首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background and Aims: While invasive species may escape from natural enemies in thenew range, the establishment of novel biotic interactions withspecies native to the invaded range can determine their success.Biological control of plant populations can be achieved by manipulationof a species' enemies in the invaded range. Interactions weretherefore investigated between a native parasitic plant andan invasive legume in Mediterranean-type woodlands of SouthAustralia. Methods: The effects of the native stem parasite, Cassytha pubescens,on the introduced host, Cytisus scoparius, and a co-occurringnative host, Leptospermum myrsinoides, were compared. The hypothesisthat the parasitic plant would have a greater impact on theintroduced host than the native host was tested. In a fieldstudy, photosynthesis, growth and survival of hosts and parasitewere examined. Key Results: As predicted, Cassytha had greater impacts on the introducedhost than the native host. Dead Cytisus were associated withdense Cassytha infections but mortality of Leptospermum wasnot correlated with parasite infection. Cassytha infection reducedthe photosynthetic rates of both hosts. Infected Cytisus showedslower recovery of photosystem II efficiency, lower transpirationrates and reduced photosynthetic biomass in comparison withuninfected plants. Parasite photosynthetic rates and growthrates were higher when growing on the introduced host Cytisus,than on Leptospermum. Conclusions: Infection by a native parasitic plant had strong negative effectson the physiology and above-ground biomass allocation of anintroduced species and was correlated with increased plant mortality.The greater impact of the parasite on the introduced host maybe due to either the greater resources that this host providesor increased resistance to infection by the native host. Thisdisparity of effects between introduced host and native hostindicates the potential for Cassytha to be exploited as a controltool.  相似文献   

2.
Scotch broom, Cytisus scoparius (Fabaceae), is a shrub native to Europe that is invasive in the USA, New Zealand and Australia. The psyllid Arytainilla spartiophila has been purposely introduced to Australia and New Zealand as a biological control agent of C. scoparius, but is an accidental introduction to California. Lupines (Lupinus spp.) are the closest native taxon to Cytisus in North America, and are therefore considered to be at the highest risk for non-target damage. However, because no lupines are native to Australia or New Zealand, only one imported forage species was evaluated during prior host specificity testing. We conducted a laboratory nymphal transfer experiment, a field choice experiment and a field survey to assess risk to three lupine species (Lupinus albifrons, Lupinus bicolor and Lupinus formosus). In the laboratory, 20% of third-instar nymphs were able to develop to adulthood on L. formosus but not on the other lupine species, while 40% completed development on C. scoparius. In the field experiment, potted lupine and C. scoparius plants were placed beside large infested C. scoparius plants; oviposition occurred on all the potted C. scoparius plants, but on none of the lupines. In the field survey, no A. spartiophila eggs or nymphs were found on naturally occurring lupines growing adjacent to infested C. scoparius. The results indicate that A. spartiophila is not likely to damage or reproduce on lupines in the field. This study provides an example of how field studies can help clarify the host specificity of biological control agents.  相似文献   

3.
Scotch broom (Cytisus scoparius (L.) Link) is a European shrub that has naturalised in several countries worldwide and is recognised as an invasive weed in much of western North America. The mite Aceria genistae (Nalepa) is a coevolved, gall-inducing herbivore associated with Scotch broom in its native range and has been intentionally introduced as a classical weed biological control agent of C. scoparius in Australia and New Zealand. An adventive, never intentionally introduced, population of A. genistae was discovered in Washington and Oregon, U.S.A. in 2005. Surveys for A. genistae in California resulted in the discovery of the gall mite in 11 counties, with a widely scattered distribution. Molecular and morphological assessments confirm the mites collected from galls in California are A. genistae. Whether natural or anthropogenic, the estimated rate of long range dispersal for A. genistae from Washington or Oregon to California ranges from 39 to 62?km/yr. Niche model predictions indicate that A. genistae will continue to expand its distribution throughout much of the Scotch broom-invaded lands of California but areas supporting the weed in the Eastern U.S.A. appear less suitable. Modelling evidence also indicates that portions of Chile and Argentina are suitable for colonisation by A. genistae, also suggesting that expansion of the mite is possible in areas of Tasmania, southeastern Australia, and New Zealand where the mite was released. The environmental safety of A. genistae in relation to non-target plants and the influence of herbivory on Scotch broom fitness are discussed.  相似文献   

4.
Increases in the frequency and duration of droughts under global climate change could have implications for plant–insect interactions, and could either increase or decrease the effects of weed biological control agents. In this study, we used greenhouse and field experiments to examine the impacts of drought stress on the abundance and impacts of the adventive psyllid Arytainilla spartiophila Forster (Hemiptera: Psyllidae, Arytaininae) on its target weed Scotch broom, Cytisus scoparius (L.) Link (Fabaceae), in California, USA. The psyllid impacted plant growth in both field and greenhouse experiments, whereas drought stress affected plant growth in the greenhouse only, suggesting that other factors besides water availability may be more limiting for plants in the field. Effects on psyllid survival were consistent with the plant vigor hypothesis, which predicts that herbivores will perform better on vigorously growing plants; psyllid numbers were lower on drought-stressed plants in the greenhouse and were correlated with plant growth in both the greenhouse and the field. In the greenhouse, the combined effects of the psyllid and drought stress were additive, indicating that the effects of the psyllid were consistent across unstressed and drought-stressed plants. Although the psyllid is unlikely to control Scotch broom on its own, results suggest that it may work in conjunction with drought stress to suppress Scotch broom.  相似文献   

5.
Invasive species and anthropogenic habitat alteration are major drivers of biodiversity loss. When multiple invasive species occupy different trophic levels, removing an invasive predator might cause unexpected outcomes owing to complex interactions among native and non-native prey. Moreover, external factors such as habitat alteration and resource availability can affect such dynamics. We hypothesized that native and non-native prey respond differently to an invasive predator, habitat alteration and bottom-up effects. To test the hypothesis, we used Bayesian state-space modelling to analyse 8-year data on the spatio-temporal patterns of two endemic rat species and the non-native black rat in response to the continual removal of the invasive small Indian mongoose on Amami Island, Japan. Despite low reproductive potentials, the endemic rats recovered better after mongoose removal than did the black rat. The endemic species appeared to be vulnerable to predation by mongooses, whose eradication increased the abundances of the endemic rats, but not of the black rat. Habitat alteration increased the black rat''s carrying capacity, but decreased those of the endemic species. We propose that spatio-temporal monitoring data from eradication programmes will clarify the underlying ecological impacts of land-use change and invasive species, and will be useful for future habitat management.  相似文献   

6.
7.
1. Since its recent arrival in Britain, the planthopper Prokelisia marginata has spread widely around saltmarshes on the east and south coast of England and south Wales, feeding on Common Cordgrass, Spartina anglica, itself an invasive non-native species. 2. Results suggest that P. marginata populations in Britain benefit from a degree of natural enemy release. No evidence of parasitism was found in over 71 000 eggs, nymphs, and adults inspected. The only potential natural enemy control was suggested by a positive correlation between the densities of planthoppers and generalist spiders. 3. Experimental exposure under both glasshouse and field conditions to typical field densities of planthoppers resulted in significant negative effects on a number of host plant performance metrics. 4. Spartina anglica is important for stabilising estuarine sediments and has been deliberately planted for this purpose in the past. Its weakening as a result of heavy planthopper herbivory could have serious consequences for the long-term stability of Britain's vulnerable saltmarsh habitats.  相似文献   

8.
Acanthoscelides macrophthalmus is a seed predator that has become widely distributed along with its native host, Leucaena leucocephala (Mimosoideae), which is a neotropical leguminous tree and one of the most invasive plants worldwide. Previous studies revealed that A. macrophthalmus is able to host-shift to several mimosoid species. Here, we aim to test the host-shift potential to other mimosoid and non-mimosoid plants and possible roles of interspecific competition, genetic background, and plant chemistry in host-shift. First, we found that A. macrophthalmus predator completed development on two new hosts: pigeon pea Cajanus cajan and Cajanus scarabaeoides (Faboideae), by rearing from seeds collected in South/Southeast Asia and Hawaii. In contrast, in most regions, both Cajanus species were infested only by other beetle species. Second, we performed no-choice tests using 11 leguminous plants, covering all three subfamilies as potential hosts, including the two new hosts. A Taiwanese A. macrophthalmus population reared in the laboratory on Leucaena did not deposit eggs on any of the seeds of each tested species. To compare host-shift responses between populations, we also used a Hawaiian A. macrophthalmus population that had completed its development on freshly collected Leucaena seeds from the field. This population deposited eggs onto and hatching larvae burrowed into C. cajan seeds, although none developed beyond the larval stage. Third, the surface chemical composition of seed-pods of L. leucocephala and the two Cajanus species was dissimilar, although that of seeds was highly similar. Finally, all of the host-shifting A. macrophthalmus populations shared the same haplotypic group.  相似文献   

9.
Ecosystems may suffer from the impact of invasive species. Thus, understanding the mechanisms contributing to successful invasions is fundamental for limiting the effects of invasive species. Most intuitive, the enemy release hypothesis predicts that invasive species might be more successful in the exotic range than resident sympatric species owing to the absence of coevolution with native enemies. Here, we test the enemy release hypothesis for the invasion of Europe by the North American spider Mermessus trilobatus. We compare the susceptibility of invasive Mermessus trilobatus and a native species with similar life history to a shared predator with which both species commonly co‐occur in Europe. Contrary to our expectations, invasive Mermessus trilobatus were consumed three times more frequently by native predators than their native counterparts. Our study shows that invasive Mermessus trilobatus is more sensitive to a dominant native predator than local sympatric species. This suggests that the relation between the invasive spider and its native predator is dominated by prey naïveté rather than enemy release. Further studies investigating evolutionary and ecological processes behind the invasion success of Mermessus trilobatus, including testing natural parasites and rapid reproduction, are needed to explain its invasion success in Europe.  相似文献   

10.
Climate warming causes range shifts of many species toward higher latitudes and altitudes. However, range shifts of host species do not necessarily proceed at the same rates as those of their enemies and symbionts. Here, we examined how a range shifting plant species performs in soil from its original range in comparison with soil from the expansion range. Tragopogon dubius is currently expanding from southern into north-western Europe and we examined how this plant species responds to soil communities from its original and expansion ranges. We compared the performance of T. dubius with that of the closely related Tragopogon pratensis , which has a natural occurrence along the entire latitudinal gradient. Inoculation with the rhizosphere soil from T. dubius populations of the original range had a more negative effect on plant biomass production than inoculation with rhizosphere soil from the expansion range. Interestingly, the nonrange expander T. pratensis experienced a net negative soil effect throughout this entire range. The effects observed in this species pair may be due to release from soil born enemies or accumulation of beneficial soil born organisms. If this phenomenon applies broadly to other species, then range expansion may enable plants species to show enhanced performance.  相似文献   

11.
Muñoz AA  Arroyo MT 《Oecologia》2004,138(1):66-73
Studies on plant-pollinator interactions have largely neglected the potential negative effects of the predators of pollinators on seed output, even though anti-predatory behaviour of pollinators may affect visitation patterns, pollen transfer, and therefore potentially, plant reproductive output. We tested the hypothesis that the presence of lizards and insectivorous birds, by reducing pollinator visitation, can have significant negative effects on seed output in the insect-pollinated, genetically self-incompatible lower alpine Andean shrub, Chuquiraga oppositifolia (Asteraceae). The lower alpine belt supports a high density of territorial Liolaemus (Tropiduridae) lizards and low shrubs interspersed among rocks of varying sizes, the latter inhabited by lizards and commonly used by flycatchers Muscisaxicola (Tyrannidae) as perching sites. In a 2×2 factorial predator-exclusion experiment, visitation rates of the most frequent pollinators of C. oppositifolia (the satyrid butterfly Cosmosatyrus chilensis and the syrphid fly Scaeva melanostoma), the duration of pollinator visits, and seed output, were 2–4 times greater when lizards were excluded, while birds had no effect. In a natural experiment, visits by S. melanostoma were 9 times shorter, and pollinator visitation rates of C. chilensis and S. melanostoma, and C. oppositifolia seed output were 2–3 times lower on shrubs growing adjacent to lizard-occupied rocks compared to those growing distant from rocks. Our results, verified for additional Andean sites, suggest that lizard predators can alter the behaviour of pollinators and elicit strong top-down indirect negative effects on seed output. Such effects may be especially important in high alpine plant communities, where pollinator activity can be low and erratic, and pollen limitation has been reported.  相似文献   

12.
Insect–plant interactions occur in several ways and have considerable environmental and ecological importance. Many feeding strategies have evolved among herbivorous insects, with host–herbivore systems likely being influenced by trophobionts with ants. We investigated how these interactions vary across elevation gradients by evaluating the structure of the herbivorous insect community and ants associated with Baccharis dracunculifolia at three distinct elevations (800, 1100, and 1400 m a.s.l.) on a mountain in southeastern Brazil. Moreover, we evaluated the diversity and specialisation of interactions between herbivores and host plants along the elevational gradient. We sampled herbivores and ants on 60 plants at each elevation (totalling 180 plant individuals). Herbivore species composition differed among elevations, as did interaction diversity and specialisation. Richness and abundance of chewing insects increased with elevation, while β‐diversity among patches of the host plant was higher at the lowest elevation, probably due to the patchy occurrence of B. dracunculifolia. Richness and abundance of sap‐sucking insects were higher at the intermediate elevation, possibly due to local environmental conditions. We observed a positive relationship between ant and herbivore trophobiont richness on B. dracunculifolia. We found that interactions were more specialised and less diverse at higher elevations compared to the lowest elevation. Changes in vegetation and environmental variables shaped species distributions and their ecological interactions along the elevation gradient. Our study demonstrates that increased elevation changes the structure and patterns of interactions of the herbivore insect guilds associated with the host plant B. dracunculifolia. Ant effects depend on the context, the environment, and the species of ants involved, and are essential for the presence of insect trophobionts.  相似文献   

13.
14.
The non-native invasive plant Chromolaena odorata (Asteraceae) was studied at 6 sites, with a chronosequence of ages from <1 to 15 years, at St Lucia, South Africa. C. odorata density, biomass, seed production and soil seed banks were quantified in three microsites: sun, semi-shade and shade. C. odorata density decreased with invasion age, apparently as a self-thinning process. Biomass per unit area and seed production/plant increased over the first 10 years, but declined greatly at 15 years. C. odorata plants grew larger and had much greater seed production in the sun relative to semi-shade, with small plants producing few if any seeds in the shade. Seed production in the sun varied from 2000 (<1-year old site) to 260000 (10 year) seeds m–2 annum–1. About 20–46% of seeds produced were germinable and showed the same trend with age of invasion, but was particularly low after 15 years. Assessment of soil seed banks immediately prior to seed production (seed 10 months old), indicates that about 5–10% of seeds in the sun and 11–22% in the shade were still germinable, resulting in germinable seed densities of 12–385 and 158–511 m–2, respectively (excluding the 15-year old site). A greenhouse trial showed that burial of seeds, relative to those at the surface, and provision of less water, significantly improved seed persistence in the soil, while light intensity had no effect. Control of C. odorata is difficult due to rapid attainment of reproductive maturity, large production of wind-dispersed seeds and a short-term persistent seed bank. An integrated control strategy either excluding fire (coastal forest sites) or using fire prior to seed release in July/August to kill plants and soil-stored seeds immediately prior to seed production, together with biological, chemical and/or physical control, should be explored.  相似文献   

15.
Native to Asia, mile-a-minute Persicaria perfoliata, is an invasive weed in North America, and the weevil Rhinoncomimus latipes is a host-specific insect agent which occurs widely in China. We conducted a common garden experiment to compare P. perfoliata plant responses of native and invasive populations to herbivory by the weevils from different origins. We found weevils from Hunan, Hubei and Heilongjiang Provinces had strong, moderate and weak ability to suppress host plant, respectively. Weevils from Hunan and Hubei Provinces had stronger impact on the growth of both native and invasive plant populations than the weevil from Heilongjiang Province. The losses in seed output of invasive plants were also significantly greater than natives in the weevil treatments. Our results suggested that the weevil population from Hunan Province may be the most suitable for the control of mile-a-minute, while the population from Heilongjiang Province may be the least suitable due to climate matching.  相似文献   

16.
An endophagous seed predator, Acanthoscelides macrophthalmus (Coleoptera: Chrysomelidae: Bruchinae), utilizes Neotropical Leucaena (Fabaceae: Mimosoideae). One of its hosts, Leucaena leucocephala , is a fast-growing nitrogen-fixing tree that serves as a multipurpose beneficial plant but eventually becomes an aggressive invader where it was introduced. Herein, we report A. macrophthalmus invasion of the Far East, South Asian tropics and subtropics (Japanese Pacific Islands, Taiwan, Southern China, Northern Thailand and Southern India). Of other field-collected mimosoid legumes, an introduced tree, Falcataria moluccana , in Taiwan was found to be used by the seed predator. Conversely, our published work review revealed that the seed predator had retained high host specificity to Leucaena species in its native and introduced regions. Acanthoscelides macrophthalmus was able to utilize aphagously postharvest mature seeds for oviposition and larval development, which is a trait of post-dispersal seed predators. We confirmed that A. macrophthalmus that was reared on L. leucocephala was able to utilize F. moluccana as well. Although the relatively high host specificity of the oligophagous beetle is suitable for controlling the weedy L. leucocephala , the potential host range expansion confirmed by this study must be cautioned.  相似文献   

17.
A ragweed leaf beetle, Ophraella communa (Coleoptera: Chrysomelidae), has been highlighted as a potential biological control agent of Ambrosia artemisiifolia. O. communa and A. artemisiifolia are native in North America and alien species in East Asia and Europe. As an invasive weed, A. artemisiifolia causes severe economic losses as reducing agricultural production as well as producing severe allergenic pollen. As an herbivore insect, O. communa has strong host preference on A. artemisiifolia. All the developmental stages of O. communa can be found on A. artemisiifolia and it attacks a single plant in repeated and extended manners. With few individuals on A. artemisiifolia, O. communa can completely defoliate before pollen production. Therefore, O. communa had been focused as a biological control of this invasive weed, but its introduction was denied because of possible damage on an important crop, Helianthus annuus. O. communa was accidentally introduced in East Asia and Europe in 1990s and 2010s, respectively. Fortunately, O. communa population was well established to suppress A. artemisiifolia in the introduced areas. Following detailed field surveys and host specificity tests of O. communa were conducted and proved a strong potential of O. communa as a biological control agent of A. artemisiifolia. Moreover, O. communa has been investigated in physiological and evolutionary studies. In this study, the potential of O. communa as a biological control agent and a study organism are reviewed.  相似文献   

18.
The Nile perch (Lates niloticus) is a notorious invasive species. The introductions of Nile perch into several lakes and rivers in the Lake Victoria region led to the impoverishment of trophic food webs, particularly well documented in Lake Victoria. Additionally, its parasites were co-introduced, including Dolicirroplectanum lacustre (Monogenea, Diplectanidae). Dolicirroplectanum lacustre is the single monogenean gill parasite of latid fishes (Lates spp.) inhabiting several major African freshwater systems. We examined the intra-specific diversification of D. lacustre from Lates niloticus in Lake Albert, Uganda (native range) and Lake Victoria (introduced range) by assessing morphological and genetic differentiation, and microhabitat preference. We expected reduced morphological and genetic diversity for D. lacustre in Lake Victoria compared with Lake Albert, as a result of the historical introductions. We found that D. lacustre displayed high morphological variability within and between African freshwaters, with two morphotypes identified, as in former studies. The single shared morphotype between Lake Albert and Lake Victoria displayed similar levels of haplotype and nucleotide diversity between the lakes. Mitonuclear discordance within the morphotypes of D. lacustre indicates an incomplete reproductive barrier between the morphotypes. The diversification in the mitochondrial gene portion is directly linked with the morphotypes, while the nuclear gene portions indicate conspecificity. Based on our results, we reported reduced genetic and morphological diversity, potentially being a result of a founder effect in Lake Victoria.  相似文献   

19.
Recent studies have revealed that some bacteria can inhabit plant seeds, and they are likely founders of the bacterial community in the rhizosphere of or inside plants at the early developmental stage. Given that the seedling establishment is a critical fitness component of weedy plant species, the effects of seed endophytic bacteria (SEB) on the seedling performance are of particular interest in weed ecology. Here, we characterized the SEB in natural populations of Capsella bursapastoris, a model species of weed ecology. The composition of endophytic bacterial community was evaluated using deep sequencing of a 16S rDNA gene fragment. Additionally, we isolated bacterial strains from seeds and examined their plant growth‐promoting traits. Actinobacteria, Firmicutes, Alpha‐, and Gammaproteobacteria were major bacterial phyla inside seeds. C. bursapastoris natural populations exhibited variable seed microbiome such that the proportion of Actinobacteria and Alphaproteobacteria differed among populations, and 60 out of 82 OTUs occurred only in a single population. Thirteen cultivable bacterial species in six genera (Bacillus, Rhodococcus, Streptomyces, Staphylococcus, Paenibacillus, Pseudomonas) were isolated, and none of them except Staphylococcus haemolyticus were previously reported as seed endophytes. Eight isolates exhibited plant growth‐promoting traits like phosphate solubilization activity, indole‐3‐acetic acid, or siderophore production. Despite the differences in the bacterial communities among plant populations, at least one isolated strain from each population stimulated shoot growth of either C. bursapastoris or its close relative A. thaliana when grown with plants in the same media. These results suggest that a weedy plant species, C. bursapastoris, contains bacterial endophytes inside their seeds, stimulating seedling growth and thereby potentially affecting seedling establishment.  相似文献   

20.
In Saccharomyces cerevisiae, Cwc21p is a protein of unknown function that is associated with the NineTeen Complex (NTC), a group of proteins involved in activating the spliceosome to promote the pre-mRNA splicing reaction. Here, we show that Cwc21p binds directly to two key splicing factors—namely, Prp8p and Snu114p—and becomes the first NTC-related protein known to dock directly to U5 snRNP proteins. Using a combination of proteomic techniques we show that the N-terminus of Prp8p contains an intramolecular fold that is a Snu114p and Cwc21p interacting domain (SCwid). Cwc21p also binds directly to the C-terminus of Snu114p. Complementary chemical cross-linking experiments reveal reciprocal protein footprints between the interacting Prp8 and Cwc21 proteins, identifying the conserved cwf21 domain in Cwc21p as a Prp8p binding site. Genetic and functional interactions between Cwc21p and Isy1p indicate that they have related functions at or prior to the first catalytic step of splicing, and suggest that Cwc21p functions at the catalytic center of the spliceosome, possibly in response to environmental or metabolic changes. We demonstrate that SRm300, the only SR-related protein known to be at the core of human catalytic spliceosomes, is a functional ortholog of Cwc21p, also interacting directly with Prp8p and Snu114p. Thus, the function of Cwc21p is likely conserved from yeast to humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号