首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
1. The role played by Atta species as ecosystem engineers remains poorly investigated despite previous evidence that their nests can impact plant assemblages. 2. In a large remnant of Atlantic forest, we compared forest structure at 36 Atta cephalotes nests to control sites and assessed shifts in microclimate along transects from nests up to 24 m into the forest (11 representative colonies). 3. Nests (average size: 55 m2) were virtually free of understorey vegetation with a high proportion of dead stems (up to 70%). 4. Canopy openness above colonies increased by roughly 40% compared with controls (5.3% at colony vs. 3.7% at control sites). 5. At nest centres, about 6% of the total radiation penetrated through the sparse canopy. Light levels declined exponentially, reaching a third (2%) in the unaffected forest understorey. 6. Likewise, maximum soil temperatures and daily amplitudes declined exponentially from 25 to 23 °C and 1.6 to 0.8 °C, respectively. Soil moisture increased significantly along transects, yet the effect was small and no differences were detected for air temperature and humidity. 7. We extrapolated that individual A. cephalotes nests modify the microclimate in an area of almost 200 m2 on average. For the population, this amounts to 6% of the area along forest edges, where colonies are strongly aggregated, compared with only 0.6% in the forest interior. 8. Nests changed microclimate to an extent that has been reported to impact seed germination, plant growth, and survival of seedlings, conclusively demonstrating that leaf‐cutting ants act as ecosystem engineers.  相似文献   

2.
The location of the nutrient‐rich organic refuse produced by a leaf‐cutting ant colony varies among ant species. Atta cephalotes locate their organic refuse in subterranean chambers, whereas A. colombica place their organic refuse on the soil surface near the nest. We studied the effect of the absence or presence of external organic refuse on the abundance of fine roots and seed bank composition in the superficial horizons of ant nests. We sampled soils from ant nests or dumps and adjacent areas of 15 adult nests of A. cephalotes at La Selva (LS), Costa Rica, and of 15 of A. colombica nests on Barro Colorado Island (BCI), Panama. Soils from A. cephalotes nests did not differ from adjacent soils in abundance of fine‐root and seed diversity. In contrast, organic refuse from A. colombica nests was less diverse in seed composition (due to the great abundance of Miconia argentea) and had a greater abundance of fine roots than adjacent areas. Thus the external location of the ant‐nest organic refuse is potentially important in determining the different types of plant recolonization in abandoned or dead ant nests. The relative abundance of these Atta species may influence the structure and/or composition of tropical forests.  相似文献   

3.
The role played by abandoned nests of leaf‐cutting ants (Atta spp.) as a small‐scale disturbance regime that affects plant recruitment, species coexistence and forest regeneration remains poorly investigated. Here we examine whether abandoned nests of Atta cephalotes serve as regeneration niches and operate as particular plant recruitment habitats, favouring forest regeneration after ant activities cease and leading to the establishment of taxonomically/ecologically distinct plant assemblages. Soil properties, canopy openness, light availability and regenerating plant assemblages were evaluated across 18 nests and adjacent control plots in a large remnant of Atlantic Forest in north‐east Brazil from December 2004 to December 2005. Surprisingly, nests and control plots exhibited very similar light environments irrespective of nest age, but nest soils exhibited substantial reductions in carbon content (1.45 ± 0.24 vs. 1.79 ± 0.13%) and organic matter (2.50 ± 0.41 vs. 3.08 ± 0.23%), and proved to be much more resistant to penetration (30.57 ± 6.08 vs. 39.48 ± 7.53 mm). Functional signature of regenerating plant assemblages exhibited little variation across both habitat types, as they were dominated by pioneer, small‐seeded and vertebrate‐dispersed species. However, abandoned nests exhibited less dense, impoverished and more homogeneous regenerating plant assemblages at local and landscape scale; they clearly lacked nest‐dependent plant species and represented floristic subsets of the flora inhabiting the undisturbed forest. This recruitment bottleneck was transient in the long term because nest‐related effects ameliorated in older nests. Our results suggest that, unlike treefall gaps, abandoned nests represent temporary (relatively long‐lasting) islands of unsuitable substrate that reduce plant recruitment, retard forest regeneration, and fail in providing a special regeneration niche able to promote species coexistence and plant diversity.  相似文献   

4.
To examine the susceptibility of five Costa Rican tree species to leaf-cutter ants (Atta cephalotes L.: Formicidae, Attini), young and mature leaves from trees that were grown in a plantation under full sun and partial shade were offered to six leaf-cutter colonies located in full sun and six in patial shade. In addition to offering leaf disks to the ants, we offered large pieces of leaves to assess the effect of cutting leaves on food choices. Leaf-cutters responded differently to each plant species, preferring Virola koschyni Warburg (Myristicaceae) and Hyeronima alchorneoides Allemao (Euphorbiaceae) over Stryphnodendrum microstachyum Poeppig & Endlicher (Mimosoideae), Pentaclethra macroloba Willdenow (Fabaceae) and Vochysia ferruginea Martius (Vochysiaceae). In agreement with previous studies, interspecific differences among the tree species in water and saponin content appeared to account for the observed ant preferences among the five tree species: leaf-cutter ants preferred leaves and disks with more water and less saponins and the five tree species varied significantly in these traits. An observed positive correlation between preference and phenolic/nitrogen ratio appears to be spurious, and is instead due to a negative correlation between water content and nitrogen content. For the first time, Atta nest location has been shown to affect consumption: nests located in partial shade removed more leaf material than those from the sun plots. However, nest location had no effect on preference ranking of the tree species tested. Pieces of leaves from all the tree species grown in partial shade were significantly more removed than those trees grown in full sun. Leaf age, toughness, leaf specific weights, ant activity, and colony were not correlated with food choices. Because of the observed preferences, the five tree species should not be considered as equal candidates for plantation purposes. However, complete characterization of the candidate status of tree species for plantations in the neotropics must include information on the ability of such species to tolerate pest attacks in addition to their natural defenses to attack.  相似文献   

5.
Environmental changes resulting from Atta leaf‐cutter ant activities characterize them as ecosystem engineers of ecological and economic importance in multiple habitats. Although Atta effects depend strongly on colony density, there has been limited and inconsistent information available on their abundance and interspecific dominance in natural areas and across environmental gradients in the Brazilian Cerrado. Our study bridges this gap by testing the hypothesis that Atta nest density at genus level is high and relatively constant across locations regardless of vegetation type due to strong effects of dominant species turnover. To do so, we conducted a natural experiment surveying Atta nest abundance in five different vegetation types representing the environmental gradient from forest to savannah habitats found in the Cerrado. Our linear transect surveys covered 48.9 km in four well‐preserved areas across two Brazilian states in which we recorded 124 colonies. Of these, 84 nests belonged to A. laevigata and 40 to A. sexdens, the two dominant Atta species in the region. We also found no nests in 30% of the sampled area, which when combined with strong variation in density measured per transect indicates colonies tend to be aggregated in the landscape. Furthermore, we observed a strong dominant species turnover from forest habitats where 90% of nests belonged to A. sexdens to savannah habitats where 92% of nests were A. laevigata. Turnover effect was reflected in the absence of a significant difference in density between locations and vegetation types, indicating that density at genus level remains high and relatively constant regardless of nest aggregation. Our findings allow larger scale inferences about Atta effects and reveal new insights of their dynamics into natural areas that could affect plant species distribution and contribute to spatial heterogeneity of vegetation, having important implications for Cerrado conservation.  相似文献   

6.
Recent studies of attraction to sodium chloride baits suggest that diverse ant species forage for salt. We used experimental presentations of salt baits to test whether leaf cutter ants (Atta cephalotes) are attracted to and harvest salt-treated paper baits that offer no other resources. Atta foragers were most attracted to sucrose baits (positive control), but more foragers touched and cut salt-treated baits than water-treated baits (negative control). Furthermore, the ants removed more paper from the salt baits than from water-treated baits. We conclude that leaf cutter ants expend time and energy to harvest salt in the absence of other rewards. Salt could be harvested for the workers’ consumption, or it could be fed to the fungus gardens in the ants’ nest.  相似文献   

7.
Use of leaf resources by a troop of howling monkeys and two colonies of leaf cutting ants was studied for an annual cycle in the rain forest of Los Tuxtlas, Mexico. Howling monkeys spent half their annual foraging time feeding on leaves; leaf-cutting ants spent at least 80% of their recorded foraging time harvesting leaves. Both herbivores preferred young leaves over nature ones, and chemical analysis showed that the protein: fibre ratio of the leaves used was correlated with these preferences. Howling monkeys used 34 tree species as leaf sources. Leaf-cutting ants used 40 plant species of which 38 were trees. Eighteen species used by Alouatta were also used by Atta; species of Moraceae and Lauraceae were among the most important in their foraging preferences. The plant species used by monkeys and ants occurred at low densities (? 4.0 ind/ha). The seasonal production of leaves, the high density of leaf-cutting ant colonies at the study site, and the high amounts of young foliage harvested by the ants from tree species, and individual trees used by howling monkeys as sources of young leaves suggest that the foraging activities of Atta may represent a significant pressure upon leaf resources available to Alouatta.  相似文献   

8.
Question: What is the influence of refuse dumps of leaf‐cutting ants on seedling recruitment under contrasting moisture conditions in a semi‐arid steppe? Location: Northwestern Patagonia, Argentina. Methods: In a greenhouse experiment, we monitored seedling recruitment in soil samples from refuse dumps of nests of the leaf‐cutting ant Acromyrmex lobicornis and non‐nest sites, under contrasting moisture conditions simulating wet and dry growing seasons. Results: The mean number of seedling species and individuals were higher in wet than in dry plots, and higher in refuse dump plots than in non‐nest soil plots. The positive effect of refuse dumps on seedling recruitment was greater under low moisture conditions. Both the accumulation of discarded seeds by leaf‐cutting ants and the passive trapping of blowing‐seeds seems not explain the increased number of seeds in refuse dumps. Conversely, refuse dumps have higher water retention capacity and nutrient content than adjacent non‐nest soils, allowing the recruitment of a greater number of species and individual seedlings. Conclusions: Nests of A. lobicornis may play an important role in plant recruitment in the study area, allowing a greater number of seedlings and species to be present, hence resulting in a more diverse community. Moreover, leaf‐cutting ant nests may function as nurse elements, generating safe sites that enhance the performance of neighbouring seedlings mainly during the driest, stressful periods.  相似文献   

9.
10.
Wood ants (Formica rufa group) are regarded as keystone species in boreal and mountain forests of Europe and Asia by their effect on ecosystem carbon (C) and nutrient pools and fluxes. To quantify the impact of their activity on boreal forest ecosystems, C, nitrogen (N), phosphorus (P), potassium (K) and calcium (Ca) pools and fluxes in wood ant nests (WAN), and soil were assessed along a 5-, 30-, 60-, and 100-year-old Norway spruce (Picea abies L. Karsten) dominated successional gradient in eastern Finland. Amounts of C and nutrients in WAN increased with stand age, but contained less than 1% of total C and nutrient pools in these stands. The CO2-efflux from nests was also insignificant, as compared to CO2-efflux from the forest floor. Annually, the amount of C brought by wood ants into their nests as honeydew, prey and nest-building materials ranged from 2.7 to 49.3 kg ha?1 C, but this is only 0.1–0.7% of the combined net primary production of trees and understorey in boreal forests. The difference between wood ant nest C inputs and outputs was very small in the younger-aged stands, and increased in the older stands. Carbon accumulation rates in nests over a 100 year period are estimated to be less than 10 kg ha?1 a?1. In contrast to C, annual inputs of N, P, and K are larger compared to wood ant nest nutrient pool size, ranging from 3 to 6% of the annual tree stand and understorey uptake. This indicates a more rapid turnover and transport of N, P, and K out of WAN, and suggests that wood ants increase the cycling rate of these nutrients in boreal forests.  相似文献   

11.
The leaf litter of tropical wet forests is replete with itinerant ant nests. Nest movement may help ants evade the constraints of stress and disturbance and increase access to resources. I studied how nest relocation and environmental factors may explain the density, size, and growth of leaf litter ant nests. I decoupled the relationships among litter depth, food abundance, and nest availability in a 4‐mo manipulation of food and leaf litter in a community of litter‐nesting ants in a lowland wet forest in Costa Rica. Over 4 mo, 290 1 m2 treatment and control plots were sampled without replacement. Nest densities doubled in response to food supplementation, but did not decrease in response to litter removal or stress (from litter trampling). The supplementation of food increased the utilization of less favored nesting materials. In response to food supplementation and litter trampling, arboreal ants established nests in the litter, and growth rates of the most common ants (Pheidole spp.) increased. Colony growth was independent of colony size and growth rates of the most abundant ants. In general, I conclude that litter‐nesting ant density is driven primarily by food limitation, that nest relocation behavior significantly affects access to resource and the demographic structure of this community, and that nest fission may be a method to break the growth–reproduction trade‐off.  相似文献   

12.
Leaf‐cutting ants are a very specialized group of ants that cultivate fungus gardens in their nests, from which they obtain food. The current opinion is that the fungus cultivated by leaf‐cutting ants digests cellulose. Here we reassess the cellulose‐degrading capability of the fungus by using two complementary approaches tested in four Attini species (genera Atta and Acromyrmex): (1) ability of fungus to grow in cellulose; and (2) lignin/cellulose ratio in the refuse material dumped outside the nest, as an indicator of cellulose consumption. We found that (1) the fungus did not grow in cellulose, and (2) the lignin/cellulose ratio was much lower in the ants' refuse than in material digested by cellulose‐digesting organisms, such as brown‐rot fungus, termites, and ruminant mammals. This evidence strongly suggests the inability of the fungus to degrade cellulose. Therefore, the fungus–ant symbiosis and the ecological role of leaf‐cutting ants need to be reconsidered.  相似文献   

13.
Aim To investigate the differential effects of position within gaps, coarse woody debris and understorey cover on tree seedling survival in canopy gaps in two old‐growth Nothofagus pumilio (Poepp. & Endl.) Krasser forests and the response of this species to gaps in two forests located at opposite extremes of a steep rainfall gradient. Location Nahuel Huapi National Park, at 41° S in north‐western Patagonia, Argentina. Methods In both study sites, seedlings were transplanted to experimental plots in gaps in three different positions, with two types of substrate (coarse woody debris or forest floor), and with and without removal of understorey vegetation. Survival of seedlings was monitored during two growing seasons. Soil moisture and direct solar radiation were measured once in mid‐summer. Seedling aerial biomass was estimated at the end of the experiment. Results Mid‐summer soil water potential was lowest in the centre of gaps, in plots where the understorey had been removed, and highest at the northern edges of gaps. Direct incoming radiation was highest in gap centres and southern edges, and lowest at northern edges. Seedling mortality was highest in gap centres, in both sites. Coarse woody debris had a positive effect on seedling survival during summer in the mesic forest and during winter in the xeric forest. The removal of understorey cover had negative effects in gap centres during summer. Seedling final aerial biomass was positively affected by understorey removal and by soil substrate in both sites. In the dry forest gaps, seedling growth was highest in northern edges, whereas it was highest in gap centres in the mesic forest. Overall growth was positively related to survival in the xeric forest, and negatively related in the mesic forest. Main conclusions Survival and growth were facilitated by the shade of gap‐surrounding trees only in the xeric forest. Understorey vegetation of both forests facilitated seedling survival in exposed microsites but competed with seedling growth. Nurse logs were an important substrate for seedling establishment in both forests; however, causes of this pattern differed between forests. Water availability positively controls seedling survival and growth in the xeric forest while in the mesic forest, survival and growth are differentially controlled by water and light availability, respectively. These two contrasting old‐growth forests, separated by a relatively short distance along a steep rainfall gradient, had different yet unexpected microenvironmental controls on N. pumilio seedling survival and growth. These results underscore the importance of defining microscale limiting factors of tree recruitment in the context of large‐scale spatial variation in resources.  相似文献   

14.
Abstract Seed germination, and survival and growth of seedlings of four dominant tree species, Quercus dealbata, Quercus griffithii, Quercus glauca and Schima khasiana were studied in the treefall gaps and forest understorey of an undisturbed mature-phase humid subtropical broadleaved forest in northeast India. Three important microenvironmental factors namely photosynthetically active radiation (PAR), soil moisture and litter depth, were also measured in the forest understorey and gaps and correlated with seedling mortality. Seed germination of S. khasiana was significantly higher in the treefall gaps than in the understorey; among the tree species studied, it had the highest germination. Quercus seedlings were abundant in the understorey and small gaps, while S. khasiana seedlings were more numerous in the large gaps. The survivorship curves for the seedling populations revealed that the three Quercus species survived better in the understorey, while S. khasiana did so in the gaps. PAR and soil moisture were positively correlated with tree seedling mortality, which occurred mainly during the winter months. The Quercus seedlings grew better in the forest understorey and small gaps and S. khasiana seedlings in the large gaps. The differential performance of the tree seedlings to the conditions prevailing in the understorey and gaps of two sizes indicates that different species were adapted to different light environments depending upon their optimum requirements. This could be an effective mechanism for promoting species coexistence in the forest community.  相似文献   

15.
Ants are dominant in tropical forests and many species nest in hollow cavities. The manner in which species are vertically stratified in these complex habitats is not known, with lack of nest sites being proposed to limit ant populations. Here, we assess ant community stratification and nest site limitation in a lowland rainforest in New Guinea using experimental addition of artificial bamboo nests of two cavity sizes (small: ~12 mm large: ~32 mm diameter) placed at ground level, in the understorey, and in the canopy. We also conducted a pilot experiment to test the utility of nest translocation. Nests were checked for occupancy after 10 weeks and half of the occupied nests were then translocated between forest plots, while keeping same vertical position. Occupancy of small nests was much higher in the understorey and canopy than at ground level (~75% vs. ~25%). Translocation was successful, as a majority of nests was inhabited by the same species before and after translocation and there was no impact of translocation to a different plot compared to the control, except for a reduction in colony size at ground level. Our experiment demonstrates a vertical stratification in community composition of ants nesting in hollow dead cavities and shows that these ants are more nest site limited in the higher strata than at ground level. Use of small artificial cavities has great potential for future experimental studies, especially for those focused on arboreal ants, as occupancy is high and translocation does not negatively affect their colony size. Abstract in Tok Pisin is available with online material.  相似文献   

16.
Leaf-cutting ants (Atta spp.) have become a topical issue in Neotropical ecology, particularly because they are reaching hyper-abundance due to escalating levels of fragmentation in recent years. Yet, despite intensive research on their role as dominant herbivores, there is still insufficient documentation on the impacts of their large, long-lived nests on plant assemblage structure and ecosystem functioning. Our study aimed at investigating the magnitude, nature, and spatial extent of nest influence by assessing 11 attributes of ant nest, canopy structure, light environment and sapling assemblage for 20 colonies in four plots along nest-understorey gradients in a large remnant of Atlantic forest. We also monitored the performance of seeds and seedlings of Chrysophyllum viride, an abundant shade-tolerant species. Previously unrecognized canopy gaps above ant nests (0.04–87.9 m2) occurred in 95% of all colonies surveyed. Overall, canopy openness and light availability at least doubled in ant nest plots compared with distant understorey plots. These drastic changes in the light environment paralleled those in plant assemblage: sapling density almost tripled (mean ± SE: 0.42 ± 0.1 saplings m?2) and sapling species richness doubled (0.16 ± 0.02 species m?2) in distant plots, as did shade-tolerant species. After a 1-year period, only 33 ± 15.6% of the seeds germinated and all seedlings died on nests, whereas seed germination reached 68 ± 5.1% in distant plots and 66.4 ± 7.6% of their seedlings survived after 12 months. Therefore, plot location was the most significant explanatory variable for predictable and conspicuous changes in the light environment and structure of sapling assemblages. Our findings greatly extend knowledge on the role played by leaf-cutting ants as ecosystem engineers by demonstrating that ant nest-mediated disturbance promotes environmental modifications in tens of meters around nests and is thus, strong enough to drive plant recruitment and consequently alter both the floristic and functional signature of plant assemblages.  相似文献   

17.
Identifying habitat or nesting microhabitat variables associated with high levels of nest success is important to understand nest site preferences and bird–habitat relationships. Little is known about cavity availability and nest site requirements of cavity nesters in southern hemisphere temperate forests, although nest site limitation is suggested. Here we ask which characteristics are selected by the Austral parakeet (Enicognathus ferrugineus) for nesting in Araucaria araucana–Nothofagus pumilio forest in Argentine Patagonia. We compared nest plot and tree characteristics with unused plots and trees among areas of different A. araucana–N. pumilio density. We also examine whether nest plot and tree use and selection, and the associated consequences for fitness of Austral parakeets are spatially related to forest composition. Austral parakeets showed selectivity for nests at different spatial scales, consistently choosing isolated live and large trees with particular nest features in a non‐random way from available cavities. Mixed A. araucana–N. pumilio forests are ideal habitat for the Austral parakeets of northern Patagonia, offering numerous potential cavities, mainly in N. pumilio. We argue that Austral parakeet reproduction and fitness is currently very unlikely to be limited by cavity availability, although this situation may be rapidly changing. Natural and human disturbances are modifying south temperate forests with even‐aged mid‐successional stands replacing old growth forests. Cavity nesting species use and need old growth forests, due to the abundance of cavities in large trees and the abundance of larvae in old wood. Neither of the latter resources is sufficiently abundant in mid‐successional forests, increasing the vulnerability and threatening the survival of the Austral.  相似文献   

18.
Roads can facilitate the establishment and spread of both native and exotic species. Nevertheless, the precise mechanisms facilitating this expansion are rarely known. We tested the hypothesis that dirt roads are favorable landing and nest initiation sites for founding‐queens of the leaf‐cutter ant Atta laevigata. For 2 yr, we compared the number of attempts to found new nests (colonization attempts) in dirt roads and the adjacent vegetation in a reserve of cerrado (tree‐dominated savanna) in southeastern Brazil. The number of colonization attempts in roads was 5 to 10 times greater than in the adjacent vegetation. Experimental transplants indicate that founding‐queens are more likely to establish a nest on bare soil than on soil covered with leaf‐litter, but the amount of litter covering the ground did not fully explain the preference of queens for dirt roads. Queens that landed on roads were at higher risk of predation by beetles and ants than those that landed in the adjacent vegetation. Nevertheless, greater predation in roads was not sufficient to offset the greater number of colonization attempts in this habitat. As a consequence, significantly more new colonies were established in roads than in the adjacent vegetation. Our results suggest that disturbance caused by the opening of roads could result in an increased Atta abundance in protected areas of the Brazilian Cerrado.  相似文献   

19.
ABSTRACT Although nest predation is often the single largest source of mortality in avian populations, manipulative studies to determine predator impacts on nest survival are rare, particularly studies that examine impacts of mid-size mammalian predators (hereafter, mesopredators) on nest survival of shrub-nesting birds. We quantified nest survival and identified nest predators of shrub-nesting songbirds within 4 large (approx. 40-ha) exclosures and 4 control sites within a longleaf pine (Pinus palustris) ecosystem. During 2003–2006, we located and monitored 535 shrub nests (222 with videography) for 4,804 nest-days to quantify daily nest survival and document predation events. We found no support for a treatment effect, suggesting mesopredators had little impact on daily nest survival (0.9303 in controls and 0.9260 in exclosures) of shrub-nesting songbirds. For the 5 most commonly monitored species, daily nest survival within species was constant. Our analysis suggested that shrub nests were most vulnerable during the nestling stage and presence of cameras on nests increased survival with the increase in survival being more pronounced during the incubation stage. We filmed 107 nest predation events, identifying predators at 88 nests. Of these 88 nests, snakes caused 33%, red imported fire ants (hereafter fire ants, Solenopsis invicta) 28%, raptors 17%, corvids 8%, mesopredators 6%, and small mammals 8% of nest predations. Cause-specific nest predation in controls and exclosures did not differ from expectation, providing evidence that compensatory predation did not occur. Nest predators differed from expectation with regard to nest stage; fire ants and raptors only depredated nests during the nestling stage. Presence of cameras had no effect on nest abandonment. Fire ants were the most prevalent nest predator, and nest predation by fire ants was only observed on nestlings, potentially reducing likelihood of renesting. Magnitude and timing of fire ant predation suggests that fire ants may be the most influential nest predator of shrub-nesting birds within the longleaf pine ecosystem. Our data suggest that controlling mesopredators will have no effect on nest success of shrub-nesting birds within longleaf pine forests.  相似文献   

20.
Ants of the genus Oecophylla are predators of other insects and are able to protect a variety of terrestrial plants against pest insects; however, observations on the ecology of these ants in mangrove forests are lacking. General observations on the ecology of Oecophylla smaragdina were carried out in a Thai mangrove forest to determine if these ants can protect their host plants in less favorable mangrove habitats. Leaf herbivory and the density of O. smaragdina ants were measured on Rhizophora mucronata trees at two sites. The results showed a negative correlation between ant density and herbivory. At both sites, the mean percent damaged leaf area was more than four times higher on trees without ants compared to “ant‐trees.” A significant negative correlation was found between tree mean percent leaf damage and the density of ants on the tree. Furthermore, on trees with ants, there was less herbivory on leaves close to ant nests compared to other leaves on the tree. Most damage was caused by chrysomelid beetles (62%) and sesarmid crabs (25%) and both types of herbivory were significantly reduced on ant‐trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号