首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To test the hypothesis that competitor density and time spent at a food resource influences aggressive behaviour in male swordtail, Xiphophorus sp., fish were kept at two densities (low: 18 fish m?3; high: 54 fish m?3) and aggressive behaviour was recorded with the time at the food resource used as a covariate. Competitor density is likely to affect the cost:benefit ratio of food defence. When density is low, there should be sufficient food for all individuals and intra‐specific interactions are expected to be rare, while at high densities, increased intra‐specific encounter rates mean that individuals may spend more time defending a resource than utilising it. Food resource defence should occur at intermediate densities. The frequency of aggression, i.e. bites, chases, and display behaviour was significantly positively influenced by time spent at the food resource (Bites: F1,31 = 8.186, P = 0.007; Chases: F1,31 = 6.439, P = 0.016; Displays: F1,31 = 4.435, P = 0.043) suggesting that food resource defence occurred. Competitor density had no effect on food resource defence and minimal effect on the frequency of aggression with only one type of aggressive behaviour, male–male displays, showing a difference between densities (F1,31 = 6.975, P = 0.013). This finding is suggested to be a result of the formation of dominance hierarchies in this species. Aggression from the dominant individual may be directed at only subordinates of the next dominance rank and subordinate behaviour may be restricted by status rather than immediate threat. In such a situation, aggression may be independent of competitor density.  相似文献   

2.
Competition for mating opportunities may involve exclusion of intrasexual competitors (direct) or defending resources necessary to attract mates (indirect). Male swordtails (Xiphophorus helleri) engage in direct competition. Moreover in natural populations they defend a home range. This study aimed to test whether this home range defence is a form of food resource defence, which may therefore have a female attraction function. Male swordtails did defend a food resource and showed increased aggression in the presence of both food and females. However, food resource defence decreased when females were present, suggesting that both food and females are treated as defendable resources.  相似文献   

3.
The spatial and temporal clumping of food influence an animal's aggressiveness during competition. No studies, however, haveinvestigated the effects of the temporal predictability offood and few studies have tested for interactions between theeffects of two components of resource distribution on the ratesof competitive aggression. We simultaneously manipulated the temporal predictability and the spatial clumping of food totest whether aggression increases as food becomes more predictablein time and more clumped in space. We tested these predictionsusing wild Zenaida doves (Zenaida aurita) in Barbados becauseprevious work showed marked differences in social behaviorbetween two populations, apparently related to differences in the distribution of food in space and time. There was a significant interaction between the effects of the temporal predictabilityand spatial clumping of food. As predicted, the rate of aggressionincreased as the temporal predictability of food increased,but only significantly in the spatially clumped condition.Similarly, as predicted, aggression increased as the spatialclumping of food increased, but only significantly in the temporallypredictable condition. In addition, the per capita rate of aggression peaked at intermediate competitor densities in thespatially clumped condition. Differences in rates of aggressionobserved during experimental manipulations and between thetwo populations during baseline observations were generallyconsistent with predictions of resource defense theory.  相似文献   

4.
Resource defense in a group-foraging context   总被引:5,自引:2,他引:3  
When foraging in groups, animals frequently use either scrambleor contest tactics to obtain food at clumps found by others.The question of which competitive tactic should be used hasbeen addressed from two different perspectives: a simple optimalityapproach and a game theoretic approach. Surprisingly, both approachesmake strikingly different predictions about how per-capita frequencyof aggression within groups should change as a function of foodabundance and competitor density. Resource defense theory typicallypredicts dome-shaped relationships between the per-capita frequencyof aggression and both food abundance and competitor density,whereas game theoretic models predict an increase in aggressionwith competitor density and a decline in aggression with increasedfood abundance. We developed a game theoretic model to explorewhether the predictions of resource defense theory and the gametheoretic approach can be reconciled. Our model assumes thatplayers have different competitive abilities and can adopt rolesof either finder or joiner that affect the quantity of foodthat can be gained from a food clump. In accordance with earliergame theoretic models, we predict an increase in aggressionwith competitor density when animals compete by pair-wise contests.However, when food clumps can be challenged by more than onecompetitor, both the costs and benefits of defending increasewith competitor density, which results in a dome-shaped relationshipbetween the two variables. Our model predicts that aggressionshould always decrease as the density of food clumps increases.  相似文献   

5.
Intraspecific agonism is a problem in fish culture. This has corresponding fish welfare implications. As the design of the holding container may moderate aggressive behaviour, the aim of this study was to reduce agonistic behaviour by altering tank dimensions without changing the available volume. The study used swordtails, a popular aquarium species in which dominance hierarchies between males are common. The frequency of attacks initiated by dominant males against subordinate males was significantly reduced in tanks with smaller surface area (t(12) = ?3.849, P = 0.002) while the frequency of mating displays, assumed to be a measure of normal behaviour, remained unchanged (t(12) = 1.126, P = 0.282). The time that subordinate males spent feeding was also unaffected (t(12) = ?0.081, P = 0.937) while dominant males reduced the time spent feeding in tanks with smaller surface area (t(12) = ?3.468, P = 0.005). However, this is unlikely to be detrimental to the health of dominant males but may reflect a decreased food requirement through reduced energy expenditure. Alteration of tank dimensions in this way is therefore a simple means for small‐scale facilities and pet stores to reduce agonistic behaviour in swordtails.  相似文献   

6.
The ruffe, Gymnocephalus cernuus, is a nonindigenous percid in the Great Lakes. Ruffe are aggressive benthivores and forage over soft substrates. Laboratory studies in pools (100cm diameter, 15cm water depth) were conducted to determine whether fish density (low=2, medium=4, high=6 ruffe per pool) changed foraging and aggressive behaviors with a limited food supply of chironomid larvae. All fish densities demonstrated a hierarchy based on aggressive interactions, but ruffe were most aggressive at low and high fish densities. Time spent in foraging was lowest at the low fish density. The best forager at the low fish density was the most aggressive individual, but the second most aggressive fish at the medium and high fish density was the best forager and also the one chased most frequently. A medium fish density offered the best energetic benefits to ruffe by providing the lowest ratio of time spent in aggression to that spent foraging. Based on our results, ruffe should grow best at an intermediate density. With high ruffe densities, we would also expect disparity in size as the more aggressive fish are able to garner a disproportionate amount of the resources. Alternatively, as the Great Lakes are a fairly open system, ruffe could migrate out of one area to colonize another as populations exceed optimal densities.  相似文献   

7.
Reproductive success and habitat preference are generally assumed to be negatively associated with densities of con- and heterospecific competitors. However, recent theoretical studies have suggested that in some cases habitat preference may have a nonlinear unimodal function in relation to con- or heterospecific competitor densities – intermediate densities being preferred. Such a pattern is expected if con- or heterospecific densities are used as a proximate cue in habitat selection, which may produce benefits by reducing searching costs and providing information about current habitat quality and costs of competition. At low density the use of such cues, and hence habitat selection, are hampered, whereas at high density costs of competition exceed the benefits of using cues, leading to avoidance. Here, we tested this hypothesis by examining whether arboreal migratory birds use the density of resident titmice ( Parus spp.) in habitat selection decisions. Many migrants and titmice species share similar resource needs making titmice density a reliable source of information for migrants. At the scale of habitat patches, we experimentally created a range of titmice densities from low to very high and subsequently measured the density response of migrants. In contrast to the unimodal habitat preference hypothesis, the average species number and total density of migratory birds were positively and linearly correlated with manipulated titmice density. Thus, migrants probably use titmice density as a relative indicator of habitat quality (abundance or quality of food) because foliage gleaners that share similar food resource with titmice, but not ground foragers, showed a positive association with manipulated titmice density. These results emphasize the positive effect of interspecific social information on habitat choice decisions and diversity of migratory bird community.  相似文献   

8.
Abstract.
  • 1 The effects of intraspecific and interspecific larval competition on larval survival, adult size, adult longevity and fecundity were quantified in four species of coexisting Lucilia blowflies: illustris, silvarum, sericata and caesar.
  • 2 There was a general negative effect of increasing density on larval and adult survival, size and fecundity. Additionally, complex species-specific and frequency-dependent responses were identified, which were not expected in these biologically and morphologically closely similar species.
  • 3 Lucilia illustris, the numerically dominant species in the natural community, was a superior competitor to L.silvarum at intermediate densities but an inferior competitor at high density. Such nonlinear responses may be related to differences in the life histories and larval behaviour of the species (bigger eggs and more contest-type outcome of competition in L.silvarum).
  • 4 We parameterized a model of interspecific competition on a subdivided resource in an attempt to reconcile the conflicting results on larval competitive abilities and the abundances of the species in the field. Using laboratory and field-estimated parameter values the model predicted coexistence of L.illustris and L.silvarum and the observed numerical dominance of the former species. The average densities of flies in the field are limited to relatively low levels, apparently preventing L.silvarum (the superior competitor at high density) from dominating and excluding L. illustris.
  相似文献   

9.
Population densities of invasive species fluctuate spatially and temporally, suggesting that the intensity of their aggressive interactions with native species is similarly variable. Although inter‐specific aggression is often thought to increase with population density, it is often theorized that it should be exceeded by intra‐specific aggression since conspecifics share a greater degree of resource overlap. Yet, the magnitude of intra‐specific aggression is seldom considered when examining aggressive interactions, particularly those between invasive and native species. Here, we manipulated the density of the invasive eastern mosquitofish, Gambusia holbrooki, and observed its aggressive interactions with juveniles of the native Australian bass, Macquaria novemaculeata in a laboratory setting. For both species, the magnitudes of intra‐ and inter‐specific aggression were recorded. Regardless of density, the native M. novemaculeata was more aggressive towards heterospecifics than G. holbrooki was. In addition to this, M. novemaculeata was more aggressive to G. holbrooki than towards conspecifics, at both low‐ and high‐density conditions. In contrast, G. holbrooki was similarly aggressive towards M. novemaculeata and G. holbrooki at a high density, yet at low density, displayed significantly more aggression towards conspecifics than M. novemaculeata. These findings demonstrate the importance of considering intra‐specific aggression when exploring behavioural interactions between native and invasive species.  相似文献   

10.
Determinants of territory size in the pomacentrid reef fish,Parma victoriae   总被引:4,自引:0,他引:4  
Summary Factors governing the size of territories defended by the pomacentrid reef fish, Parma victoriae, were investigated, prompted by contradictory predictions in the literature concerning the effects of food supply and competitors. Observations were carried out over the non-breeding period (March–October) on a medium density population in which territories were partially contiguous. The territory size of adult fish varied between 3 and 26 m2, and was inversely correlated with local densities of conspecifics. The same range in territory size was found for both males and females, which did not differ in the time they spent on territory defence and foraging activities. No correlation existed between territory size and the abundance of algal food, body size, age or time spent on territory defence. Also, there was little variation in territory size over time, despite seasonal changes in the abundance of food algae.Experimental reduction of food supplies on isolated territories of males and females had no effect on territory size. In a higher density habitat an experiment was carried out in which population density and food abundance were simultaneously manipulated. This showed that territory size was primarily determined by intraspecific interactions, as territories exhibited considerable increases in size upon removal of neighbours. No changes in the size of defended areas resulted from either artificial increases or decreases of food levels. There were also no changes in the time spent on defence of territories, foraging time or feeding rates associated with food manipulations or territory expansion, which suggested that food was not a limited resource. This conflicted with current theories proposed to explain territory defence and expansion. It is hypothesized that intraspecific interactions constrain territory size well below the optimum in terms of the abundance of preferred food algal species.  相似文献   

11.
Non‐mechanistic models of competition suggest that harming one of two competing species will increase the population density of the other. These models also suggest that any change in a fitness component of one competitor will make the densities of the two competitors change in opposite directions. However, models of competition that incorporate resource dynamics show that neither conclusion holds generally. Reducing the consumption abilities of one competitor may decrease the population size of the other by decreasing resource overexploitation by the first and thereby increasing its density. It is also possible for decreased consumption abilities of one species to increase the population densities of both species, when the increased density of the focal species is offset by its decreased ability to consume the main resources of its competitor. Finally, decreases in consumption may have the effects predicted by phenomenological models; a decrease in the focal species and an increase in its competitor. Unstable systems may exhibit more complicated patterns of changes in densities with changes in consumption rates. These counterintuitive effects depend on the presence of overexploitation of biotic resources, about which little is known. More generally, there have been few theoretical or empirical studies examining the indirect effects of changes in consumption rates of a focal species in a food web; these are termed ‘trait‐initiated indirect effects’. A better understanding of the potential consequences of altered consumption rates will be important for understanding biotic shifts in communities undergoing environmental change, and in using simple community modules to understand larger food webs.  相似文献   

12.
Aggression is a social behaviour which can be affected by numerous factors. The quality and quantity of food resources may play an important role in the aggressiveness of territorial ungulates as the defence of these resources influences female choice and mating opportunities. However, the relationship between food resources and aggression remains poorly understood. We assessed the ecological and social factors that influence aggression in Lama guanicoe, a territorial ungulate exhibiting resource‐defence polygyny, during three periods (group‐formation, mating and post‐mating) in the reproductive seasons of 2014 and 2016. We recorded 460 focal observations of territorial (family groups, solitary) and non‐territorial (mixed and bachelor groups) males. We performed analyses at the population level (including all focal observations) and at the group level (each social unit separately), to test whether the factors that influence aggression differ at these different scales. We also identified proxies of vegetation quality as potential predictors of aggression. At the population level, we found that the presence of aggressive behaviour peaked during the mating season and that post‐mating aggression may have been driven by inter‐annual environmental variations. For family groups and solitary males, variables reflecting high vegetation quality/quantity were predictors of aggressive behaviour, reflecting the resource‐defence strategy of this species. Conversely, for mixed‐group males, aggression may be more associated with social instability and group size, although this hypothesis has yet to be tested. Our research reinforces the idea that aggression can occur in multiple contexts depending on male status (e.g. territorial or non‐territorial) and contributes to our understanding of how ecological (i.e. availability of food resources) and social factors influence aggression in a territorial ungulate.  相似文献   

13.
Suboptimal environmental conditions are ubiquitous in nature and commonly drive the outcome of biological interactions in community processes. Despite the importance of biological interactions for community processes, knowledge on how species interactions are affected by a limiting resource, for example, low food availability, remains limited. Here, we tested whether variation in food supply causes nonadditive consumption patterns, using the macroinvertebrate community of intertidal sandy beaches as a model system. We quantified isotopically labeled diatom consumption by three macroinvertebrate species (Bathyporeia pilosa, Haustorius arenarius, and Scolelepis squamata) kept in mesocosms in either monoculture or a three‐species community at a range of diatom densities. Our results show that B. pilosa was the most successful competitor in terms of consumption at both high and low diatom density, while H. arenarius and especially S. squamata consumed less in a community than in their respective monocultures. Nonadditive effects on consumption in this macroinvertebrate community were present and larger than mere additive effects, and similar across diatom densities. The underlying species interactions, however, did change with diatom density. Complementarity effects related to niche‐partitioning were the main driver of the net diversity effect on consumption, with a slightly increasing contribution of selection effects related to competition with decreasing diatom density. For the first time, we showed that nonadditive effects of consumption are independent of food availability in a macroinvertebrate community. This suggests that, in communities with functionally different, and thus complementary, species, nonadditive effects can arise even when food availability is low. Hence, at a range of environmental conditions, species interactions hold important potential to alter ecosystem functioning.  相似文献   

14.
Linking herbivore-induced defences to population dynamics   总被引:2,自引:0,他引:2  
1. Theoretical studies have shown that inducible defences have the potential to affect population stability and persistence in bi‐ and tritrophic food chains. Experimental studies on such effects of prey defence strategies on the dynamics of predator–prey systems are still rare. We performed replicated population dynamics experiments using the herbivorous rotifer Brachionus calyciflorus and four strains of closely related algae that show different defence responses to this herbivore. 2. We observed herbivore populations to fluctuate at a higher frequency when feeding on small undefended algae. During these fluctuations minimum rotifer densities remained sufficiently high to ensure population persistence in all the replicates. The initial growth of rotifer populations in this treatment coincided with a sharp drop in algal density. Such a suppression of algae by herbivores was not observed in the other treatments, where algae were larger due to induced or permanent defences. In these treatments we observed rotifer population densities to first rise and then decline. The herbivore went extinct in all replicates with large permanently defended algae. The frequency of herbivore extinctions was intermediate when algae had inducible defences. 3. A variety of alternative mechanisms could explain differential herbivore persistence in the different defence treatments. Our analysis showed the density and fraction of highly edible algal particles to better explain herbivore persistence and extinctions than total algal density, the fraction of highly inedible food particles or the accumulation of herbivore waste products or autotoxins. 4. We argue that the rotifers require a minimum fraction and density of edible food particles for maintenance and reproduction. We conjecture that induced defences in algae may thus favour larger zooplankton species such as Daphnia spp. that are less sensitive to shifts in their food size spectrum, relative to smaller zooplankton species, such as rotifers and in this way contributes to the structuring of planktonic communities.  相似文献   

15.
Examples from fishless aquatic habitats show that competition among zooplankton for resources instigates rapid exclusion of competitively inferior species in the absence of fish predation, and leads to resource monopolization by the superior competitor. This may be a single species or a few clones with large body size: a cladoceran such as Daphnia pulicaria, or a branchiopod such as Artemia franciscana, each building its population to a density far higher than those found in habitats with fish. The example of zooplankton from two different fish-free habitats demonstrates the overpowering force of fish predation by highlighting the consequences of its absence. Released from the mortality caused by predation, a population of a superior competitor remains at a density equal to the carrying capacity of its habitat, in a steady state with its food resources, consisting of small green flagellate algae, which are successful in compensating high loss rates due to grazing, by fast growth. In such a situation, the high filtering rate of Daphnia or Artemia reduces resources to levels that are sufficient for assimilation to cover the costs of respiration (threshold food concentration) in adults but not in juveniles. This implies long periods of persistence of adults refraining from producing live young, because production of instantly hatching eggs would be maladaptive. Severe competition for limiting resources imposes a strong selective pressure for postponing reproduction or for producing resting eggs until food levels have increased. Offspring can only survive when born in a short time window between such an increase in food levels and its subsequent decline resulting from population growth and intense grazing by juveniles. Such zooplanktons become not only a single-species community, but also form a single cohort with a long-lifespan population. The observations support the notion that diversity may be sustained only where predation keeps densities of coexisting species at levels much below the carrying capacity, as suggested by Hutchinson 50 years ago.  相似文献   

16.
This paper tests the predictions of parental investment theory and other hypotheses relating to variation in brood defence by examining aggression displayed by great skuas Catharacta skua towards intruders within their territories. Aggression serves the function of nest defence; hatching success of adults breeding in Shetland increased with aggression displayed during incubation, and the correlation between aggression and hatching success was apparent in three separate age classes. Adults displayed higher levels of aggression and greater parental investment in reproduction in years of poor food supply. This was not due to an increase in adults' expectations of future benefits of brood defence with increased investment. since hatching success was unaffected by food supply, and breeding success was lower in years of poor food supply. The observed increase in aggression therefore supports parental investment theory. Aggression increased with body condition index (in terms of mass corrected for body size) for females, but decreased with increasing body condition index for males. This probably reflects size-specific differences in the relative benefits of weight and manoeuvrability as means of promoting effective brood defence and reducing the risk of injury to parents. Aggression may also reflect adult quality, with body condition reflecting quality in opposite ways in males and females, as a result of their different roles during the breeding season.  相似文献   

17.
Males are expected to adjust testes investment according to the varying level of sperm competition that they experience. Spatial and temporal variation in population density likely influences sperm competition. In herbivorous aquatic organisms, densities often decrease along a vertical depth gradient, because their food is photosynthetic and thus becomes less abundant in deeper regions where less light penetrates. This decrease should be dramatic on a steep slope, which allows testing of the association between density and testes investment at the within‐population level. We tested the effect in the socially monogamous herbivorous cichlid fish Variabilichromis moorii living on a steep slope in Lake Tanganyika. We examined competitor density and food abundance as ecological factors, territory defense behaviors and phenotypic traits (testes investment and somatic investment), and compared them between shallow (4–6 m depth) and deep habitats (10–13 m depth) separated by several dozen meters. We found that food availability drastically decreased with increasing depth and that V moorii was much more abundant in shallower habitats. Males in shallower habitats were in better physical condition (based on fat and liver mass) despite experiencing greater costs in terms of territory defense. Testes investment differed in areas with different competitor density and food abundance along a vertical depth gradient, but competitor density was the most explanatory factor of the difference. This suggests that this herbivorous fish would change testes investment in response to population density.  相似文献   

18.
We investigated how forage material affects indicators of welfare in three male Western lowland gorillas (Gorilla gorilla gorilla) at the Detroit Zoo. In addition to their maintenance diet and enrichment foods, the gorillas generally received forage material four times a week. From this baseline, we systematically manipulated how much forage material the group received on a weekly basis, with either daily or bi (twice)‐weekly presentation of browse (mulberry, Morus sp.) or alfalfa hay. We collected behavioral data (60 hr per gorilla) and measured fecal glucocorticoid metabolites (FGM). Mixed models indicated that the presence of forage material significantly increased time feeding (F2,351 = 9.58, p < 0.001), and decreased rates of noncontact aggression (F2,351 = 3.69, p = 0.03), and regurgitation and reingestion (F2,353 = 4.70, p = 0.01). Regurgitation and reingestion were never observed during the condition when forage material was provided daily. When forage material was provided, time spent feeding was similar across gorillas, compared to a disproportionately greater amount of time spent feeding by the dominant individual when forage material was absent. Providing forage material in addition to the regular diet likely created more opportunities for equitable feeding for the subordinate gorillas. FGM concentrations did not vary based on the presence or type of forage material available and, instead, likely reflected group social dynamics. In general, alfalfa and mulberry had similar impacts on behavior, indicating that alfalfa can be an adequate behavioral substitute during times when browse is less readily available for gorillas housed in seasonally variable climates.  相似文献   

19.
We examined the effect of patch size and competitor number onaggression among house sparrows, Passer domesticus, foragingat patches of seven different sizes in a doubling series (0.014,0.029, 0.058, 0.116, 0.230, 0.462, and 0.922 m2). Contrary toour expectations, the birds did not defend an entire patch,even when it was small as 0.014 m2. The frequency of aggressionamong the birds decreased gradually with increasing patch size,in contrast to the step decline predicted by resource defensetheory. Moreover, the birds fought more frequently and moreintensely as competitor density increased. Both results areconsistent with the predictions of a modified hawk-dove modelfor shared patches. Females were more aggressive and fed ata higher rate than did males. The proportion of females increasedas patch size decreased, and aggression became more frequentand intense. Even when patches are shared, patch size has animportant effect on the frequency and intensity of foragingcompetition and the size and composition of foraging groups.  相似文献   

20.
Summary The population densities of sympatric Atlantic salmon,Salmo salar and brook charr,Salvelinus fontinalis, were measured in riffle and pool stream habitats to test whether non-linear isodars, a multispecific model of habitat selection based on ideal distribution assumptions, could (1) predict the distribution of densities between habitats and (2) reproduce the processes postulated to underlie spatial segregation and species interactions in previous laboratory and field studies. The model provided a good fit to observed density patterns and indicated that habitat suitability declined non-linearly with increased heterospecific competitor densities. Competitive effects in riffles appeared to be due to exploitative resource use, with salmon always emerging as the superior competitor. No evidence was found for interference competition in riffles. In contrast, interspecific competition in pools seemed to occur through exploitation and interference. The specific identity of the superior competitor in pools depended on the density of both species; pools provided the charr with refuge from competition with the salmon, presumably through the adoption by the charr of density-dependent behaviours, such as schooling and group foraging, that mitigated the negative impact of the salmon. Charr were displaced from the riffles toward the pools as the total salmon density increased. The isodar analysis, based on limited density data, successfully reproduced the processes suggested to underlie spatial segregation in previous field and laboratory studies and provided new insights into how changes in competitor densities modify habitat suitability in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号