首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plant Cell, Tissue and Organ Culture (PCTOC) - Adventitious root (AR) culturing is an effective approach for obtaining bioactive compounds from the endangered plant species of Oplopanax elatus...  相似文献   

2.
Genetic transformation of rice (Oryza sativa L.) mediated by Agrobacterium ttumefaciens has been confirmed for japonica varieties and extended to include the more recalcitrant indica varieties. Immature embryos were inoculated with either A. tumefaciens At656 (pCNL56) or LBA4404 (pTOK233). Experimental conditions were developed initially for immature embryos treated with strain At656, based upon both transient and stable -glucuromdase (GUS) activities. However, plant regeneration following selection on G418 (pCNL56 contained the nptII gene) did not occur. Using the same basic protocol, but inoculating immature embryos of rice with LBA4404 (pTOK233), resulted in efficient (about 27%) production of transgenic plants of the japonica variety, Radon, and an acceptable efficiency (from 1–5%) for the indica varieties IR72 and TCS10. Transformation was based upon resistance to hygromycin (pTOK233 contains the hpt gene), the presence of GUS activity (from the gusA gene), Southern blots for detection of the integrated gusA gene, and transmission of GUS activity to progeny in a Mendelian 3:1 segregation ratio. Southern blots indicated two to three copies of the gene integrated in most transformants. Transgenic plants of both the japonica and indica varieties were self-fertile and comparable in this respect to seed-grown plants. Key factors facilitating the transformation of rice by Agrobacterium tumefaciens appeared to be the use of embryos as the expiant, the use of hygromycin as the selection agent (which does not interfere with rice regeneration), the presence of extra copies of certain vir genes on the binary vector of pTOK233, and maintaining high concentrations of acetosyringone for inducing the vir genes during co-cultivation of embryos with Agrobacterium.Abbreviations AS acetosyringone - DMRT Duncan's Multiple Range Test - GUS -glucuronidase - T-DNA transferred DNA We wish to thank Dr. Toshihiko Komari, Japan Tobacco Inc. for providing Ayrobacterium tumefaciens strain LBA4404 (pTOK322). Support by the Rockefeller Foundation in the form of a fellowship to R.R.A. and a grant to T.K.H. is acknowledged. This is journal paper number 14,914 from the Purdue University Agricultural Experiment Station.  相似文献   

3.
Four rice indica genotypes of local importance were transformed with RC7, rice chitinase cDNA clone through Agrobacterium-mediated gene transfer method using mature seed derived calli as explants. The putative hygromycin resistant calli showed varied level of regeneration efficiency ranging from 2.0 to 7.6 %. The stable integration and expression of RC7 was confirmed through polymerase chain reaction (PCR) and Western analysis. Transformation efficiency ranged from 0.9 to 5.2 %. The expression of RC7 (35 kDa chitinase) in different tissues of transgenic plant (root, sheath and leaf) was proved through Western analysis and in terms of increased chitinase activity. The inheritance of transgene was studied through PCR and Western analysis in transgenic plants of Pusa Basmati 1. Bioassays with transgenic plants of local cultivars exhibited enhanced resistance up to 33.3 % to rice sheath blight pathogen Rhizoctonia solani under glasshouse conditions. Enhanced expression or 3-to 4-fold increased activity of chitinase in transgenic plants was correlated with sheath blight resistance.  相似文献   

4.
Cereal embryos sustain severe water deficit at the final stage of seed maturation. The molecular mechanisms underlying the acquisition of desiccation tolerance in seed embryos are similar to those displayed during water deficit in vegetative tissues. The genetic variation among six rice genotypes adapted to diverse environmental conditions was analysed at the proteome level to get further clues on the mechanisms leading to water-stress tolerance. MS analysis allowed the identification of 28 proteins involved in stress tolerance (late embryogenesis abundant proteins), nutrient reservoir activity, among other proteins implicated in diverse cellular processes potentially related to the stress response (e.g., mitochondrial import translocase). Hierarchical clustering and multidimensional scaling analyses revealed a close relationship between the stress-sensitive genotypes, whereas the stress-tolerant varieties were more distantly related. Besides qualitative and significant quantitative changes in embryo proteins across the distinct varieties, we also found differences at post-translational level. The results indicated that late embryogenesis abundant Rab21 was more strongly phosphorylated in the embryos of the sensitive varieties than in the embryos of the tolerant ones. We propose that the differences found in the phosphorylation status of Rab21 are related to stress tolerance.  相似文献   

5.
Genetic analysis of abiotic stress tolerance in crops   总被引:1,自引:0,他引:1  
Abiotic stress tolerance is complex, but as phenotyping technologies improve, components that contribute to abiotic stress tolerance can be quantified with increasing ease. In parallel with these phenomics advances, genetic approaches with more complex genomes are becoming increasingly tractable as genomic information in non-model crops increases and even whole crop genomes can be re-sequenced. Thus, genetic approaches to elucidating the molecular basis to abiotic stress tolerance in crops are becoming more easily achievable.  相似文献   

6.
Indica and japonica are two main subspecies of Asian cultivated rice (Oryza sativa L.) that differ clearly in morphological and agronomic traits, in physiological and biochemical characteristics and in their genomic structure. However, the proteins and genes responsible for these differences remain poorly characterized. In this study, proteomic tools, including two-dimensional electrophoresis and mass spectrometry, were used to globally identify proteins that differed between two sequenced rice varieties (93–11 and Nipponbare). In all, 47 proteins that differed significantly between 93–11 and Nipponbare were identified using mass spectrometry and database searches. Interestingly, seven proteins were expressed only in Nipponbare and one protein was expressed specifically in 93–11; these differences were confirmed by quantitative real-time PCR and proteomic analysis of other indica and japonica rice varieties. This is the first report to successfully demonstrate differences in the protein composition of indica and japonica rice varieties and to identify candidate proteins and genes for future investigation of their roles in the differentiation of indica and japonica rice.  相似文献   

7.
根癌农杆菌介导Bt基因转化水稻的研究   总被引:2,自引:0,他引:2  
为了培育出无筛选标记基因的转基因水稻,试验将loxp-hpt-loxp基因与成基因连锁在-起转化水稻方法,得到loxp-hpt—loxp—Bt转基因水稻植株,再与同质的带有ere基因的水稻杂交,以定向删除潮霉素抗性筛选标记。试验表明以水稻品种“皖粳97”为供试材料,将成熟胚来源的愈伤组织用根癌农杆菌EHA105/pCAMBIA1305.1感染后,筛选出抗性愈伤组织并获得再生植株。经PCR验证,得到20棵转基因水稻植株。  相似文献   

8.
Rice is an important staple crop and fungal blast disease destroys about 10–30% of its global produce, annually. Although genetic manipulation has largely been employed in crop-improvement programmes and agricultural biotechnology, the ease of transformation of several recalcitrant indica cultivars continues to be a challenge. HR-12 and CO-39 are two indica cultivars that are commonly used in breeding programmes, but are susceptible to biotic threats like fungal blast and sheath blight disease. Here in this study, we have optimised a rapid and reproducible transformation protocol for the said cultivars, having compared both the tissue-culture and in-planta methods of transformation. Murashige & Skoog basal media supplemented with maltose and 2.5 mg l−1 2,4-D induced efficient callogenesis in HR-12, while maltose with 3 mg l−1 2,4-D gave optimum results in case of CO-39. The media containing 0.5 mg l−1 NAA, 3 mg l−1 BAP, and 1 mg l−1 kinetin yielded a maximum regeneration efficiency of 62% and 65% in HR-12 and CO-39, respectively. The studies with Agrobacterium tumefaciens, LBA4404 strain harbouring pCAMBIA1303 suggested that although these cultivars demonstrated successful gene-transfer, they failed to regenerate efficiently, post-transformation. Alternatively, our modified in-planta piercing and vacuum infiltration-based protocol resulted in 33–35% transformation efficiency in less than half the time required for tissue-culture based transformation method. As per our knowledge, it is among the highest obtained from existing piercing-based direct transformation protocols in rice, and can also be implemented in genetically manipulating other recalcitrant varieties of rice.  相似文献   

9.
Abiotic stresses may result in significant losses in rice grain productivity. Protein regulation by the ubiquitin/proteasome system has been studied as a target mechanism to optimize adaptation and survival strategies of plants to different environmental stresses. This article aimed at highlighting recent discoveries about the roles ubiquitination may play in the exposure of rice plants to different abiotic stresses, enabling the development of modified plants tolerant to stress. Responses provided by the ubiquitination process include the regulation of the stomatal opening, phytohormones levels, protein stabilization, cell membrane integrity, meristematic cell maintenance, as well as the regulation of reactive oxygen species and heavy metals levels. It is noticeable that ubiquitination is a potential means for developing abiotic stress tolerant plants, being an excellent alternative to rice (and other cultures) improvement programs.  相似文献   

10.
11.
12.
We have generated 3900 enhancer‐based activation‐tagged plants, in addition to 1030 stable Dissociator‐enhancer plants in a widely cultivated indica rice variety, BPT‐5204. Of them, 3000 were screened for water‐use efficiency (WUE) by analysing photosynthetic quantum efficiency and yield‐related attributes under water‐limiting conditions that identified 200 activation‐tagged mutants, which were analysed for flanking sequences at the site of enhancer integration in the genome. We have further selected five plants with low Δ13C, high quantum efficiency and increased plant yield compared with wild type for a detailed investigation. Expression studies of 18 genes in these mutants revealed that in four plants one of the three to four tagged genes became activated, while two genes were concurrently up‐regulated in the fifth plant. Two genes coding for proteins involved in 60S ribosomal assembly, RPL6 and RPL23A, were among those that became activated by enhancers. Quantitative expression analysis of these two genes also corroborated the results on activating–tagging. The high up‐regulation of RPL6 and RPL23A in various stress treatments and the presence of significant cis‐regulatory elements in their promoter regions along with the high up‐regulation of several of RPL genes in various stress treatments indicate that they are potential targets for manipulating WUE/abiotic stress tolerance.  相似文献   

13.
14.
Agrobacterium-mediated transformation of indica rice varieties has been quite difficult as these are recalcitrant to in vitro responses. In the present study, we established a high-efficiency Agrobacterium tumefaciens-mediated transformation system of rice (Oryza sativa L. ssp. indica) cv. IR-64, Lalat, and IET-4786. Agrobacterium strain EHA-101 harboring binary vector pIG121-Hm, containing a gene encoding for β-glucuronidase (GUS) and hygromycin resistance, was used in the transformation experiments. Manipulation of different concentrations of acetosyringone, days of co-culture period, bacterial suspension of different optical densities (ODs), and the concentrations of l-cysteine in liquid followed by solid co-culture medium was done for establishing the protocol. Among the different co-culture periods, 5 days of co-culture with bacterial cells (OD600 nm?=?0.5–0.8) promoted the highest frequency of transformation (83.04 %) in medium containing l-cysteine (400 mg l?1). Putative transformed plants were analyzed for the presence of a transgene through genomic PCR and GUS histochemical analyses. Our results also suggest that different cultural conditions and the addition of l-cysteine in the co-culture medium improve the Agrobacterium-mediated transformation frequencies from an average of 12.82 % to 33.33 % in different indica rice cultivars.  相似文献   

15.
Here, we describe experiments on Tn5 transposase-assisted transformation of indica rice. Transposomes were formed in vitro as a result of hyperactive Tn5 transposase complexing with a transposon that contained a 19-bp tetracycline operator (tetO) sequence. To form modified projectiles for transformation, the Tn10-derived prokaryotic tetracycline repressor (TetR) proteins, which can bind transposomes via the high affinity of TetR for tetO, were immobilized onto the surface of bare gold microscopic particles. These projectiles were introduced into cells of the indica rice cultivar Zhuxian B by particle bombardment. Once projectiles were inside the cell, tetracycline induced an allosteric conformational change in TetR that resulted in the dissociation of TetR from tetO, and thus generated free transposomes. Molecular evidence of transposition was obtained by the cloning of insertion sites from many transgenic plants. We also demonstrated that the introduced foreign DNA was inherited stably over several generations. This technique is a promising transformation method for other plant species as it is species independent.  相似文献   

16.
We constructed binary vectors that were designed for transfer and expression of a gene into rice chromosomes. The binary vectors contained the hygromycin-resistance gene for selection of transformants and multiple-cloning sites within the transfer DNA. In addition, vectors were designed to express foreign genes using four kinds of promoters. We also report a procedure for efficient transformation of rice plants using scutellum-derived calli and theAgrobacterium strain LBA4404.  相似文献   

17.
A cloned gene, Xa21 was transferred into five widely-used Chinese rice varieties through an Agrobacterium-mediated system, and over 110 independent transgenic lines were obtained. PCR and Southern analysis of transgenic plants revealed the integration of the whole Xa21 gene into the host genomes. The integrated Xa21 gene was stably inherited, and segregated in a 3 : 1 ratio in the selfed T1 generation when one copy of the gene was integrated in the transfor-mants. Inoculation tests displayed that transgenic T0 plants and Xa21 PCR-positive T1 plants were highly resistant to bacterial blight disease. The selected Xa21 homozygous resistant transgenic lines with desirable qualities may be propagated as new varieties or utilized in hybrid rice breeding.  相似文献   

18.
19.
Aspen (Populus tremula) and hybrid aspen (P. tremula × P. tremuloides) were transformed with different gene constructs using two types of promoter. The aim was to determine the influence of the reporter gene rolC, controlled by promoters of viral or plant origin, on genetic and morphologic expression of different transgenic aspen clones. An improved transformation method using leaf discs was developed, by which putative transgenic plantlets were regenerated at high efficiencies (up to 34%) on kanamycin-containing medium. Transgenic aspen carrying the rolC gene from Agrobacterium rhizogenes under control of the cauliflower-35S-promoter are reduced in size with smaller leaves, whereas aspen transgenic for the same rolC gene, but under control of the light inducible rbcS promoter from potato, are only slightly reduced in size compared to untransformed controls. However, all clones carrying 35S-rolC and rbcS-rolC genes revealed light-green colouration of leaves when compared to untransformed aspen. Owing to this special feature, constructs were used in which expression of the rolC gene was inhibited by insertion of a transposable element, Ac, from maize. Transgenic aspen transformed with the 35S-Ac-rolC and rbcS-Ac-rolC genes were morphologically similar to untransformed aspen, but out of 54 independently regenerated 35S-Ac-rolC transgenic aspen clones, 30 clones showed light-green/dark green variegated leaves. In contrast, out of 19 independently transformed rbcS-Ac-rolC aspen clones, only two clones revealed light-green/dark green variegated leaves. The role of bacterial strains in transformation, and molecular genetics of transgenic aspen plants (including the function of the transposable element, Ac, in the aspen genome) are discussed  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号