首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intravascular thrombosis is a major cardiovascular complication responsible for high mortality worldwide. Existing thrombolytic agents are expensive and have various side effects. As a consequence, researchers continue to search for better thrombolytic agents. Fibrinolytic proteases especially those of microbial origin are considered as potential therapeutic candidates for thrombosis. The current study reports fibrinolytic protease from a bacterial isolate Stenotrophomonas sp. KG-16-3, as it exhibits high fibrinolytic activity on fibrin agarose plate. Studies on fibrinolytic protease from Stenotrophomonas sp. are lacking. So, a detailed study was conducted for the production and purification of fibrinolytic protease. Optimizing process parameters using the Design of Experiments method enhanced the yield by 1.5-fold. The fibrinolytic enzyme was purified by ammonium sulfate precipitation, ion-exchange and gel-filtration chromatography resulting in 7.1-fold purification and 16.7% yield with specific activity of 383.8?U/mg. The purified enzyme exhibited higher fibrinolytic activity than plasmin and had a molecular weight of 39?kDa. Optimal activity of the enzyme was observed at 50?°C and pH 10. The enzyme exhibited stability up to 60?°C, over pH 7–10 and in the presence of different metal ions and solvents. The activity of the enzyme was significantly reduced in the presence of phenylmethyl sulfonyl fluoride, iodoacetic acid and 1,10-phenanthroline, suggesting that the enzyme belonged to the serine–cysteine metalloprotease category. The present study is the first ever report on the Design of Experiments based optimization of fermentation conditions for the production of fibrinolytic protease from Stenotrophomonas sp.  相似文献   

2.
Protease producing Streptomyces sp. A6 was isolated from intertidal zone of the coast of Diu (Gujarat, India). Plackett–Burman method was applied to identify important factors (shrimp waste, FeCl3, ZnSO4 and pH) influencing protease production by Streptomyces sp. A6. Further optimization was done by response surface methodology using central composite design. The concentrations of medium components for higher protease production as optimized using the above approach were (g l?1): Shrimp waste, 14; FeCl3, 0.035; ZnSO4, 0.065 and pH, 8.0. This statistical optimization approach led to production of 129.02 ± 2.03 U ml?1 of protease which was 4.96 fold higher compared to that obtained using the unoptimized medium. The protease production was scaled to 3 l in a 5-l bench fermenter using optimized medium which further increased the production by 63.4%. Deproteinization and chitin recovery obtained at the end of fermentation was 85.12 ± 4.7 and 70.58 ± 1.33%, respectively. The present study is the first report on statistical optimization of medium components for production of protease by Streptomyces species using cheaper raw material such as shrimp waste. The study also explored the possibility Streptomyces sp. A6 for reclamation of shrimp wastes.  相似文献   

3.
Classical (one-variable-at-a-time) and statistical methods (Plackett-Burman and Central composite design) were used to optimise growth medium for the production of cholesterol oxidase (COX) from Rhodococcus sp. NCIM 2891. COX activities from the classically and statistically optimised media were 0.75 and 3.25 U/ml, respectively. The statistically optimised medium had 4.33- and 9.7-fold higher enzymatic activity than the classically optimised and un-optimised basal medium, respectively. The ratio of enzyme production to cell growth rate was 29-fold higher in our statistically optimised medium than in the basal medium, indicating that the enzyme production could be classified as mixed type of growth. Cell-bound COX accounted for 90.68?±?2 % of the total enzymatic activity of the growth medium. Interactions between the COX-inducing substrate cholesterol and medium growth substrates yeast extract and (NH4)2HPO4 significantly enhanced the production of cell-bound COX. Our results validate the statistical approach as a potential technique for achieving the large-scale production of cell-bound COX from Rhodococcus sp. NCIM 2891.  相似文献   

4.
In this study, Streptomyces sp. Al-Dhabi-49 was isolated from the soil sample of Saudi Arabian environment for the simultaneous production of lipase and protease in submerged fermentation. The process parameters were optimized to enhance enzymes production. The production of protease and lipase was found to be maximum after 5 days of incubation (139.2 ± 2.1 U/ml, 253 ± 4.4 U/ml). Proteolytic enzyme increases with the increase in pH up to 9.0 (147.2 ± 3.6 U/ml) and enzyme production depleted significantly at higher pH values. In the case of lipase, production was maximum in the culture medium containing pH 8.0 (166 ± 1.3 U/ml). The maximum production of protease was observed at 40 °C (174 ± 12.1 U/ml) by Streptomyces sp. Lipase activity was found to be optimum at the range of temperatures (30–50 °C) and maximum production was achieved at 35 °C (168 ± 7.8 U/ml). Among the evaluated carbon sources, maltose significantly influenced on protease production (218 ± 12.8 U/ml). Lipase production was maximum when Streptomyces sp. was cultured in the presence of glucose (162 ± 10.8U/ml). Among various concentrations of peptone, 1.0% (w/v) significantly enhanced protease production. The lipase production was very high in the culture medium containing malt extract as nitrogen source (86 ± 10.2 U/ml). Protease production was maximum in the presence of Ca2+ as ionic source (212 ± 3.8 U/ml) and lipase production was enhanced by the addition of Mg2+ with the fermentation medium (163.7 ± 6.2 U/ml).  相似文献   

5.
The production of ligninolytic enzymes by the fungus Schizophyllum sp. F17 using a cost-effective medium comprised of agro-industrial residues in solid-state fermentation (SSF) was optimized. The maximum activities of the enzymes manganese peroxidase (MnP), laccase (Lac), and lignin peroxidases (LiP) were 1,200, 586, and 109 U/L, respectively, on day 5 of SSF. In vitro decolorization of three structurally different azo dyes by the extracellular enzymes was monitored to determine its decolorization capability. The results indicated that crude MnP, but not LiP and Lac, played a crucial role in the decolorization of azo dyes. After optimization of the dye decolorization system with crude MnP, the decolorization rates of Orange IV and Orange G, at an initial dye concentration of 50 mg/L, were enhanced to 76 and 57%, respectively, after 20 min of reaction at pH 4 and 35°C. However, only 8% decolorization of Congo red was observed. This enzymatic reaction system revealed a rapid decolorization of azo dyes with a low MnP activity of 24 U/L. Thus, this study could be the basis for the production and application of MnP on a larger scale using a low-cost substrate.  相似文献   

6.
A fibrinolytic enzyme from Bacillus subtilis strain Al was purified by chromatographic methods, including DEAE Sephadex A-50 column chromatography and Sephadex G-50 column gel filtration. The purified enzyme consisted of a monomeric subunit and was estimated to be approximately 28 kDa in size by SDS-PAGE. The specific activity of the fibrinolytic enzyme was 1632-fold higher than that of the crude enzyme extract. The fibrinolytic activity of the purified enzyme was approximately 0.62 and 1.33 U/ml in plasminogen-free and plasminogen-rich fibrin plates, respectively. Protease inhibitors PMSF, DIFP, chymostatin, and TPCK reduced the fibrinolytic activity of the enzyme to 13.7, 35.7, 15.7, and 23.3%, respectively. This result suggests that the enzyme purified from B. subtilis strain Al was a chymotrypsin-like serine protease. In addition, the optimum temperature and pH range of the fibrinolytic enzyme were 50°C and 6.0–10.0, respectively. The N-terminal amino acid sequence of the purified enzyme was identified as Q-T-G-G-S-I-I-D-P-I-N-G-Y-N, which was highly distinguished from other known fibrinolytic enzymes. Thus, these results suggest a fibrinolytic enzyme as a novel thrombolytic agent from B. subtilis strain Al.  相似文献   

7.
Extracellular keratinase production by the feather-degrading Amazonian isolate Bacillus sp. P45 was evaluated with various growth substrates. Higher enzyme production occurred with feather meal (FM) in comparison to casein, gelatin, and cheese whey, suggesting the specificity of this strain for the utilization of keratinous substrates. Supplementation of FM medium with carbohydrates reduced enzyme production, probably due to catabolite repression. Increased keratinase yield was achieved when NH4Cl was added to FM medium. The effects of FM and NH4Cl concentrations on enzyme production were investigated using a 22 central composite design. Feather meal was the most significant parameter, while NH4Cl concentrations resulted in slight differences in enzyme yield. In the range studied, optimal concentrations of FM and NH4Cl were 43-50 g l−1 and 1.8-8.6 g l−1, respectively, resulting in an effective low-cost medium for the production of keratinolytic protease. Crude keratinase showed maximum activity at 50 °C and pH 7.0, and was strongly inhibited by EDTA, indicating the importance of metal ions for activity/stability. The crude keratinase from mesophilic Bacillus sp. P45 could potentially be used in the bioconversion of recalcitrant keratinous wastes through an environmentally friendly and energy-saving process, producing protein hydrolysates with commercial value for utilization as animal feed and fertilizers.  相似文献   

8.
A fibrinolytic protease secreting producing Bacillus amyloliquefaciens strain KJ10 was initially screened from the fermented soybean. Maximum productivity was obtained in the culture medium after 40 h incubation, 34 °C incubation temperature at pH 8.0. Fibrinolytic protease production was enhanced in the culture medium with 1% sucrose (3712 ± 52 U/mL), 1% (w/v) yeast extract (3940 ± 28 U/mL) and 0.1% MgSO4 (3687 ± 38 U/mL). Enzyme was purified up to 22.9-fold with 26%recovery after Q-Sepharose HP column chromatography. After three steps purification, enzyme activity was 1606U/mg and SDS-PAGE analysis revealed 29 kDa protein and enzyme band was detected by zymograpy. Enzyme was highly active at pH 8.0, at wide temperature ranges (40 °C ? 55 °C) and was activated by Mn2+ (102 ± 3.1%) and Mg2+ (101.4 ± 2.9%) ions. The purified fibrinolytic enzyme was highly specific against N-Suc-Ala-Ala-Pro-Phe-pNA (189 mmol/min/mL) and clot lytic activity reached 28 ± 1.8% within 60 minin vitro. The purified fibrinolytic enzyme showed least erythrocytic lysis activity confirmed safety to prevent various health risks, including hemolytic anemia. Based on this study, administration of fibrinolytic enzyme from B. amyloliquefaciens strain KJ10 is safe for clinical applications.  相似文献   

9.

Background

Nattokinase (NK) is a serine protease enzyme of the subtilisin family. It exhibits a strong fibrinolytic activity. The fibrinolytic enzymes from Bacillus sp. have attracted interest as thrombolytic agents because of their efficiency in the fibrinolytic process including plasmin activation.

Methods

In the present study, VIT garden soil was collected and subjected to isolation process in order to screen for the NK production. Screening for NK enzyme was performed by radial caseinolytic assay. The production of NK enzyme was done in two different production medium for comparative studies. The NK enzyme was purified by gel permeation chromatography. The activity of the purified NK was checked by clot lysis and casein digestion assay. To investigate the structural basis of NK and fibrinogen interaction and also to identify the best binding mode, molecular dynamics and docking studies were performed.

Results

Based on the morphological and biochemical characterization, the isolate was identified as Bacillus sp. The overall purification fold of NK was about 3 with the specific activity of 664U/mg and 9.9% yield. Homogeneity of the purified enzyme was analyzed and confirmed by the single band obtained in SDS-PAGE. Molecular weight of the purified protease was estimated as 25 kDa. Purified NK enzyme exhibited 97% of effective clot lysis activity. The NK was docked in to the knob region of the fibrinogen at its binding site using Dock server. A total of 26 residues of fibrinogen and 29 residues of NK constitute the interface region. However, 9 residues of fibrinogen (THR238, MET264, LYS266, ARG275, THR277, ALA279, ASN308, MET310, and LYS321) and 8 residues of NK (GLY61, SER63, THR99, PHE189, LEU209, TYR217, ASN218, and MET222) are involved in intact binding.

Conclusions

A significant amount of NK enzyme was obtained from Bacillus sp. The docking analysis revealed that the NK and fibrinogen adopt an extended binding pattern and interacts with the crucial residues to exhibit their activity.
  相似文献   

10.
Proteases have found a wide application in the several industrial processes, such as laundry detergents, protein recovery or solubilization, prion degradation, meat tenderizations, and in bating of hides and skins in leather industries. But the main hurdle in industrial application of proteases is their economical production on a large scale. The present investigation aimed to exploit the locally available inexpensive agricultural and household wastes for alkaline protease production using Thermoactinomyces sp. RS1 via solid-state fermentation (SSF) technique. The alkaline enzyme is potentially useful as an additive in commercial detergents to mitigate pollution load due to extensive use of caustic soda-based detergents. Thermoactinomyces sp. RS1 showed good protease production under SSF conditions of 55 °C, pH 9, and 50 % moisture content with potato peels as solid substrate. The presented findings revealed that crude alkaline protease produced by Thermoactinomyces sp. RS1 via SSF is of potential application in silver recovery from used X-ray films.  相似文献   

11.
We investigated protease formation by Cephalosporium sp. strain KM388, which produced trypsin inhibitor in the same cultures, in medium containing polypeptone, meat extract, and glucose (natural medium) and in medium containing NaNO3, glucose, and yeast extract (semisynthetic medium). In natural medium, protease was secreted into the culture broth after cessation of growth caused by consumption of the polypeptone, the growth-limiting substrate. Enzyme formation in the stationary growth phase was due to de novo and so-called preferential synthesis, because cycloheximide immediately inhibited enzyme formation. In semisynthetic medium, protease was produced in parallel with mycelial growth, but production was repressed by the addition of polypeptone to the medium; protease production began after the added polypeptone was consumed. On the other hand, if glucose was eliminated from natural medium, the lag period of initiation of enzyme production was reduced until the late exponential phase. The addition of phosphate up to a concentration of 1.0% to natural medium also shortened the lag period and damped the pH change of the broth during cultivation.  相似文献   

12.
Microbial xylanases and associated enzymes degrade the xylans present in lignocellulose in nature. Xylanase production by Cellulosimicrobium sp. CKMX1, isolated from mushroom compost, produced a cellulase-free extracellular endo-1, 4-β-xylanase (EC 3.2.1.8) at 35 °C and pH 8.0. Apple pomace—an inexpensive and abundant source of carbon—supported maximal xylanase activity of 500.10 U/g dry bacterial pomace (DBP) under solid state fermentation. Culture conditions, e.g., type of medium, particle size of carbon source, incubation period, temperature, initial pH, and inoculum size, were optimized and xylanase activity was increased to 535.6 U/g DBP. CMCase, avicelase, FPase and β-glucosidase activities were not detected, highlighting the novelty of the xylanase enzyme produced by CKMX1. Further optimization of enzyme production was carried out using central composite design following response surface methodology with four independent variables (yeast extract, urea, Tween 20 and carboxymethyl cellulose), which resulted in very high levels of xylanase (861.90 U/g DBP). Preliminary identification of the bacterial isolate was made on the basis of morphological and biochemical characters and confirmed by partial 16Sr RNA gene sequencing, which identified CKMX1 as Cellulosimicrobium sp. CKMX1. A phylogenetic analysis based on the 16Sr RNA gene sequence placed the isolate within the genus Cellulosimicrobium, being related most closely to Cellulosimicrobium cellulans strain AMP-11 (97% similarity). The ability of this strain to produce cost-effective xylanase from apple pomace on a large scale will help in the waste management of apple pomace.  相似文献   

13.
The aerobic bacteria associated with soft rot in onions (Allium cepa) were isolated and identified as a Vibrio sp., Micrococcus epidermidis, Pseudomonas cepacia, an Acinetobacter sp., a Xanthomonas sp., Bacillus polymyxa, and Bacillus megaterium. With the cup-plate assay method, no pectin hydrolase could be detected from any of these isolates when they were cultured in pectin medium, but lyase and pectinesterases were detectable. Onion tissue cultures showed pectin hydrolase activity for P. cepacia and B. polymyxa and lyase and pectinesterase activities for all of the isolates, usually at higher levels of activity than those of the pectin medium culture filtrates. In both culture media, Vibrio sp. showed the highest lyase and pectinesterase activities. In the viscometric test, all of the isolates achieved at least a 50% decrease in viscosity for lyase enzyme, with M. epidermidis and Vibrio sp. recording viscosity decreases as high as 83%. The ability to cause soft rot in onion bulbs was demonstrated by P. cepacia and Xanthomonas sp. Benzoic acid at a concentration of 0.8 mg/ml caused total suppression of enzyme production, whereas sodium benzoate at this concentration reduced pectinesterase production by 71% and lyase production by 72%. The possible use of these preservatives in the control of soft rot in onions is noted.  相似文献   

14.
Cost-effective production of proteases, which are robust enough to function under harsh process conditions, is always sought after due to their wide industrial application spectra. Solid-state production of enzymes using agro-industrial wastes as substrates is an environment-friendly approach, and it has several advantages such as high productivity, cost-effectiveness, being less labor-intensive, and less effluent production, among others. In the current study, different agro-wastes were employed for thermoalkali-stable protease production from Bacillus subtilis K-1 under solid-state fermentation. Agricultural residues such as cotton seed cake supported maximum protease production (728?U?ml?1), which was followed by gram husk (714?U?ml?1), mustard cake (680?U?ml?1), and soybean meal (653?U?ml?1). Plackett–Burman design of experiment showed that peptone, moisture content, temperature, phosphates, and inoculum size were the significant variables that influenced the protease production. Furthermore, statistical optimization of three variables, namely peptone, moisture content, and incubation temperature, by response surface methodology resulted in 40% enhanced protease production as compared to that under unoptimized conditions (from initial 728 to 1020?U?ml?1). Thus, solid-state fermentation coupled with design of experiment tools represents a cost-effective strategy for production of industrial enzymes.  相似文献   

15.
The purpose of the present research is to study the production of thermophilic alkaline protease by a local isolate, Streptomyces sp. CN902, under solid state fermentation (SSF). Optimum SSF parameters for enzyme production have been determined. Various locally available agro-industrial residues have been screened individually or as mixtures for alkaline protease production in SSF. The combination of wheat bran (WB) with chopped date stones (CDS) (5:5) proved to be an efficient mixture for protease production as it gave the highest enzyme activity (90.50 U g−1) when compared to individual WB (74.50 U g−1) or CDS (69.50 U g−1) substrates. This mixed solid substrate was used for the production of protease from Streptomyces sp. CN902 under SSF. Maximal protease production (220.50 U g−1) was obtained with an initial moisture content of 60%, an inoculum level of 1 × 108 (spore g−1 substrate) when incubated at 45°C for 5 days. Supplementation of WB and CDS mixtures with yeast extract as a nitrogen source further increased protease production to 245.50 U g−1 under SSF. Our data demonstrated the usefulness of solid-state fermentation in the production of alkaline protease using WB and CDS mixtures as substrate. Moreover, this approach offered significant benefits due to abundant agro-industrial substrate availability and cheaper cost.  相似文献   

16.

Fibrinolytic proteases are enzymes that degrade fibrin. They provide a promising alternative to existing drugs for thrombolytic therapy. A protease isolated from the filamentous fungus Mucor subtilissimus UCP 1262 was purified in three steps by ammonium sulfate fractionation, ion exchange, and molecular exclusion chromatographies, and characterized biochemically and structurally. The purified protease exhibited a molecular mass of 20 kDa, an apparent isoelectric point of 4.94 and a secondary structure composed mainly of α-helices. Selectivity for N-succinyl-Ala–Ala–Pro–Phe-p-nitroanilide as substrate suggests that this enzyme is a chymotrypsin-like serine protease, whose activity was enhanced by the addition of Cu2+, Mg2+, and Fe2+. The enzyme showed a fibrinolytic activity of 22.53 U/mL at 40 °C and its contact with polyethylene glycol did not lead to any significant alteration of its secondary structure. This protein represents an important example of a novel fibrinolytic enzyme with potential use in the treatment of thromboembolic disorders such as strokes, pulmonary emboli, and deep vein thrombosis.

  相似文献   

17.
Deoiled Jatropha seed cake was assessed for its suitability as substrate for enzyme production by solid-state fermentation (SSF). Solvent tolerant Pseudomonas aeruginosa PseA strain previously reported by us was used for fermentation. The seed cake supported good bacterial growth and enzyme production (protease, 1818 U/g of substrate and lipase, 625 U/g of substrate) as evident by its chemical composition. Maximum protease and lipase production was observed at 50% substrate moisture, a growth period of 72 and 120 h, and a substrate pH of 6.0 and 7.0, respectively. Enrichment with maltose as carbon source increased protease and lipase production by 6.3- and 1.6-fold, respectively. Nitrogen supplementation with peptone for protease and NaNO(3) for lipase production also enhanced the enzyme yield reaching 11,376 U protease activity and 1084 U lipase activity per gram of Jatropha seed cake. These results demonstrated viable approach for utilization of this huge biomass by solid-state fermentation for the production of industrial enzymes. This offers significant benefit due to low cost and abundant availability of cake during biodiesel production.  相似文献   

18.
Enhancement of the activity of an inducible chloroacetate dehalogenase was carried out by efficient and safe mutation with UV and microwave irradiation along with optimization of culture conditions. First, a stable mutant of Pseudomonas sp. CGMCC 3267-MW6 with chloroacetate dehalogenase activity of 2.77 U/mL (3-fold higher activity than the wild strain) was produced by mutation. The maximum activity of this inducible enzyme was measured as 29.41 U/mL when Pseudomonas sp. CGMCC 3267-MW6 was cultured with 4 g/L 3-hydroxybutyrate for 12 h followed by 40 mM 3-chlorobutyrate for an additional 20 h. Production of the enzyme was found to be associated with growth of the bacterium. According to these results, we determined that the optimum inducer of chloroacetate dehalogenase activity would be a hard degradable substrate. The optimum auxiliary carbon source would be the primary metabolite of the substrate or the precursor of the metabolite. The optimum time of inducer supplementation would be during the middle stage of exponential phase. The optimum concentration of substrate would be sufficient but would not induce inhibition. Finally, the optimum collection time would be at the later stage of exponential phase. This work provides further knowledge of chloroacetate dehalogenase and the optimization of inducible enzyme production.  相似文献   

19.
Eight different agro-residues were tested for α-amylase and protease production by using Bacillus licheniformis ZB-05. Among them, rice husk (RH) was proved as the best substrate for two enzymes (α-amylase 443 U/g and protease 469,000 U/g). Maximum enzyme production was observed to be 30 % initial moisture, with a growth period of 36 h in 20 and 30 % inoculum volumes for α-amylase and protease, respectively. The best enzyme recovery from solid mass was obtained when extracted with tap water. Among the tested various nitrogen sources, 1 % ammonium sulphate followed by 2 % Bacto liver, 2 % ammonium sulphate and 1 % Bacto casaminoacid served as the best inorganic and organic nitrogen sources for α-amylase and protease production, respectively. As additional carbon sources, 2 % soluble starch enhanced α-amylase production, while 1 % maltose enhanced protease production.  相似文献   

20.
An enzyme from Aspergillus oryzae KSK-3, isolated from commercial rice-koji for miso brewing, showed fibrinolytic activity in liquefied rice culture and was analyzed. A culture filtrate of A. oryzae KSK-3 was concentrated by ultrafiltration and subsequently purified to electrophoretic homogeneity by ammonium sulfate precipitation, ion-exchange chromatography, and gel filtration. The molecular weight of the purified enzyme was estimated to be approximately 30 kDa by SDS-PAGE and high-performance liquid chromatography–size exclusion chromatography. Its maximum fibrinolytic activity was observed at pH 6 and 50°C. The purified protease was stable between pH 4 and 9, at temperatures of up to 50°C. The activity of the enzyme was highest with S-2238 and was considerably inhibited by phenylmethylsufonyl fluoride and pefabloc SC. These results indicate that the enzyme is a serine protease. Moreover, the enzyme is edible and exhibited very high productivity (2,960 U urokinase per milliliter of culture broth). Taken together, the findings of this study indicate that the A. oryzae KSK-3 enzyme may be used as a natural agent for oral fibrinolytic therapy and nutraceutical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号