首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first empirically supported phylogenetic hypothesis of relationships for the southern African endemic butterfly tribe Dirini is presented. Data derived from the morphology and ecology of the adults and immature stages (33 characters), and portions of the mitochondrial gene cytochrome oxidase I (COI) and the nuclear genes elongation factor 1α (EF1α) and wingless (WG) (totalling 1734 bp) were used to infer the relationships of the in‐group genera. An expanded molecular dataset using four genera from the Nymphalini and Satyrini to root the tree, and three genera from the Melanitini to test the monophyly of the tribe, was analysed using parsimony and Bayesian methods. Estimates of divergence times were calculated using two fossil calibrations under a relaxed molecular clock model. The monophyly of the tribe and each in‐group genus were strongly supported. Key findings are the sister‐taxon relationship of Aeropetes and Tarsocera, the apparent simultaneous or nearly simultaneous radiation of four lineages, the polyphyly of the species within Torynesis, and the apparent trans‐Atlantic dispersal of the ancestors of Manataria about 40 Ma. Estimates of divergence times indicate that the tribe has undergone two major radiations since its origin: the first when they left forest habitats in the mid–late Oligocene, shortly after the radiation of the grasses (Poaceae), and the second in the early‐middle Pliocene, coinciding with the aridification of southern Africa and the spread of conditions that favoured C4 grasses over the C3 grasses that dirine larvae prefer to eat. The high species diversity within the tribe appears to be partly a taxonomic artefact that may have resulted from the misinterpretation of climate‐related phenotypic variation within extant species. Relocation and breeding experiments should test this hypothesis.  相似文献   

2.
The evolution of parental care strategies in aculeate (stinging) wasps and bees has been much studied from a functional perspective, but relatively little phylogenetic information is available to place this in a rigorous historical context, especially at the species level. We used mitochondrial cytochrome oxidase I and two nuclear genes, the elongation factor‐1α and LW rhodopsin, to investigate the phylogeny of Sphecidae digger wasps. We focus particularly on the tribe Ammophilini, a clade of nonsocial apoid wasps that exhibit unusually diverse parental care strategies. We analysed a 2232 bp dataset for 40 ammophilines plus nine other taxa from within the remaining Sphecidae. Our Bayesian phylogeny provides strong support for the monophyly of Ammophilini and for the monophyly of all six individual ammophiline genera, except that the position of P. affinis within the genus Podalonia is only weakly supported. The monophyly of some, but not all, previously designated species groups within the genus Ammophila is supported. We discuss the implications of our results for the evolution of morphological traits used previously in ammophiline systematics.  相似文献   

3.
Increased mitochondrial (mt) genomes can provide more sets of genome‐level characteristics for resolving deeper phylogeny. Limited information with respect to the Trochoidea mitochondrial genome organization is available; besides, monophyly and internal relationships of the superfamily still remain a matter of discussion. To resolve the monophyly and internal phylogenetic controversies of Trochoidea and expand our understanding for mt genomic characteristic evolution among Trochoidea, the phylogenetic trees were reconstructed using 13 newly sequenced complete mt genomes and 35 genomes from GenBank, and both the maximum likelihood and Bayesian inference analyses were highly supported. Vetigastropoda phylogenetic analyses recovered the monophyly of Trochoidea. Trochoidea phylogenetic analyses and genetic distances supported the non‐monophyly of Tegulidae and Tegula, indicating that the taxonomic status of several genera (Rochia, Tectus and Cittarium) should be revised and Tegula, Omphalius and Chlorostoma should be placed as a same genus. The close affinity between Tectus virgatus and Rochia was also revealed. Three‐nucleotide insertion in nad1, nine‐nucleotide insertion and six‐nucleotide deletion in nad5 are detected in Tegulidae, Tectus and Rochia, respectively. Gene orders within Trochoidea are stable, with gene rearrangements exclusive to tRNA genes observed. Homoplasious convergences because of trnT rearrangement display translocation in Turbinidae and reversion in Trochidae and Calliostomatida. For trnE and trnG, we identify 11 arrangement types, suggesting that the gene rearrangement history needs to be further evaluated. Our study emphasizes the importance of mt genomes in resolving phylogenetic relationships within Trochoidea. In addition, the mt genomic characters would contribute new insights into the classification of Trochoidea.  相似文献   

4.
The butterfly family Pieridae comprises approximately 1000 described species placed in 85 genera, but the higher classification has not yet been settled. We used molecular data from eight gene regions (one mitochondrial and seven nuclear protein‐coding genes) comprising a total of ~6700 bp from 96 taxa to infer a well‐supported phylogenetic hypothesis for the family. Based on this hypothesis, we revise the higher classification for all pierid genera. We resurrect the tribe Teracolini stat. rev. in the subfamily Pierinae to include the genera Teracolus, Pinacopteryx, Gideona, Ixias, Eronia, Colotis and most likely Calopieris. We transfer Hebomoia to the tribe Anthocharidini and assign the previously unplaced genera Belenois and Dixeia to the subtribe Aporiina. Three lineages near the base of Pierinae (Leptosia, Elodina and Nepheronia + Pareronia) remain unplaced. For each of these, we describe and delineate new tribes: Elodinini Braby tribus nova, Leptosiaini Braby tribus nova and Nepheroniini Braby tribus nova. The proposed higher classification is based on well‐supported monophyletic groups and is likely to remain stable even with the addition of more data.  相似文献   

5.
Abstract Phylogenetic relationships of Pamphagidae were examined using cytochrome oxidase subunit II (COII) mtDNA sequences (684 bp). Twenty‐seven species of Acridoidea from 20 genera were sequenced to obtain mtDNA data, along with four species from the GenBank nucleotide database. The purpose of this study was analyzing the phylogenetic relationships among subfamilies within Pamphagidae and interpreting the phylogenetic position of this family within the Acridoidea superfamily. Phylogenetic trees were reconstructed using neighbor‐joining (NJ), maximum parsimony (MP) and Bayesian inference (BI) methods. The 684 bp analyzed fragment included 126 parsimony informative sites. Sequences diverged 1.0%–11.1% between genera within subfamilies, and 8.8%–12.3% between subfamilies. Amino acid sequence diverged 0–6.1% between genera within subfamilies, and 0.4%–7.5% between subfamilies. Our phylogenetic trees revealed the monophyly of Pamphagidae and three distinct major groups within this family. Moreover, several well supported and stable clades were found in Pamphagidae. The global clustering results were similar to that obtained through classical morphological classification: Prionotropisinae, Thrinchinae and Pamphaginae were monophyletic groups. However, the current genus Filchnerella (Prionotropisinae) was not a monophyletic group and the genus Asiotmethis (Prionotropisinae) was a sister group of the genus Thrinchus (Thrinchinae). Further molecular and morphological studies are required to clarify the phylogenetic relationships of the genera Filchnerella and Asiotmethis.  相似文献   

6.
Eremiadinae, one of three subfamilies of Lacertidae, are distributed throughout Asia and Africa. Previous phylogenetic studies suggested that one of the main groups of Eremiadinae (the Ethiopian clade) consist of two clades with predominately East‐African and South‐African distribution. Yet, especially the latter one, which includes the genera Pedioplanis, Meroles, Ichnotropis, Tropidosaura and Australolacerta, was not well supported in the molecular phylogenetic analysis. In this study, we analysed the phylogenetic relationships among the genera of the ‘South African clade’ to assess whether this group actually forms a highly supported clade and to address questions concerning the monophyly of the genera. We sequenced sections of the widely used mitochondrial genes coding for 16S rRNA, 12S rRNA and cytochrome b (altogether 2045 bp) as well as the nuclear genes c‐mos, RAG‐1, PRLR, KIF24, EXPH5 and RAG‐2 (altogether 4473 bp). The combined data set increased the support values for several nodes considerably. Yet, the relationships among five major lineages within the ‘South African clade’ are not clearly resolved even with this large data set. We interpret this as a ‘hard polytomy’ due to fast radiation within the South African lacertids. The combined tree based on nine marker genes provides strong support for the ‘South African Clade’ and its sister group relationship with the ‘East African Clade’. Our results confirm the genus Tropidosaura as a monophylum, while Ichnotropis is paraphyletic in our trees: Ichnotropis squamulosa appears more closely related to Meroles than to Ichnotropis capensis. Furthermore, the monophyly of Meroles is questionable as well. Based on our results, I. squamulosa should be transferred from Ichnotropis into the genus Meroles. Also, the two species of Australolacerta (A. australis and A. rupicola) are very distantly related and the genus is perhaps paraphyletic, too. Finally we propose a phylogeographical scenario in the context of palaeoclimatic data and compare it with a previously postulated hypothesis.  相似文献   

7.
Moenkhausia is one of the most speciose genera in Characidae, currently composed of 75 nominal species of small fishes distributed across South American hydrographic basins, primarily the Amazon and Guyanas. Despite the large number of described species, studies involving a substantial number of its species designed to better understand their relationships and putative monophyly are still lacking. In this study, we analysed a large number of species of Moenkhausia to test the monophyly of the genus based on the phylogenetic analysis of DNA sequences of two mitochondrial and three nuclear genes. The in‐group included 29 species of Moenkhausia, and the out‐group was composed of representatives of Characidae and other members of Characiformes. All species of Moenkhausia belong to the same clade (Clade C); however, they appear distributed in five monophyletic groups along with other different genera, which means that Moenkhausia is polyphyletic and indicates the necessity of an extensive revision of the group.  相似文献   

8.
We infer for the first time the phylogenetic relationships of genera and tribes in the ecologically and evolutionarily well‐studied subfamily Nymphalinae using DNA sequence data from three genes: 1450 bp of cytochrome oxidase subunit I (COI) (in the mitochondrial genome), 1077 bp of elongation factor 1‐alpha (EF1‐α) and 400–403 bp of wingless (both in the nuclear genome). We explore the influence of each gene region on the support given to each node of the most parsimonious tree derived from a combined analysis of all three genes using Partitioned Bremer Support. We also explore the influence of assuming equal weights for all characters in the combined analysis by investigating the stability of clades to different transition/transversion weighting schemes. We find many strongly supported and stable clades in the Nymphalinae. We are also able to identify ‘rogue’ taxa whose positions are weakly supported (the different gene regions are in conflict with each other) and unstable. Our main conclusions are: (1) the tribe Coeini as currently constituted is untenable, and Smyrna, Colobura and Tigridia are part of Nymphalini; (2) ‘Kallimini’ is paraphyletic with regard to Melitaeini and should be split into three tribes: Kallimini s.s., Junoniini and Victorinini; (3) Junoniini, Victorinini, Melitaeini and the newly circumscribed Nymphalini are strongly supported monophyletic groups, and (4) Precis and Junonia are not synonymous or even sister groups. The species Junonia coenia, a model system in developmental biology, clearly belongs in the genus Junonia. A dispersal‐vicariance analysis suggests that dispersal has had a major effect on the distributions of extant species, and three biotic regions are identified as being centres of diversification of three major clades: the Palaearctic for the Nymphalis‐group, the Afrotropics for Junoniini and the Nearctic for Melitaeini. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 86 , 227–251.  相似文献   

9.
GlyptothoraxBlyth (1860) is the most species-diverse and widely-distributed genus in the Sisoridae, but few studies have examined monophyly of the genus and phylogenetic relations within it. We used the nuclear RAG2 gene and mitochondrial COI and Cyt b genes from 50 of the approximately 70 species to examine monophyly of Glyptothorax and phylogenetic relationships within the genus. Molecular phylogenetic trees were constructed using maximum parsimony, maximum likelihood and Bayesian inference methods. All methods strongly supported monophyly of Glyptothorax, with Bagarius as its sister group. Both analyses of two- and three-gene datasets recovered nine major subclades of Glyptothorax, but some internal nodes remained poorly resolved. The phylogenetic relationships within the genus and existing taxonomic problems are discussed.  相似文献   

10.
The phylogenetic relationships of subtribe Chloraeinae, a group of terrestrial orchids endemic to southern South America, have not been satisfactorily investigated. A previous molecular phylogenetic analysis based on plastid DNA supported the monophyly of Chloraeinae and Gavilea, but showed that Chloraea is non‐monophyletic and that the sole species of Bipinnula analysed is sister to Geoblasta. However, that analysis included only 18 of the 73 species belonging to this subtribe. Here, the phylogenetic relationships of Chloraeinae were assessed by analysing aproximately 7500 bp of nucleotide sequences from nuclear ribosomal internal transcribed spacer (ITS) and plastid DNA (rbcL, matK, trnL‐trnF, rpoB‐trnC) for 42 species representing all four currently accepted genera of Chloraeinae and appropriate outgroups. Nuclear and plastid data were analysed separately and in combination using two different methods, namely parsimony and Bayesian inference. Our analyses support the monophyly of Chloraeinae and their inclusion in an expanded concept of Cranichideae, but none of the genera of Chloraeinae that includes more than one species is monophyletic. Gavilea and Bipinnula are paraphyletic, with Chloraea chica nested in Gavilea and Geoblasta penicillata in Bipinnula. As currently delimited, Chloraea is polyphyletic. The taxonomic changes proposed recently are for the most part not justifiable on phylogenetic grounds, except for recognition of the monotypic genus Correorchis. The lack of resolution for the relationships among species of ‘core’Chloraea suggests a relatively recent diversification of this group. The current generic classification is in need or revision, but additional study is advisable before carrying out further taxonomic changes. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 168 , 258–277.  相似文献   

11.
The systematic relationships of the butterfly family Pieridae are poorly understood. Much of our current understanding is based primarily on detailed morphological observations made 50–70 years ago. However, the family and its putative four subfamilies and two tribes, have rarely been subjected to rigorous phylogenetic analysis. Here we present results based on an analysis of molecular characters used to reconstruct the phylogeny of the Pieridae in order to infer higher‐level classification above the generic level and patterns of historical biogeography. Our sample contained 90 taxa representing 74 genera and six subgenera, or 89% of all genera recognized in the family. Three complementary approaches were employed: (1) a combined analysis of a 30 taxon subset for sequences from four gene regions, including elongation factor‐1 alpha (EF‐1α), wingless, cytochrome oxidase subunit I (COI), and 28S (3675 bp, 1031 parsimony‐informative characters), mainly to establish higher‐level relationships, (2) a single‐gene analysis of the 90 taxon data set for sequences from EF‐1α (1066 bp, 364 parsimony‐informative characters), mainly to establish lower‐level relationships, and (3) an all available data analysis of the entire data set for sequences from the four genes, to recover both deep and shallow nodes. Analyses using maximum parsimony, maximum likelihood and Bayesian inference provided similar results. All supported monophyly for the four subfamilies but not for the two tribes, with the Anthocharidini polyphyletic and the Pierini paraphyletic. The combined and all available data analyses support the following relationships among the subfamilies: ((Pseudopontiinae + Dismorphiinae) + (Coliadinae + Pierinae)), corroborating Ehrlich’s 1958 phenetic hypothesis. On the basis of these analyses, and additional morphological and life history evidence, we propose a reclassification of the subfamily Pierinae into two tribes (Anthocharidini s.s., Pierini s.s.) and two informal groups (Colotis group, Leptosia), with the tribe Pierini s.s. subdivided into three subtribes (Appiadina, Pierina, Aporiina) and three genera (Elodina, Dixeia, Belenois) of uncertain status (incertae sedis). The combined and all available data analyses support the following relationships among the Pierinae: (Colotis group + Anthocharidini s.s. + Leptosia + (Elodina + ((Dixeia + Belenois) + Appiadina + Pierina + Aporiina))). Application of a molecular clock calibrated using fossil evidence and semiparametric rate smoothing suggests that divergence between the Pierina and Aporiina occurred no later than the Palaeocene (> 60 Myr). The minimum estimate for the age of the crown‐group of the Pieridae was 112–82 Myr, with a mean of 95 Myr. A historical biogeographical hypothesis is proposed to explain the present‐day distribution of the clade Pseudopontiinae + Dismorphiinae, which argues for an origin of the two subfamilies in western Gondwana (Africa + South America) during the Late Cretaceous. © 2006 The Linnean Society of London, Zoological Journal of the Linnean Society, 2006, 147 , 239–275.  相似文献   

12.
13.
The relationship between Litsea and related genera is currently unclear. Previous molecular studies on these taxa using cpDNA and nrITS were unable to produce well-resolved phylogenetic trees. In this study, we explored the potential of the rpb2 gene as a source of molecular information to better resolve the phylogenetic analysis. Although rpb2 was believed to be a single-copy gene, our cloning results showed that most species examined possessed several copies of these sequences. However, the genetic distance among copies from any one species was low, and these copies always formed monophyletic groups in our molecular trees. Our phylogenetic analyses of rpb2 data resulted in better resolved tree topologies compared to those based on cpDNA or nrITS data. Our results show that monophyly of the genus Litsea is supported only for section Litsea. As a genus, Litsea was shown to be polyphyletic. The genera Actinodaphne and Neolitsea were resolved as monophyletic groups in all analyses. They were also shown to be sisters and closer to the genus Lindera than to the genus Litsea. Our results also revealed that the genus Lindera is not a monophyletic group.  相似文献   

14.
The phylogeny of the genus Rivellia Robineau‐Desvoidy was inferred from mitochondrial 16S ribosomal (r)DNA gene sequences of 13 Korean Rivellia species and six species representing other platystomatid genera and the family Tephritidae. We compared the inferred molecular phylogeny with the previously published morphological cladogram. As a result, the following phylogenetic relationships were recognized: (i) monophyly of the genus Rivellia; (ii) monophyly of the R. syngenesiae species group; (iii) R. depicta and R. apicalis (which were not previously placed in any species group) were recognized as a sister group of the R. syngenesiae species group; and (iv) monophyly of the R. basilaris species group was recognized to a limited extent. These results, even though geographically limited, provide a new insight into the phylogeny of the genus Rivellia. They clearly show the utility of 16S rDNA for phylogenetic analysis of the genus Rivellia. Additional study involving samples from different geographical areas will be needed to gain a better understanding of the adaptive radiation of this species‐rich genus.  相似文献   

15.
A Bayesian analysis, utilizing a combined data set developed from the small subunit (SSU) and large subunit (LSU) rDNA gene sequences, was used to resolve relationships and clarify generic boundaries among 84 strains of plastid‐containing euglenophytes representing 11 genera. The analysis produced a tree with three major clades: a Phacus and Lepocinlis clade, a Discoplastis clade, and a Euglena, Colacium, Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena clade. The majority of the species in the genus Euglena formed a well‐supported clade, but two species formed a separate clade near the base of the tree. A new genus, Discoplastis, was erected to accommodate these taxa, thus making the genus Euglena monophyletic. The analysis also supported the monophyly of Colacium, Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena, which formed two subclades sister to the Euglena clade. Colacium, Trachelomonas, and Strombomonas, all of which produce copious amounts of mucilage to form loricas or mucilaginous stalks, formed a well‐supported lineage. Our analysis supported retaining Strombomonas and Trachelomonas as separate genera. Monomorphina and Cryptoglena formed two well‐supported clades that were sister to the Colacium, Trachelomonas, and Strombomonas clade. Phacus and Lepocinclis, both of which have numerous small discoid chloroplasts without pyrenoids and lack peristaltic euglenoid movement (metaboly), formed a well‐supported monophyletic lineage that was sister to the larger Euglena through Cryptoglena containing clade. This study demonstrated that increased taxon sampling, multiple genes, and combined data sets provided increased support for internal nodes on the euglenoid phylogenetic tree and resolved relationships among the major genera in the photosynthetic euglenoid lineage.  相似文献   

16.
Jeon, M.‐J., Song, J.‐H. & Ahn, K.‐J. (2012). Molecular phylogeny of the marine littoral genus Cafius (Coleoptera: Staphylinidae: Staphylininae) and implications for classification. —Zoologica Scripta, 41, 150–159. A phylogenetic analysis of the marine littoral genus Cafius Stephens is presented based on molecular characters. The data set comprised partial mitochondrial COI (910 bp), COII (369 bp), 12S rDNA (351–354 bp), 16S rDNA (505–509 bp) and nearly complete sequences of 18S rDNA (1814–1830 bp) for 37 species. Twenty‐seven Cafius species, representing five of six subgenera, two Remus Holme species, three Phucobius Sharp species, monotypic Thinocafius Steel and four outgroups were included. The sequences were analysed simultaneously by parsimony analysis in Tree Analysis Using New Technology (TNT) with traditional manual alignment, direct optimization (DO) in the program POY4 under a variety of gap costs and partitioned Bayesian analysis for the combined data. The genus Cafius and nearly all of its subgenera were not supported as being monophyletic. Instead, all analyses (parsimony trees, DO tree under equal weighting and Bayesian tree) showed monophyly of Cafius + Phucobius + Remus + Thinocafius (clade Z) and all seven nested clades (A–G). However, the phylogenetic relationships among clades A–G differed among the analyses. The genus Phucobius was recovered as a monophyletic group within Cafius. The genus Remus was not monophyletic but formed a clade with C. rufescens Sharp and C. rufifrons Bierig within Cafius. The genus Thinocafius formed a clade with C. caviceps Broun, C. litoreus (Broun) and C. quadriimpressus (White) within Cafius. We propose new concepts for the genus Cafius and its related genera, and the seven nested clades.  相似文献   

17.
Despite the long popularity of Charaxes among collectors and researchers, their evolutionary history is largely unknown. The current and accepted species groupings and relationships within the genus are based exclusively on adult morphology and life histories. Here, we examine the monophyly and evolutionary affinities of the species-groups within the genus Charaxes and explore how they relate to members of their closest genera (Euxanthe, Polyura and Palla) using 4167 bp of sequence data from five (1 mitochondrial and 4 nuclear) gene regions. Within the proposed phylogenetic framework, we estimate ages of divergence within the genus and also reconstruct their historical biogeography. We included representatives of all known species-groups in Africa and Asia, all known species of Euxanthe and Palla and two exemplar species of Polyura. We found the genus Charaxes to be a paraphyletic group with regard to the genera Polyura and Euxanthe, contrary to the earlier assumption of monophyly. We found that 13 out of 16 morphologically defined species-groups with more than one species were strongly supported monophyletic clades. Charaxes nichetes is the sister group to all the other Charaxes. Polyura grouped with the Zoolina and Pleione species-groups as a well-supported clade, and Euxanthe grouped with the Lycurgus species-group. Our results indicated that the common ancestor of Charaxes diverged from the common ancestor of Palla in the mid Eocene (45 million years ago) in (Central) Africa and began diversifying to its extant members 15 million years later. Most of the major diversifications within the genus occurred between the late Oligocene and Miocene when the global climates were putatively undergoing drastic fluctuations. A considerable number of extant species diverged from sister species during the Pliocene. A dispersal–vicariance analysis suggests that many dispersal rather than vicariance events resulted in the distribution of the extant species. The genus Polyura and the Indo-Australian Charaxes are most likely the results of three independent colonizations of Asia by African Charaxes in the Miocene. We synonymize the genera Polyura (syn. nov.) and Euxanthe (syn. nov.) with Charaxes, with the currently circumscribed Charaxes subdivided into five subgenera to reflect its phylogeny.  相似文献   

18.
The genus Apalis is a member of the African forest warblers clade of the Cisticolidae. In view of its morphological diversity, it was suggested that this genus needs a taxonomic revaluation. For this, we sequenced a nuclear intron (myoglobin intron 2) and two mitochondrial protein‐coding genes (ND2 and ND3). The 2016 bp of sequence data obtained were aligned and subjected to parsimony, maximum likelihood and Bayesian inference. All three genes strongly reject the monophyly of Apalis but support the placing of all apalises within a broader clade of forest cisticolids which also includes Urolais. Within this forest clade, a subclade is defined which includes the genera Urolais, Schistolais and a well‐supported clade comprising three afromontane species, the Black‐collared Apalis Apalis pulchra, the Ruwenzori Apalis Apalis ruwenzorii and the African Tailorbird Artisornis. This subclade is sister to other members of Apalis, including the type species of the genus the Bar‐throated Apalis Apalis thoracica. A new generic name, Oreolais, is suggested for the Black‐collared and Ruwenzori Apalises.  相似文献   

19.
A phylogenetic analysis combining 63 morphological characters and DNA sequences (3296 bp), comprising segments of the mitochondrial genes 16S and ND2, and the nuclear gene 28S, for 19 taxa of the West African killifish tribe Callopanchacini and 11 out‐group taxa, highly supported the monophyly of the tribe, and made it possible to provide the first unambiguous diagnoses for the included genera (Archiaphyosemion, Callopanchax, Nimbapanchax, and Scriptaphyosemion). The monophyly of the Callopanchacini is supported by six morphological synapomorphies: posterior portion of the mandibular channel consisting of a single open groove; basihyal pentagonal, as a result of a nearly rectangular basihyal cartilage and a triangular bony support; dorsal process of the urohyal usually absent, sometimes rudimentary; presence of a wide bony flap adjacent to the proximal portion of the fourth ceratobranchial; a broad bony flap adjacent to the proximal portion of the fifth ceratobranchial; and haemal prezygapophysis of the pre‐ural vertebra 2 ventrally directed. The analysis indicates that the medially continuous rostral neuromast channel, commonly used to diagnose the tribe, is plesiomorphic. This study also indicates that, among African aplocheiloids, the annual life cycle style developed once in Callopanchax, and then again independently in the clade containing Fundulopanchax and Nothobranchius. © 2015 The Linnean Society of London  相似文献   

20.
A phylogenetic analysis was performed to determine the monophyly of non‐monotypic genera of the terebelliform family Polycirridae, i.e. Polycirrus, Amaeana, Lysilla, and Hauchiella, and the evolution of characters among members of this clade. The monotypic genera, Enoplobranchus and Biremis, were also included, together with members of both known species in Hauchiella. Representative species were included for remaining genera: 14 species of Polycirrus, six species of Amaeana, and six species of Lysilla. Out‐groups consisted of representatives of Spionidae, Cirratulidae, and Sabellariidae, as well as several species of Telothelepodidae. A total of 40 in‐ and out‐group species were coded for 50 subjects (‘characters’) and 117 subject–predicate relationships (‘states’). Although results are consistent with recent phylogenetic studies within Terebelliformia that suggest Polycirridae monophyly, only Hauchiella was found to be monophyletic, albeit part of the more inclusive clade comprising remaining polycirrid genera. Evolutionary transformation series are discussed for selected characters in relation to the non‐monophyly of Polycirrus, Lysilla, and Amaeana. Implications for the use of supraspecific taxa as ‘taxonomic surrogates’ are highlighted. The definition of Polycirridae is emended. © 2015 The Linnean Society of London  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号