首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Fencing remnant native vegetation has become a widespread activity for arresting declines in biodiversity in agricultural landscapes. However, few data are available on the effectiveness of this approach. The present study investigated the short-term effects of fencing to exclude livestock on dominant tree and shrub recruitment, plant species cover, litter and soil characteristics in remnant grassy woodlands in southern NSW. Vegetation and soil surveys were undertaken at 47 sites fenced by Greening Australia (NSW) for 2–4 years. Fenced and unfenced areas at each site were compared using split-plot sampling. Woodlands sampled were dominated by Yellow Box/Blakely's Red Gum ( Eucalyptus melliodora/Eucalyptus blakelyi ), Grey Box ( Eucalyptus microcarpa ) or White Cypress-pine ( Callitris glaucophylla ). Significantly higher numbers of tree recruits were found in the fenced sites, with tree recruitment found in 59% of fenced sites compared with 13% of unfenced sites. Fenced sites also had significantly greater cover of native perennial grasses, less cover of exotic annual species and less soil surface compaction. However, outcomes varied among woodland ecosystems and individual sites. Where tree recruitment occurred, there was significantly more tree recruitment where there was greater perennial grass cover and less regeneration where exotic annual grass cover or overstorey crown cover was dense. Few shrubs recruited in fenced or unfenced areas, reflecting the lack of mature shrubs in most sites. Fencing is an important first step for conserving threatened grassy woodlands, but more active management may be needed to enhance woodland recovery, particularly in sites where few or no recruits were found.
Key words bush regeneration, fencing, grazing exclusion, rehabilitation, woodland restoration.  相似文献   

2.
The spatial structure, age structure and population dynamics of the shrub Kunzea ericoides (A. Rich.) J. Thompson were investigated at Coranderrk Reserve, near Healesville, Victoria, Australia. The shrub is known to be invasive in many areas and, although indigenous to the reserve, has greatly increased its population size and distribution within the reserve in the past 30 years. Dendrochronology showed a constant relationship between age and stem diameter for K. ericoides in the reserve. The spatial structure of the variable stem diameter was investigated by the use of spatial correlograms and results suggested that K. ericoides is spreading via the formation of discrete clumps and gap-phase regeneration. The two main populations in the reserve recruited continuously in time but patchily in space. A simple statistical model for size–frequency data showed that K. ericoides is expanding faster in some areas of the reserve than others. The trend of expansion of K. ericoides may be irreversible. Intensive management of Coranderrk Reserve will be required if K. ericoides is to be controlled and the conservation value of the reserve maintained.  相似文献   

3.
Question: What factors limit woody plant recruitment in a mosaic landscape where former agricultural lands are dominated by the invasive tree Ligustrum lucidum (Oleaceae)? Location: Subtropical northwestern Argentina. Methods: In secondary forest patches, we measured (1) tree, shrub and liana abundance in different size classes; (2) seed rain of Ligustrum and two native trees and (3) topographic, soil and light variables. We used spatial autoregressive models to test for effects of Ligustrum dominance and environment on native plant abundance in each size class. We used multiple regression on resemblance matrices to quantify the relative importance of spatial (e.g. dispersal) and environmental effects on native species composition. Results: Native tree abundance in the smallest size class was unrelated to Ligustrum canopy dominance, while native tree abundance in larger size classes and native liana abundance were negatively correlated with Ligustrum dominance. Native species composition was both environmentally and spatially structured, suggesting that some species are dispersal limited. Seed rain was spatially correlated with conspecific basal area for one of two native species, but not for Ligustrum. Conclusions: Native tree recruitment appears to be limited primarily by sapling mortality in patches dominated by the invasive Ligustrum. Ligustrum does not appear to be dispersal limited in our study area and is likely to continue spreading. Invaded patches may persist for hundreds of years.  相似文献   

4.
Woody plant encroachment into open grasslands occurs worldwide and causes multiple ecological and management impacts. Prescribed fire could be used to conserve grassland habitat but often has limited efficacy because many woody plants resprout after fire and rapidly reestablish abundance. If fire‐induced mortality could be increased, prescribed fire would be a more effective management tool. In California's central coast, shrub encroachment, especially of Baccharis pilularis (coyote brush), is converting coastal prairie into shrub‐dominated communities, with a consequent loss of native herbaceous species and open grassland habitat. B. pilularis has not been successfully controlled with single prescribed fire events because the shrub resprouts and reestablishes cover within a few years. We investigated whether two consecutive annual burns would control B. pilularis by killing resprouting shrubs, without reducing native herbaceous species or encouraging invasive plants. As expected, resprouting did occur; however, 2 years after the second burn, B. pilularis cover on burned plots was only 41% of the cover on unburned plots. Mortality of B. pilularis more than doubled following the second burn, likely maintaining a reduction in B. pilularis cover for longer than a single burn would have. Three native coastal prairie perennial grasses did not appear to be adversely affected by the two burns, nor did the burns result in increased cover of invasive species. Managers wanting to restore coastal prairie following B. pilularis encroachment should consider two consecutive annual burns, especially if moderate fire intensity is achievable.  相似文献   

5.
Tozer  M.G.  Bradstock  R.A. 《Plant Ecology》2003,164(2):213-223
Overstorey shrub species are known to influence the composition of theunderstorey in Southern Hemisphere heathlands. Overstorey densities aresusceptible to variations in fire frequency; thus, fire regimes may influenceoverstorey/understorey interactions and overall floristic composition. Wecompared patches of Banksia heath which had supported anoverstorey during a fire interval of about 30 y with patches wherethe overstorey was absent during the same period, and tested for differences inspecies composition as a function of overstorey presence. Floristic compositionvaried significantly between overstorey patches and open patches. Most specieswere less abundant in overstorey patches, however some were more abundant. Therelative abundance of species in relation to overstorey was unrelated to theirfire response, propagule longevity or propagule storage location. There wassignificantly less biomass in overstorey patches compared with open patches.Theeffect of the overstorey varied with soil moisture. In a dry area, the numberof species was lower in overstorey patches, with fewer herb and shrub speciespresent compared with open patches. Fewer species were recorded in a wetterarea, but overstorey had no effect on the number of species recorded. Reducedintensity of competition among understorey species in overstorey patches couldbe responsible for the higher abundance of some species in these patches. Wepostulate that full diversity will be maintained when the density of overstoreyshrubs fluctuates widely over a relatively short period of time. This is mostlikely when fire frequency is highly variable.  相似文献   

6.
Abstract. A southern ridge sandhill site in central Florida, USA, was burned in 1989, 1991, and 1995 after 63 years of fire‐suppression to simulate a pre‐settlement fire regime. Fire changed species abundance and vegetation structure but caused only minimal changes in species turnover and diversity. There was a general trend for an increase in the cover of herbs following fire but this was a statistically significant effect for only one species, Liatris tenuifolia var. tenuifolia. Aristida beyrichiana increased, litter cover and litter depth were significantly reduced, and ground lichens were eliminated in response to burning. Scrub oaks and palmettos in the ground cover and small shrub layers (height ≤ 1 m) either increased or did not respond to burning, reflecting strong post‐fire resprouting. Diversity in the ground cover and small shrub layers were not affected by fire. Scrub oaks and palmettos in the large shrub and overstorey layers (height > 1 m) were reduced in density, basal area, and longest canopy measurements in response to fire. Species diversity also decreased within these layers following fire. Some Pinus elliottii var. densa survived fire, but their density was reduced. All Pinus clausa were eliminated by fire. Periodic burning can suppress the dominance of shrubs (Quercus spp.) while increasing the cover of grasses and herbs in southern ridge sandhill vegetation.  相似文献   

7.
Stand morphometry and age structure were analysed for populations of burgan, Kunzea ericoides, which were colonizing pastoral land in the Tidbinbilla Valley, Australian Capital Territory. Three types of stands, (i) closed burgan-dominated; (ii) open burgan-dominated; and (iii) mixed burgan and eucalypts, were compared at each of two locations. Burgan ages were determined from growth ring counts cross-correlated with seasonal rainfall and annual increments in Pinus radiata. Burgan stands have developed from windblown seed coming from nearby forest margins and drainage-lines. The species colonized rural lands in the Tidbinbilla Valley rapidly from the early 1960s, when changes in land use practices occurred which enabled sparse colonists to contribute to rapid population expansion. Colonization was initially slow, but recruitment increased dramatically in the early 1960s in closed and open stands when densities were between 0.01 and 0.03 plants m-2. These stands did not follow classic secondary succession, as the differences between stands sampled were largely the result of differences in burgan density and floristic composition of the sites at the time of change in land use practices. These differences in turn influenced the phenotypic response of individual plants and the ensuing stand structures. A closed shrub canopy of burgan, together with the species self-replacement strategies, is likely to prevent other species from entering the closed burgan sites and becoming dominant. Where the objective is to limit the spread of burgan, isolated plants, which act as foci for spread, would be the primary target for control.  相似文献   

8.
Invasion of riparian habitats by non‐native plants is a global problem that requires an understanding of community‐level responses by native plants and animals. In the Great Plains, resource managers have initiated efforts to control the eastward incursion of Tamarix as a non‐native bottomland plant (Tamarix ramosissima) along the Cimarron River in southwestern Kansas, United States. To understand how native avifauna interact with non‐native plants, we studied the effects of Tamarix removal on riparian bird communities. We compared avian site occupancy of three foraging guilds, abundance of four nesting guilds, and assessed community dynamics with dynamic, multiseason occupancy models across three replicated treatments. Community parameters were estimated for Tamarix‐dominated sites (untreated), Tamarix‐removal sites (treated), and reference sites with native cottonwood sites (Populus deltoides). Estimates of initial occupancy (ψ2006) for the ground‐to‐shrub foraging guild tended to be highest at Tamarix‐dominated sites, while initial occupancy of the upper‐canopy foraging and mid‐canopy foraging guilds were highest in the treated and reference sites, respectively. Estimates of relative abundance for four nesting guilds indicated that the reference habitat supported the highest relative abundance of birds overall, although the untreated habitat had higher abundance of shrub‐nesters than treated or reference habitats. Riparian sites where invasive Tamarix is dominant in the Great Plains can provide nesting habitat for some native bird species, with avian abundance and diversity that are comparable to remnant riparian sites with native vegetation. Moreover, presence of some native vegetation in Tamarix‐dominated and Tamarix‐removal sites may increase abundance of riparian birds such as cavity‐nesters. Overall, our study demonstrates that Tamarix may substitute for native flora in providing nesting habitat for riparian birds at the eastern edge of its North American range.  相似文献   

9.
The expansion (or encroachment) of shrubs in forests and woodlands is generally considered a serious threat to biodiversity. The effects of shrub expansion on forest fauna, however, are poorly understood and likely to depend on the availability of key resources in shrub‐encroached forest. Coranderrk Bushland, like many conservation reserves in south‐eastern Australia, is considered threatened by the spread of an indigenous shrub. We investigated the associations between cover of Yarra burgan (Kunzea leptospermoides (Myrtaceae)), vegetation structure and the occurrence of terrestrial native mammals within the reserve, basing our predictions on prior knowledge of burgan growth habits and fauna habitat preferences. We quantified burgan cover and other potentially important habitat attributes using structure surveys, and used motion‐sensing cameras to detect terrestrial mammals. Dense burgan cover was associated with less grass, a sparser understorey, and more cryptogams, dead trees and coarse woody debris. However, there was no evidence that these changes negatively affected native mammals: burgan cover had little influence on the occurrence of any species except swamp wallabies (Wallabia bicolor), which occurred in all areas of the reserve but shifted from sites with high burgan cover during the day to sites with low cover at night. Our findings contrast with those from grassland shrub‐expansion studies, where fauna generally show strong responses to shrub cover. The effects of shrub expansion on forest fauna may be mitigated by the greater pre‐existing structural diversity in forests or the longer time required for structural changes to be fully realized. The large quantities of dead wood in areas with high shrub cover may also provide compensatory resources for small mammals, while the proximity to un‐encroached areas may enable large herbivores to move between dense shelter and forage. Shrub‐encroached forests clearly provide resources for some native fauna, and management strategies need to consider the potential impacts of shrub removal on these taxa.  相似文献   

10.
Abstract. In this study we compared the effects of fire on understorey vegetation in the Québec southern boreal forest with effects of salvage‐logging (clear‐cutting after fire). All 61 400‐m2 sampling sites were controlled for overstorey composition (Deciduous, Mixed and Coniferous) and disturbance type, which consisted of three fire impact severity (FIS) classes (Light, Moderate and Extreme) and two harvesting techniques (Stem‐only and Whole‐tree Harvesting). Percent‐cover data of vegetation and post‐disturbance environmental characteristics were recorded in the field during the first two years after fire as well as soil texture. Ordination of fire alone demonstrated that, on Coniferous sites, fire initiates a succession whereby the understorey Coniferous sites approaches that of Deciduous‐Mixed sites, due to the release of the understorey from Sphagnum spp. dominance, this pattern being a function of FIS. On Deciduous‐Mixed stands, increased FIS resulted in a transition from herb to shrub dominance. Ordination of all five disturbance types showed that the impact of salvage‐logging on understorey composition was within the range of fire, but marginalized to the extreme end of the FIS spectrum. Variance partitioning demonstrated that overstorey and soil texture were the most important explanatory variables of fire alone, while disturbance type explained the largest independent fraction of understorey variation when salvage‐logging was introduced. Salvage‐logging also results in significant reductions in understorey abundance, richness and diversity, while indicator species analysis suggests that it favours mesoxerophytic to xeric species. Results are interpreted in light of shade‐tolerance dynamics, forest floor disturbance and soil moisture regimes. Implications for sustainable forest management are discussed.  相似文献   

11.
Capsule?Bird species richness and (for most species) abundance were positively related to the extent of shrub cover at the interface between conifer plantations and moorland, but it appears that responses to shrub development vary between different bird guilds.

Aims?To assess the bird assemblages in both winter and breeding seasons at the interface between managed conifer plantations and open moorland, where that interface had been restructured to include a mosaic of shrubs and open ground.

Methods?Timed point counts were used to sample the birds at restructured plantation – moorland interface areas and also in neighbouring plantations (post- and pre-thicket age classes) and neighbouring moorland. Associations between species richness and abundances with measures of shrub cover and composition were assessed using GLMMs.

Results?A total of 60 bird species were recorded including 29 on lists of conservation concern, most of which were associated with shrub interface habitats. Species richness and, for most species, abundance were positively related to the extent of shrub cover. Positive relationships between shrub cover in interface areas and the abundance of some species in neighbouring plantations and open moorland suggested a resource subsidy to birds in neighbouring habitats. In contrast, some birds tended to be less abundant in plantations next to areas with more shrub cover. These species were more abundant in the shrub itself, suggesting redistribution by species with a preference for early successional shrub habitats.

Conclusions?The long-term management of shrub, especially with regard to successional development, is a challenging aspect of forest and landscape management that deserves further study.  相似文献   

12.
ABSTRACT Riparian wetlands are complex ecosystems containing species diversity that may easily be affected by anthropogenic disturbances. Preble's meadow jumping mouse (Zapus hudsonius preblei) is a federally threatened subspecies dependent upon riparian wetlands along the Front Range of Colorado and southeastern Wyoming, USA. Although habitat improvements for Preble's meadow jumping mouse are designed at multiple spatial scales, most knowledge about its habitat requirements has been described at a landscape scale. Our objective was to improve our understanding of Preble's meadow jumping mouse microhabitat characteristics within high-use areas (hotspots), which are essential for the development of effective management and conservation strategies. We evaluated Preble's meadow jumping mouse habitat by describing areas of high use and no use as determined from monitoring radiocollared individuals. A comparison of microhabitat characteristics from random samples of high-use and no-use areas indicated that mice use areas closer to the center of the creek bed and positively associated with shrub, grass, and woody debris cover. Distance to center of the creek bed, and percent of shrub and grass cover also had the greatest relative importance of habitat variables modeled when describing high-use areas. High-use areas contained 3 times more grass cover than forb cover, and overall had a greater proportion of wetland shrub and grass cover. However, proportion of cover type (shrub or grass) did not vary greatly between high-use and no-use areas. Our results suggest that management and conservation efforts should continue to focus on establishment of native wetland vegetation near streams and creeks. For example, vegetation should include shrubs such as willow (Salix spp.), narrowleaf cottonwood (Populus angustifolia), alder (Alnus incana), grasses such as fescue (Fescue spp.), sedges (Carex spp.), and rush (Juncus spp).  相似文献   

13.
Question: How do two shrubs with contrasting life‐history characteristics influence abundance of dominant plant taxa, species richness and aboveground biomass of grasses and forbs, litter accumulation, nitrogen pools and mineralization rates? How are these shrubs – and thus their effects on populations, communities and ecosystems – distributed spatially across the landscape? Location: Coastal hind‐dune system, Bodega Head, northern California. Methods: In each of 4 years, we compared vegetation, leaf litter and soil nitrogen under canopies of two native shrubs –Ericameria ericoides and the nitrogen‐fixing Lupinus chamissonis– with those in adjacent open dunes. Results: At the population level, density and cover of the native forb Claytonia perfoliata and the exotic grass Bromus diandrus were higher under shrubs than in shrub‐free areas, whereas they were lower under shrubs for the exotic grass Vulpia bromoides. In contrast, cover of three native moss species was highest under Ericameria and equally low under Lupinus and shrub‐free areas. At community level, species richness and aboveground biomass of herbaceous dicots was lower beneath shrubs, whereas no pattern emerged for grasses. At ecosystem level, areas beneath shrubs accumulated more leaf litter and had larger pools of soil ammonium and nitrate. Rates of nitrate mineralization were higher under Lupinus, followed by Ericameria and then open dune. At landscape level, the two shrubs – and their distinctive vegetation and soils – frequently had uniform spatial distributions, and the distance separating neighbouring shrubs increased as their combined sizes increased. Conclusions: Collectively, these data suggest that both shrubs serve as ecosystem engineers in this coastal dune, having influences at multiple levels of biological organization. Our data also suggest that intraspecific competition influenced the spatial distributions of these shrubs and thus altered the distribution of their effects throughout the landscape.  相似文献   

14.
Of 6 million ha of prairie that once covered northern and western Missouri, <36,500 ha remain, with planted, managed, and restored grasslands comprising most contemporary grasslands. Most grasslands are used as pasture or hayfields. Native grasses largely have been replaced by fescue (Festuca spp.) on most private lands (almost 7 million ha). Previously cropped fields set aside under the Conservation Reserve Program (CRP) varied from a mix of cool-season grasses and forbs, or mix of native warm-season grasses and forbs, to simple tall-grass monocultures. We used generalized linear mixed models and distance sampling to assess abundance of 8 species of breeding grassland birds on 6 grassland types commonly associated with farm practices in Missouri and located in landscapes managed for grassland-bird conservation. We selected Bird Conservation Areas (BCAs) for their high percentage of grasslands and grassland-bird species, and for <5% forest cover. We used an information-theoretic approach to assess the relationship between bird abundance and 6 grassland types, 3 measures of vegetative structure, and 2 landscape variables (% grassland and edge density within a 1-km radius). We found support for all 3 levels of model parameters, although there was less support for landscape than vegetation structure effects likely because we studied high-percentage-grassland landscapes (BCAs). Henslow's sparrow (Ammodramus henslowii) counts increased with greater percentage of grassland, vegetation height-density, litter depth, and shrub cover and lower edge density. Henslow's sparrow counts were greatest in hayed native prairie. Dickcissel (Spiza americana) counts increased with greater vegetation height-density and were greatest in planted CRP grasslands. Grasshopper sparrow (A. savannarum) counts increased with lower vegetation height, litter depth, and shrub cover. Based on distance modeling, breeding densities of Henslow's sparrow, dickcissel, and grasshopper sparrow in the 6 grassland types ranged 0.9–2.6, 1.4–3.2, and 0.1–1.5 birds/ha, respectively. We suggest different grassland types and structures (vegetation height, litter depth, shrub cover) are needed to support priority grassland-bird species in Missouri. © 2011 The Wildlife Society.  相似文献   

15.
Question: What is the nature of the relationships between cover, diversity and abundance of biological soil crusts, cover and diversity of vascular plants, and annual rainfall, soil texture and forestry practices in Callitris glaucophylla woodlands? Location: Arid and semi‐arid Callitris glaucophylla‐domi‐nated woodlands of eastern Australia. Methods: We documented soil crust‐forming mosses, lichens and liverworts at 83 woodland sites along a gradient of declining rainfall. Linear and non‐linear regression were used to examine relationships between soil crust species and attributes of vascular plant communities, and a similarity matrix (species abundance X sites) was subjected to Non‐metric Multi‐Dimensional Scaling (MDS), and Analysis of Similarities (ANOSIM) to show the degree of association between groups of taxa, and soil texture, rainfall classes and forestry practices. Results : We collected 86 taxa. Mosses were dominated by the family Pottiaceae, and lichens were dominated by squamulose forms. Average annual rainfall was highly correlated with soil crust community composition, and loamy soils supported a greater cover and diversity of taxa compared with sandy soils. Increases in tree cover were associated with significant, though weak, increases in abundance, but not diversity, of crusts. Crusts tended to be more diverse in areas that (1) had a sparse cover of ground‐storey plants; (2) were relatively stable ‐ as indicated by the proportion of perennial and/or native plants; (3) had more stable soil surfaces; and (4) were unlogged. Litter cover, overstorey thinning, and livestock grazing had no appreciable effect on crust diversity or cover. Conclusions : Callitris glaucophylla woodlands provide substantial habitat for soil crust organisms, and the dense tree cover and closed canopies of Callitris do not appear to have a major influence on the structure of biological crust communities. Unlike other woodland systems, relatively few patches would be required to reserve a high diversity of crust species.  相似文献   

16.
Riparian forests are increasingly threatened by urban expansion and land use change worldwide. This study examined the relationships between landscape characteristics and woody plant diversity, structure, and composition of small order riparian corridors along an urban-rural land use gradient in the Georgia Piedmont, US. Riparian plant diversity, structure, and composition were related to landscape metrics and land use. Species richness was negatively associated with impervious surfaces and landscape diversity, and positively associated with forest cover and largest forest patch index. Shannon species diversity was strongly related to the biomass of non-native species, especially for the regeneration layer. Urban sites were characterized by high richness of non-native and pioneer species. Developing sites were dominated by the non-native shrub, Ligustrum sinense Lour., and several native overstory trees, mainly Acer negundo L. While agricultural and managed forest sites were composed of ubiquitous species, unmanaged forest sites had a structurally distinct midstory indicative of reduced disturbance. Urban and agricultural land uses showed decreased native stem densities and signs of overstory tree regeneration failure. Results from this study highlight the impact of the surrounding landscape matrix upon riparian forest plant diversity and structure.  相似文献   

17.
The previously sub‐dominant native marine macrophyte Caulerpa filiformis is now dominant on many sub‐tidal rocky reefs in New South Wales (NSW), Australia and is expanding its distribution. As C. filiformis is highly chemically defended and structurally different to co‐occurring habitat‐forming macrophytes, two key attributes that govern fish assemblages, we hypothesized that fish assemblages, particularly herbivorous fishes, would be different at sites where C. filiformis occurred from where it was previously absent and within sites, fish community structure would be correlated to the cover of C. filiformis. We investigated these hypotheses by determining reef‐associated fish assemblage attributes (assemblage structure, species richness, total abundance, Shannon‐Weiner diversity, abundance of herbivorous species) along transects within sites where C. filiformis was present and absent. Surprisingly, despite large patches and very high densities of C. filiformis on the reefs we sampled, at larger spatial scales (i.e., among sites) no fish assemblage metrics differed between sites with large stands of C. filiformis and sites without the alga. Moreover the abundance of one dominant herbivore, the rock cale Aplodactylus lophodon, was greater at sites within large beds of C. filiformis. At smaller spatial scales, however, i.e. within sites where C. filiformis was present, fish assemblages did vary as a function of C. filiformis cover along transects, although this was not consistent across sampling times. Overall, our results suggest that the potential effects of the spread of this alga on faunal communities warrants further investigation.  相似文献   

18.
Restoration of native vegetation often focuses on the canopy layer species, with the assumption that regeneration of the understory elements will occur as a consequence. The goal of this study was to assess the influence of canopy restoration on the composition and abundance of understory plant species assemblages along riparian margins in the Hunter Valley, NSW, Australia. We compared the floristic composition (richness, abundance, and diversity) of understory species between nonrevegetated (open) and canopy revegetated plots across five sites. A number of other factors that may also influence understory vegetation, including soil nutrients, proximity to main channel, and light availability, were also measured. We found that sites where the canopy had been restored had lower exotic species richness and abundance, as well as higher native species cover, but not native species richness, compared with open sites. Multivariate analysis of plots based on plant community composition showed that revegetated sites were associated with lower total species diversity, light availability, and exotic cover. This study has found that the restoration of the canopy layer does result in lower exotic species richness and cover, and higher native species cover and diversity in the understory, a desirable restoration outcome. Our results provide evidence that restoration of native canopy species may facilitate restoration of native understory species; however, other interventions to increase native species richness of the understory should also be considered as part of management practice.  相似文献   

19.
In this long-term study, we examined the invasion by the exotic shrub glossy buckthorn (Rhamnus frangula L.) and the response of co-occurring plants in a large, undisturbed wetland. We first sampled the vegetation in 1991 and repeated the sample 15 years later using the same, permanently located sample units (n = 165). Despite dramatic increases in the abundance of buckthorn, the invasion elicited little apparent response by the resident plant community. Species richness and cover in the herbaceous plant stratum had no apparent relationship with change in buckthorn cover. The number of shrub species other than buckthorn showed no relationship with change in buckthorn cover, but the cover of other shrubs decreased as buckthorn cover increased. Species composition changed independently of changes in buckthorn cover. These results show that dramatic increases in the abundance of an invasive species do not necessarily cause large changes in the native plant community and suggest disturbance history influences community response to invasion.  相似文献   

20.
The Bell Miner (Manorina melanophrys) occurs in logged eucalypt forest in northern NSW with a dense understorey of the invasive Neotropical shrub Lantana (Lantana camara) that is used for nesting. The link between Bell Miners and Lantana is important as the birds aggressively exclude all smaller and similar‐sized birds from their colonies, reducing avian diversity in forest occupied by the species. We monitored the impact of Lantana removal on Bell Miner persistence in several plots in two logged forest sites, along with untreated control plots at one of the sites. Lantana control was successful over 7 years at both sites, with regeneration of native understorey, midstorey and canopy species compensating for the loss of live Lantana cover in the understorey. Bell Miner individuals vacated the treated plots in one site (Creek's Bend) but persisted in the control and treated plots at the second site (Toonumbar National Park). Bell Miner response was correlated with forest structure: birds vacated forest with a sparse understorey (<5 m) but dense midstorey (5–15 m) and canopy (>15 m) at Creek's Bend, but remained at the site with a dense understorey but sparse midstorey and canopy at Toonumbar. We therefore predict that forest restoration that simultaneously reduces Lantana understorey and increases midstorey density will be most successful in reducing the abundance of the despotic Bell Miner and increasing avian diversity in rehabilitated sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号