and second years, respectively) and infants (3% and 6%). Juveniles showed greater height growth under more open canopies (Spearman correlation coefficient = 0.24), suggesting that light availability influences growth. The population growth rate was λ = 1.0336, and the highest sensitivity occurred in the infant‐juvenile transition. Our results show light as a restrictive growth factor for plants in the juvenile stage and confirm the strong influence of rainfall on the dynamics of trees in a seasonally dry environment. The formation of a persistent seed bank with germination concentrated at the rainfall onset but spreading over the rainy season are strategies that hedge bets before establishment. The formation of a bank of infants, which can resume growth as soon as there is water, hedges bets after establishment. We attribute the positive population growth rate of Cordia oncocalyx to survival strategies allowing bet‐hedging both before and after establishment.  相似文献   

6.
Abstract. The investigation of vegetation pattern and plant association by spatial statistics has become increasingly popular among plant ecologists. Recently, Individual‐centered analysis (ICA) has been introduced as a new tool for analysis of multi‐species co‐occurrence patterns. We tested this new technique by applying it to spatial data from grazed and ungrazed shrub communities in the semi‐arid Great Karoo, South Africa. There were substantial but complex and scale‐dependent differences in pattern between grazed and ungrazed vegetation. Unpalatable species that increase in abundance in grazed vegetation possibly play a key role in the change of vegetation pattern. At small scales we found indications of aggregation (< 30 cm) at the ungrazed, but of repulsion (30 – 40 cm) at the grazed site. An additional non‐random pattern at 60 – 170 cm at the grazed site was probably due to the clumped distributions of some species on broader scales. We show that the interpretability of ICA results is improved when the actual observed and expected frequencies of species combinations are added to the program output. The main strength of ICA is that it has the potential to detect association patterns that involve more than two species.  相似文献   

7.
There is a general perception that dust accumulation on plant surfaces causes negative impacts to plants. Consequently, it is common for environmental regulatory agencies to apply vegetation monitoring requirements to oil, gas and mining developments. We use two independent, medium‐term monitoring studies in semi‐arid Australia to examine this relationship at two scales: plant health and survivorship of a threatened subspecies (Tetratheca paynterae paynterae: Elaeocarpaceae) at Windarling Range between 2003 and 2014; and changes in plant health and floristic composition on Barrow Island between 2009 and 2014. Accumulation of dust decreased rapidly with distance from source. At Windarling Range, even at the site with the highest dust load, there was no significant impact on Tetratheca paynterae paynterae compared with the less dusty sites for 10 years. Similarly, there was no significant effect between distance from the source of dust and floristic composition on Barrow Island for 5 years. The probability of plants transitioning to a lower health condition between one year and the next did not appear to be related to dust load. This is further supported by comparing the same site before and after paving the road (removal of dust source), which showed no clear trends. Trends in plant health are likely to be driven more by the variability of cumulative rainfall in the preceding 5 months than dust load. The observed temporal variation in the mean dust load may also be related to variation in rainfall. In conclusion, in these case studies from semi‐arid Australia, we find no evidence to support the perception that, under the observed climatic condition and dust deposition rates up to 20 or 77 g m?2 per month at Windarling Range and Barrow Island, respectively, dust accumulation on plants causes negative impacts.  相似文献   

8.
Abstract. Questions: This paper examines the long‐term change in the herbaceous layer of semi‐arid vegetation since grazing ceased. We asked whether (1) there were differences in the temporal trends of abundance among growth forms of plants; (2) season of rainfall affected the growth form response; (3) the presence of an invasive species influenced the abundance and species richness of native plants relative to non‐invaded plots, and (4) abundance of native plants and/or species richness was related to the time it took for an invasive species to invade a plot. Location: Alice Springs, Central Australia. Methods: Long‐term changes in the semi‐arid vegetation of Central Australia were measured over 28 years (1976–2004) to partition the effects of rainfall and an invasive perennial grass. The relative abundance (biomass) of all species was assessed 25 times in each of 24 plots (8 m × 1 m) across two sites that traversed floodplains and adjacent foot slopes. Photo‐points, starting in 1972, were also used to provide a broader overview of a landscape that had been intensively grazed by cattle and rabbits prior to the 1970s. Species’abundance data were amalgamated into growth forms to examine their relationship with environmental variation in space and time. Environmental variables included season and amount of rainfall, fire history, soil variability and the colonization of the plots by the exotic perennial grass Cenchrus ciliaris (Buffel grass). Results: Constrained ordination showed that season of rainfall and landscape variables relating to soil depth strongly influenced vegetation composition when Cenchrus was used as a covariate. When Cenchrus was included in constrained ordination, it was strongly related to the decline of all native growth forms over time. Univariate comparisons of non‐invaded vs impacted plots over time revealed unequivocal evidence that Cenchrus had caused the decline of all native growth form groups and species richness. They also revealed a contrasting response of native plants to season of rainfall, with a strong response of native grasses to summer rainfall and forbs to winter rainfall. In the presence of Cenchrus these responses were strongly attenuated. Discussion: Pronounced changes in the composition of vegetation were interpreted as a response to removal of grazing pressure, fluctuations in rainfall and, most importantly, invasion of an exotic grass. Declines in herbaceous species abundance and richness in the presence of Cenchrus appear to be directly related to competition for resources. Indirect effects may also be causing the declines of some woody species from changed fire regimes as a result of increased fuel loads. We predict that Cenchrus will begin to alter landscape level processes as a result of the direct and indirect effects of Cenchrus on the demography of native plants when there is a switch from resource limited (rainfall) establishment of native plants to seed limited recruitment.  相似文献   

9.
10.
Question: How do patterns in colonization and patch expansion of an invasive woody plant (Larrea tridentata, Zygo‐phyllaceae) differ between two grassland ecosystems at a biome transition zone? Location: Semi‐arid/arid transition zone in central New Mexico. Methods: Frequency of occurrence, height, and surface area of saplings (n= 134) and patches of adult plants (n= 247) of the invasive shrub, L. tridentata, were measured within a mosaic of ecosystems dominated either by the Chihuahuan Desert species, Bouteloua eriopoda (Poaceae), or the shortgrass steppe species, B. gracilis, located within 1 km of the L. tridentata‐dominated ecosystem. Distances between L. tridentata patches and patch area were used to estimate connectivity as a measure of propagule pressure. Sapling age (estimated from height using previously established relationships) and distance to the L. tridentata‐dominated ecosystem was used to evaluate patterns in dispersal. Cover by species or functional group inside each L. tridentata patch was compared with surrounding vegetation to estimate changes in species composition with patch expansion. Results: L. tridentata saplings (< 1%) and adult patches (15%) occurred less frequently in B. gracilis‐dominated ecosystems than expected based on areal extent of this ecosystem type. Propagule pressure did not differ with distance from the core ecosystem dominated by L. tridentata. Evidence for both local and long‐distance dispersal events was found. Similar relationships between number of plants and patch area in both grassland types indicate similar patterns in patch expansion. Cover of perennial forbs was higher and cover of dominant grasses was lower in L. tridentata patches compared with the surrounding vegetation for both ecosystem types. Conclusions Spatial variation in L. tridentata saplings and patches at this biome transition zone is related to the different susceptibilities to invasion by two grassland ecosystems. The persistence of grasslands at this site despite region‐wide expansion by L. tridentata may be related to the spatial distribution of B. gracilis‐dominated ecosystems that resist or deter invasion by this woody plant.  相似文献   

11.
Soil nutrients strongly influence biomass allocation. However, few studies have examined patterns induced by soil C:N:P stoichiometry in alpine and arid ecosystems. Samples were collected from 44 sites with similar elevation along the 220‐km transect at spatial intervals of 5 km along the northern Tibetan Plateau. Aboveground biomass (AGB) levels were measured by cutting a sward in each plot. Belowground biomass (BGB) levels were collected from soil pits in a block of 1 m × 1 m in actual root depth. We observed significant decreases in AGB and BGB levels but increases in the BGB:AGB ratio with increases in latitude. Although soil is characterized by structural complexity and spatial heterogeneity, we observed remarkably consistent C:N:P ratios within the cryic aridisols. We observed significant nonlinear relationships between the soil N:P and BGB:AGB ratios. The critical N:P ratio in soils was measured at approximately 2.0, above which the probability of BGB:AGB response to nutrient availability is small. These findings serve as interesting contributions to the global data pool on arid plant stoichiometry, given the previously limited knowledge regarding high‐altitude regions.  相似文献   

12.
Question: Is there a pattern in growth of annual rings in roots of perennial forbs in relation to climate and climate extremes in grassland ecosystems? Location: Semi‐arid grassland in Duolun (42°27′N, 116°41′E, 1380 m a.s.l.), central Inner Mongolia, China. Methods: Main roots of three perennial species, Potentilla anserina L., Cymbaria dahurica L. and Lespedeza daurica Schindl., were sampled. Cross‐sections (10–15‐μm thick) were produced from the proximal end of sampled roots using a sledge microtome. Annual growth rings in the main roots were identified and measured by differentiating between earlywood and latewood in the secondary xylem. Relationships between annual growth rings and monthly mean temperature and total monthly precipitation were identified using correlation analysis. Differences in an annual ring width to the previous and following years were examined by calculating a distinctness score. Results: The three perennial forbs showed clearly demarcated annual growth rings in all individuals and the same fluctuation patterns. Their ring widths were generally positively correlated with precipitation from April to October (except for August) and with temperature from February to June (except June for L. daurica), September to October, and the annual mean. Strong deviations of annual ring widths from their neighbour rings were observed in 1998 and 2000. The trend of absolute distinctness scores (Dm) increased significantly from 1988 to 2003, indicating an increase in the frequency of annual ring width variation. Conclusions: Annual growth rings in the main roots of three perennial forb species can be used as an indicator of the influence of climate on below‐ground grassland growth. The change in below‐ground conditions and effects on the functioning of grassland should receive more attention in future studies.  相似文献   

13.
14.
Nutrient loss from litter plays an essential role in carbon and nutrient cycling in nutrient‐constrained environments. However, the decomposition and nutrient dynamics of nutrient‐rich mistletoe litter remains unknown in semi‐arid savanna where productivity is nutrient limited. We studied the decomposition and nutrient dynamics (nitrogen: N, phosphorous; P, carbon: C) of litter of three mistletoe species, Erianthemum ngamicum, Plicosepalus kalachariensis, and Viscum verrucosum and N‐fixing Acacia karroo using the litter‐bag method in a semi‐arid savanna, southwest Zimbabwe. The temporal dynamics of the soil moisture content, microbial populations, and termite activity during decomposition were also assessed. Decay rates were slower for A. karroo litter (k = 0.63), but faster for the high quality mistletoe litters (mean k‐value = 0.79), which supports the premise that mistletoes can substantially influence nutrient availability to other plants. Nitrogen loss was between 1.3 and 3 times greater in E. ngamicum litter than in the other species. The litter of the mistletoes also lost C and P faster than A. karroo litter. However, soil moisture content and bacterial and fungal colony numbers changed in an opposite direction to changes in the decomposition rate. Additionally, there was little evidence of termite activity during the decay of all the species litters. This suggests that other factors such as photodegradation could be important in litter decomposition in semi‐arid savanna. In conclusion, the higher rate of decay and nutrient release of mistletoe than A. karroo litter indicate that mistletoes play an important role in carbon and nutrient fluxes in semi‐arid savanna.  相似文献   

15.
16.
Abstract. Plant life‐form abundance along a 600 m altitudinal gradient (1600–2200 m a.s.l.) in the semi‐arid valley of Zapotitlán, México was correlated with soil characteristics and climatic variables. One mixed soil sample was taken and analysed for each of six elevations, temperature was estimated using a terrestrial thermal gradient, and precipitation using a linear regression between total annual precipitation and the elevation of the weather stations in the valley. Rosettes, microphanerophytes, therophytes and nanophanerophytes were well represented throughout the gradient. Columnar cacti were restricted to the 1600–1800 m range, and geophytes to the 1700–1800 m range. In general, abundance of life forms was inversely associated with altitude. Multiple regression analysis did not show parameters to significantly explain the abundance of rosettes, nanophanerophytes, epiphytes, geophytes and hemiparasites; altitude and nitrogen proved significant for columnar cacti, succulents and chamaephytes; altitude, pH, electrical conductivity and nitrogen were significant for globose cacti; pH was significant for therophytes; and altitude was significant for microphanerophytes.  相似文献   

17.
18.
19.
在干旱半干旱生态脆弱区,地下水是限制植物种类组成、数量和生长发育的关键因素之一。近年来由于气候变化与土地利用强度的增加,我国北方普遍出现以极端气候变化、地表水体萎缩和地下水位下降为特征的生态过程,对区域生态系统安全和可持续发展构成严重威胁。而有关干旱半干旱区地下水埋深变化驱动退化植被恢复和稳定性维持方面的系统研究尚存不足。系统总结了地下水埋深变化分别对植物、土壤产生的影响及其三者间相互作用关系,比较分析了前人的研究成果,归纳总结了地下水埋深变化的驱动作用和影响因素,以及干旱半干旱区地下水埋深变化对植物土壤系统影响的预测模型研究,以期为今后应对地下水埋深变化制定生态保护策略提供理论指导依据。对本研究做了展望。  相似文献   

20.
Questions: Do soil seed banks of semi‐arid grasslands reassemble after abandonment from cultivation? Do seeds of native and exotic species persist in the soil? Does time since abandonment affect compositional similarity between the vegetation and seed bank? Does the seed bank contribute to resilience in the vegetation? Location: Native grasslands in northern Victoria, Australia. Methods: Seed bank sampling was conducted in spring and autumn over 3 yrs, across a 100‐yr chronosequence. Species richness, composition and germinant density were determined using the seedling emergence method. Seed persistence was assessed by comparing seed densities in spring and autumn. Seed bank composition was compared with the vegetation. Results: The spring seed bank was dominated at all stages by sedges and rushes; hence, native species richness and seed density were largely unaffected by abandonment. In autumn, grassland species contributed more to the seed bank, but richness was reduced after abandonment and showed little recovery, although seed density partially recovered. Seed bank composition showed some recovery in both seasons. Most species had low persistence in the soil. Compositional similarity between the vegetation and seed bank was greater in old fields than uncultivated grasslands in spring, but not autumn. Conclusions: Resilience varied among seed bank parameters and seed banks had low functional importance. Patterns in the seed bank followed, rather than caused, those in the vegetation. Thus, vegetation recovery cannot rely on the seed bank and persistent seeds were not the key mechanism of resilience in the vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号