首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 373 毫秒
1.
  1. Wood ants, species of the subgenus Formica s. str., are one of the most important groups of insects in forest ecosystems due to their high abundance and activity.
  2. We assessed the foraging pressure of Formica polyctena and Formica rufa, two dominant wood ant species in the Białowieża Forest. In addition, we compared coniferous and mixed stands in these respects.
  3. In mixed stands F. polyctena visited more trees per plot than F. rufa. F. polyctena might forage a larger area due to higher population sizes, which further confirms higher foraging pressure of F. polyctena in comparison with F. rufa.
  4. In our study area, host trees of the ant–aphid mutualism were larger in diameter than nonhost trees. The ants also preferred trees situated closer to their nests. In both mixed and coniferous stands, the most visited tree species was Norway spruce. Thus, we can conclude that Norway spruce seems to be preferred by the ant. The decline of living spruce in the Białowieża Forest may endanger their food source and impact the vitality of ant colonies.
  相似文献   

2.
  • 1 The relationships between red wood ants (Formica rufa group) and other ground‐dwelling arthropods were studied in young managed forests stands in Eastern Finland. The main objectives were: (i) to test the influence of stand type (dominant tree species; age: sapling versus pole stage) and numbers of red wood ants on the occurrence of other ground‐dwelling arthropods and (ii) to study the occurrence of red wood ants versus other arthropods on a distance gradient from ant mounds. We used pitfall traps set in 5–14‐year‐old sapling stands and 30–45‐year‐old pole‐stage stands of Scots pine (Pinus sylvestris L.) and birch (Betula spp.) forests.
  • 2 Pitfall trap catches of red wood ants did not vary significantly between the forest stand types, although some groups of other arthropods showed clear responses to stand type (e.g. catches of other Formicinae and Gnaphosidae were higher in sapling stands than in pole‐stage stands). The number of red wood ants clearly explained less of the variation in assemblages of other ground‐dwelling arthropods than the forest stand type.
  • 3 Red wood ant numbers decreased significantly with distance from the mounds, but the other ground‐dwelling arthropods were insensitive to this gradient or even showed a preference for proximity to ant mounds and high ant activity.
  • 4 The results obtained in the present study suggest that wood ants do not have strong effects on several other ground‐dwelling arthropod groups in young managed forests other than in the immediate vicinity of their mounds.
  相似文献   

3.
Mound‐building ants (Formica spp.), as key species, have large impacts on organisms and ecosystem functions in boreal Eurasian forests. The density, sizes and locations of ant mounds determine the magnitude and the spatial distribution of ant activities in forest ecosystems. Clear‐cutting can destroy wood ant colonies, and the species, abundance, dimensions and locations of ant mounds may change as forest stand structure changes with stand age. We compared ant species composition, ant mound numbers and dimensions, and the spatial distribution of mounds in Norway spruce [Picea abies (L.) Karst.] stands of different age (5, 30, 60 and 100 years) in eastern Finland. The mound density of Formica aquilonia Yarr. was greater in the two oldest stand age classes, while most mounds of Formica rufa L., Formica polyctena Först., Formica lugubris Zett., Formica exsecta Nyl. and Formica pressilabris Nyl. were found in the two youngest age classes. The mean volume, the volume per area and height/diameter ratio of F. aquilonia mounds increased with stand age. In the oldest stand age class, mounds were slightly smaller in well‐lit locations than in shade and near stand edges than further from the edges indicating that new mounds are established in well‐lit locations. Similarly, the longest slopes of the mounds faced south, indicating the importance of exposure to the sun. F. aquilonia mounds were concentrated near stand edges, and the spatial distribution of the mounds was aggregated in some stands. At the ecosystem level, the aggregation of ant mounds near stand edges may increase the edge productivity, as mounds concentrate resources to the edges and release nutrients after abandonment.  相似文献   

4.
In many ant–plant mutualisms, ants establish colonies in hollow thorns, leaf pouches, or other specialized structures on their host plants, which they then defend from herbivores. Resource heterogeneity could affect the maintenance of these mutualisms if it leads to one or both partners altering their investment in the interaction. Such a phenomenon may be especially pertinent to the Acacia–ant mutualism found in East African savannas, where termite mounds have a profound effect on the spatial structuring of resources used by both plants and ants. Here, we examined whether the proximity to termite mounds of Acacia drepanolobium trees is associated with variation in the behavior of one of their ant associates, Crematogaster nigriceps. We found that ant colonies near termite mounds had decreased aggressive responses to simulated herbivory as well as increased off‐tree movement. We hypothesize that these changes are the result of resident ant colonies near termite mounds shifting investment from defense of their host plant to foraging for nearby resources.  相似文献   

5.
Ants are important components of most soil invertebrate communities, and can affect the flow of energy, nutrients and water through many terrestrial ecosystems. The vast majority of ant species build nests in the mineral soil, but a small group of ants in temperate and boreal forests of Eurasia and North America build large parts of their nests above‐ground using organic materials collected from the surrounding soil. Many studies have shown that ants nesting in mineral soil can affect water infiltration rates, soil organic matter (OM) content, and nutrient cycling, but much less is known on how mound‐building ants influence soil physical and chemical properties. In this paper we summarize what is known on the soil impacts of organic mound‐building ants in temperate and boreal forests, and how these ants could be affected by ecosystem disturbance and future climate change. Much of this information comes from studies on Formica rufa group ants in Europe, which showed that CO2 emissions and concentrations of C, N, and P are usually higher in ant mounds than in the surrounding forest soil. However, ant mounds are a minor component of total soil C and nutrient pools, but they do increase spatial heterogeneity of soil water and available nutrients. Mound‐building ants can also impact tree growth, which could change the quantity and quality of OM added to soil. Forest management, fire, and projected climate change, especially in boreal forests, could affect mound‐building ant population dynamics, and indirectly, soil properties.  相似文献   

6.
The mound building ant Formica exsecta Nyl. is widely distributed in grassland ecosystems of the Central European Alps. We studied the impact of these ants on seed bank and vegetation patterns in a 11 ha subalpine grassland, where we counted over 700 active ant mounds. The mounds showed a distinct spatial distribution with most of them being located in tall‐grass, which was rarely visited by ungulates (red deer; Cervus elaphus L.). Heavily grazed short‐grass, in contrast, seemed to be completely avoided by ants as only few mounds were found in this vegetation type. The species composition of the ant mound and grassland seed banks was quite similar, i.e. from 15 common plant species 12 were found in both seed bank types. We found the same proportions of myrmecochorous seeds in ant mound and grassland soil samples. In contrast, the number of seeds was 15 times higher in mound compared with the grassland soil samples. Also, the vegetation growing on ant mounds significantly differed from the vegetation outside the mounds: graminoids dominated on ant mounds, herbaceous and myrmecochorous species in the grassland vegetation. We found significant continuous changes in vegetation composition on gradients from the ant mound centre to 1 m away from the mound edge. Overall, F. exsecta was found to have a considerable impact on seed bank and vegetation patterns in the grassland ecosystem studied. These insects not only altered grassland characteristics in the close surrounding of their mounds, but also seem to affect the entire ecosystem including, for example, the spatial use of the grassland by red deer.  相似文献   

7.
1. The influence of a wood ant, Formica aquilonia, on the defoliation of the white birch, Betula pubescens, and on its invertebrate community was studied in ant-exclusion experiments during two outbreaks, the decline phase of the autumnal moth, Epirrita autumnata, and the peak year of the birch aphid, Euceraphis punctipennis, not tended by ants. 2. The numbers of the wood ant and Symydobius oblongus, a tended aphid, in birch foliage showed a strong positive correlation, and the former decreased rapidly when the distance from the ant mound increased, confirming that there was a distance-related gradient in arboreal ant predation. There may have been a parallel reduction in soil amelioration by ants through nest construction and food gathering. 3. The application of a glue ring around the trunk excluded ants totally from the canopy, inhibiting predation but not fertilization. 4. Ant-exclusion resulted in a 90–95% reduction in the growth of tended aphid colonies by mid-season. 5. Outbreak populations of the autumnal moth and the birch aphid were reduced by 45–67% and 77%, respectively, in control trees and correlated negatively with ant numbers. 6. The total percentage of leaf area damaged by moth larvae was 34% lower in ant-foraged than in unforaged trees. 7. Neither the distance from the ant mound nor its interaction with the glue treatment had any effect on the herbivores or folivory, indicating that the possible soil-ameliorating effect was weaker than predation, which reduced herbivore numbers at every distance studied (4–20 m). 8. Predation by ants also affected the abundance of syrphid larvae, predatory on both aphids, the percentage parasitism by a wasp, Aleiodes testaceus, on the autumnal moth, and thereby (or directly) its age (size) distribution. The presence of ants had no influence on spider abundance. 9. It is concluded that predation rather than soil amelioration is likely to be the reason why the degree of folivory and, during serious outbreaks, the mortality of trees are lower in the vicinity of wood-ant mounds.  相似文献   

8.
Abstract 1. We monitored three different‐sized wood ant (Formica aquilonia Yarrow) mounds over a 3‐year period in Finnish boreal forests dominated by Norway spruce (Picea abies Karst.), to assess the seasonal temperature dependency of ant activity. Additionally, we also monitored Norway spruce trees around the mounds for descending honeydew foragers. 2. The amount of collected honeydew and prey and its composition, as well as the carbon (C), nitrogen (N), and phosphorus (P) in honeydew and invertebrate prey was also investigated. 3. The number of warm days (average temperature above 20 °C) and the amount of precipitation differed among the years. Ant activity at the mounds (but not on the trees) was highly correlated with air temperature throughout the ant‐active season (May–September), but ant activity in spring and autumn was lower than in summer at similar temperatures. During all 3 years, honeydew played a major role in wood ant nutrition (78–92% of dry mass). Invertebrate prey was mainly Diptera (on average 26.2%), Coleoptera (12.5%), Aphidina (9.3%), and Arachnoida (8.5%). 4. The total amounts of C, N, and P input brought into the ant mounds in the form of food (both honeydew and prey) on the stand level were 12.6–39.0, 1.6–4.6 and 0.1–0.4 kg ha?1 year?1, respectively, which is equivalent to 2–6%, 12–33% and 27–58% of the fluxes in annual needle litterfall in typical boreal Norway spruce forests. Thus, wood ants can play a significant role in short term and local N and P cycling of boreal forest ecosystems.  相似文献   

9.
Ant‐hemipteran mutualisms are keystone interactions that can be variously affected by warming: these mutualisms can be strengthened or weakened, or the species can transition to new mutualist partners. We examined the effects of elevated temperatures on an ant‐aphid mutualism in the subalpine zone of the Rocky Mountains in Colorado, USA. In this system, inflorescences of the host plant, Ligusticum porteri Coult. & Rose (Apiaceae), are colonized by the ant‐tended aphid Aphis asclepiadis Fitch or less frequently by the non‐ant tended aphid Cavariella aegopodii (Scopoli) (both Hemiptera: Aphididae). Using an 8‐year observational study, we tested for two key mechanisms by which ant‐hemipteran mutualisms may be altered by climate change: shifts in species identity and phenological mismatch. Whereas the aphid species colonizing the host plant is not changing in response to year‐to‐year variation in temperature, we found evidence that a phenological mismatch between ants and aphids could occur. In warmer years, colonization of host plant inflorescences by ants is decreased, whereas for A. asclepiadis aphids, host plant colonization is mostly responsive to date of snowmelt. We also experimentally established A. asclepiadis colonies on replicate host plants at ambient and elevated temperatures. Ant abundance did not differ between aphid colonies at ambient vs. elevated temperatures, but ants were less likely to engage in tending behaviors on aphid colonies at elevated temperatures. Sugar composition of aphid honeydew was also altered by experimental warming. Despite reduced tending by ants, aphid colonies at elevated temperatures had fewer intraguild predators. Altogether, our results suggest that higher temperatures may disrupt this ant‐aphid mutualism through both phenological mismatch and by altering benefits exchanged in the interaction.  相似文献   

10.
1. The size–distance relationship among honeydew‐collecting foragers of the red wood ant Formica rufa was investigated. Within the colony territory, the size (as measured by head width) and fresh weight of samples of foragers were determined for ants ascending and descending trees near, and farther from, the central nest mound. 2. The mean size of the ants was significantly higher at far trees than at near trees in six out of the seven colonies investigated, confirming the general presence of the size–distance relationship. 3. In three colonies, a load–distance relationship was also found. For a given head width, honeydew‐carrying ants descending far trees were significantly heavier than those descending near trees (i.e. they were carrying heavier loads from trees farther away from the central nest mound). 4. This is the first time that both load–distance and size–distance relationships have been reported in foraging workers from the same ant colony. 5. The combined effects of these characteristics suggest that colony foraging efficiency is enhanced by far trees being visited by the larger workers that then return with heavier loads of honeydew.  相似文献   

11.
Abstract.
  • 1 The yellow subterranean ant Lasius flavus is generally considered to have a single queen in mature nests. Yet, many anecdotal observations have suggested that the conspicuous earth mounds of this ant may, at least occasionally, contain several queens and their offspring.
  • 2 To estimate the number of matrilines per mound, samples for horizontal starch gel electrophoresis were collected from a total of thirty-seven mounds in three sites of old chalk-grassland in southern England.
  • 3 Allozymatic variation at an esterase and hexokinase locus showed that probably more than 50% of the mounds contained more than one queen and that the mean number of queens per mound is at least 1.5–2.
  • 4 Further results strongly suggested that workers from different matrilines may share the same galleries, at least in the top of the mound.
  • 5 The apparently variable social structure of Lasius flavus colonies is discussed, both technically and with reference to ecological processes related to the presence of ants in the nest mounds.
  相似文献   

12.
Ants are widely employed by plants as an antiherbivore defence. A single host plant can associate with multiple, symbiotic ant species, although usually only a single ant species at a time. Different plant‐ant species may vary in the degree to which they defend their host plant. In Kenya, ant–acacia interactions are well studied, but less is known about systems elsewhere in Africa. A southern African species, Vachellia erioloba, is occupied by thorn‐dwelling ants from three different genera. Unusually, multiple colonies of all these ants simultaneously and stably inhabit trees. We investigated if the ants on V. erioloba (i) deter insect herbivores; (ii) differ in their effectiveness depending on the identity of the herbivore; and (iii) protect the tree against an important herbivore, the larvae of the lepidopteran Gonometa postica. We show that experimental exclusion of ants leads to greater levels of herbivory on trees. The ants inhabiting V. erioloba are an effective deterrent against hemipteran and coleopteran, but not lepidopteran herbivores. Defensive services do not vary among ant species, but only Crematogaster ants exhibit aggression towards G. postica. This highlights the potential of the V. erioloba–ant mutualism for studying ant–plant interactions that involve multiple, simultaneously resident thorn‐dwelling ant species.  相似文献   

13.
1. The consequences to plants of ant–aphid mutualisms, particularly those involving invasive ants, are poorly studied. Ant–aphid mutualisms may increase or decrease plant fitness depending on the relative cost of herbivory by ant‐tended aphids versus the relative benefit of increased ant suppression of other (non‐aphid) herbivores. 2. We conducted field and greenhouse experiments in which we manipulated the presence and absence of cotton aphids (Aphis gossypii) on cotton plants to test the hypothesis that a mutualism between cotton aphids and an invasive ant, the red imported fire ant (Solenopsis invicta), benefits cotton plants by increasing fire ant suppression of caterpillars. We also manipulated caterpillar abundance to test whether the benefit of the mutualism varied with caterpillar density. 3. We found that more fire ants foraged on plants with cotton aphids than on plants without cotton aphids, which resulted in a significant reduction in caterpillar survival and caterpillar herbivory of leaves, flower buds, and bolls on plants with aphids. Consequently, cotton aphids indirectly increased cotton reproduction: plants with cotton aphids produced 16% more bolls, 25% more seeds, and 10% greater seedcotton mass than plants without aphids. The indirect benefit of cotton aphids, however, varied with caterpillar density: the number of bolls per plant at harvest was 32% greater on plants with aphids than on plants without aphids at high caterpillar density, versus just 3% greater at low caterpillar density. 4. Our results highlight the potential benefit to plants that host ant–hemipteran mutualisms and provide the first experimental evidence that the consequences to plants of an ant–aphid mutualism vary at different densities of non‐aphid herbivores.  相似文献   

14.
15.
Ant–plant relationship is a model for the study of the ecology and evolution of interspecific interactions. In direct ant–plant mutualism (i.e., plants providing food or nesting places for ants, and ants protecting the plants in return) ants provide nutrients to plants. However, whether a similar mechanism exists in indirect ant–plant mutualism (i.e., an ant–aphid–plant system) remains unknown. In this work, we used the 15N stable isotope method to study altitudinal variations in the roles of ants in the nutrient transfer of oak (Quercus liaotungensis). Our work shows that ants deliver nitrogen in indirect ant–plant interactions, and that the effect of nutrient transfer differed significantly with altitude. Ants’ trophic level at high altitudes was significantly lower than that at low altitudes, indicating that the degree of ant–aphid mutualism was greater at high altitudes, which may be beneficial in nitrogen transfer. Our work suggests that ant–aphid mutualism might be context dependent, such that it affects nutrient transfer in the food web, and that this context dependency is an important factor that influences altitudinal variation in nutrient transfer.  相似文献   

16.
  • 1 African mahogany Khaya senegalensis is a high‐value timber tree. Pilot plantings showed that the fruit‐spotting bug Amblypelta lutescens causes severe damage of the tree in the wet–dry tropics of northern Australia. The weaver ant Oecophylla smaragdina is an efficient biocontrol agent in some horticulture crops. To investigate whether the ants control this pest, field experiments were conducted from April 2006 to January 2009 at two study sites in the Darwin area, Australia. A laboratory experiment was carried out in March 2007 at Berrimah Farm.
  • 2 During the experimental period, in the weaver ant treatments, the overall percentage of trees damaged by the pest was 0–8% at both sites, and the damaged trees were attacked once only. In the treatments without weaver ants, however, the damage level was > 80% at Berrimah Farm and 31–100% at Howard Springs, and the damaged trees were attacked more than once.
  • 3 The mean percentage of trees damaged per monitoring occasion was 0–2.6% in the weaver ant treatments at both sites, whereas, in the treatments without the ants, the damage percentages were 14.2–27.0% at Howard Springs and 28.2–48.6% at Berrimah Farm.
  • 4 Extrafloral nectar of African mahoganies is attractive to weaver ants. Fruit‐spotting bugs only damage the tender parts of flushing shoots and growing tips. Weaver ants live on sugar solution and meat, and they frequently harvest extrafloral nectar on growing shoots, on which they catch nymphs of the pest for their meat supply. The aggressive behaviour of the ants also repels the pest away from flushing shoots.
  • 5 The data suggest that weaver ants were effective biocontrol agents of fruit‐spotting bugs, and the ants can be used to manage the pest on African mahoganies.
  • 6 The present study demonstrates that the introduced African mahogany comprises another major host of the fruit‐spotting bug.
  相似文献   

17.
  • 1 African mahogany Khaya senegalensis is a high‐value timber tree species widely grown in central Africa, south‐east Asia and northern Australia. Pilot plantings show that the tree grows well in the wet‐dry tropical areas of northern Australia, and the shoot borer Hypsipyla robusta (Lepidoptera: Pyralidae) is a potential pest of the tree. The weaver ant Oecophylla smaragdina is an efficient biocontrol agent in some horticulture crops. To investigate whether the ants control shoot borers, field experiments were conducted at two sites near Darwin, Australia from April 2006 to January 2009.
  • 2 In the weaver ant treatments, the overall percentage of trees damaged by shoot borers was 0–2.7% at Berrimah Farm and 0–4.2% at Howard Springs, and the damaged trees were attacked once only. In the treatments without weaver ants, however, 9.9–52.1% trees were damaged at Berrimah Farm, and 6.3–64.6% at Howard Springs, and the damaged trees were generally attacked more than once.
  • 3 At both sites, significantly fewer trees on each monitoring occasion were damaged in weaver ant treatments than in treatments without weaver ants.
  • 4 The mean percentage of overall flushing shoots damaged by the pest at both sites was significantly lower in weaver ant treatments compared with treatments without weaver ants.
  • 5 Fewer shoots were damaged per damaged tree in weaver ant treatments compared with treatments without weaver ants.
  • 6 The data obtained suggest that weaver ants were effective biological control agents of the shoot borer, and that the ants can be used to manage the pest on African mahogany trees.
  相似文献   

18.
Although species interactions are often proposed to be stronger at lower latitudes and elevations, few studies have evaluated the mechanisms driving such patterns. In this study, we assessed whether, and by which mechanisms, abiotic changes associated with elevation altered the outcome of an ant–aphid protection mutualism. To do so, we characterized the multi‐trophic interactions among the ant Formica podzolica, the aphid Aphis varians, and aphid natural enemies occurring on the plant Chamerion angustifolium within replicate high and low elevation valleys. Low (versus high) elevation sites had longer summers (snowmelt 13 days earlier) and were on average 1.1°C warmer and 41% drier throughout the year. At low elevations, individual ant colonies consumed approximately double the volume of carbohydrate baits, likely due to a higher foraging tempo, and possibly due to a greater demand for sugar‐ versus protein‐rich resources (as indicated by stable isotope analysis). Wild aphid colonies at low elevations were visited by 1.4‐fold more natural enemies (controlling for variation in aphid abundance), while experimental aphid colonies on potted plants were tended 52% more frequently by ants. As a result, ants increased aphid colony survival by 66% at low elevations but had no detectable effect at high elevations; at low (versus high) elevations aphid colonies without ants had lower survival, demonstrating stronger predator effects, while aphid colonies with ants had higher survival, demonstrating even stronger ant benefits. Analyses for the effects of mean summer temperature yielded qualitatively identical results to those based on elevation. Collectively, these findings support predictions for a greater sensitivity of higher trophic levels to warming and demonstrate how species interactions can vary across environmental gradients due to simultaneous changes in species traits and abundances across multiple trophic levels.  相似文献   

19.
Kailen A. Mooney  Kunal Mandal 《Oikos》2010,119(5):874-882
Protection mutualisms often involve multiple species of protector that vary in quality as mutualists. Because protectors may compete for access to mutualists, concordance between competitive ability and degree of benefit will determine the overall strength of multi‐species mutualisms. We compared the abilities of two similarly sized congener ants as competitors for, and mutualists of pine‐feeding aphids, and how insectivorous birds affected each ant–aphid mutualism. Formica planipilis and F. podzolica were indistinguishable in forager abundance, but the former was 13‐fold more abundant at competition baits and provided 11‐fold more benefits to aphids. These results highlight how, in a single environment, a great ecological distance can exist between two congener ants of similar size. Insectivorous birds disrupted the two mutualisms to a similar extent, reducing aphid and ant abundance by 91% and 39% respectively. Nevertheless, birds had an important influence on the relative benefits of the two ants to aphids: where F. planipilis consistently benefited aphids, F. podzolica only did so in the absence of birds. Consequently, the presence of insectivorous birds and ant species identity jointly determined whether ant–aphid mutualisms occurred in pine canopies and the strength of such interactions. Our study highlights the inter‐relatedness of competition, predation and mutualism, and how competition can serve to strengthen mutualism by filtering inferior mutualists.  相似文献   

20.
Question: What is the role of mound‐building ants (Lasius flavus) in successional changes of a grassland ecosystem towards a spruce forest? Location: Slovenské Rudohorie Mountains, Slovakia; ca. 950 m a.s.l. near the Obrubovanec point (1020 m a.s.l.; 48°41′N, 19°39′E). Methods: Both chronosequence data along a successional gradient and temporal data from long‐term permanent plots were collected on ants, spruce establishment, and vegetation structure, together with additional data on spruce growth. Results: There are more spruce seedlings on ant mounds (4.72 m?2) than in the surrounding vegetation (0.81 m?2). Spruce seedlings grow faster on these mounds compared to surrounding areas. The first colonization wave of seedlings was rapid and probably occurred when grazing prevailed over mowing. Ant colony presence, mound volume, and plant species composition change along the successional gradient. Mounds become bigger when partly shaded but shrink in closed forest, when ant colonies disappear. Shade‐tolerant acidophylic species replace grassland plants both on the mounds and in surrounding areas. Conclusions: The massive occurrence of Lasius flavus anthills contributes to a runaway feedback process that accelerates succession towards forest. The effect of ants as ecosystem engineers is scale‐dependent: although they stabilize the system at the scale of an individual mound, they may destabilize the whole grassland system over a longer time scale if combined with changes in mowing regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号