首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
2.

Background

Fibrosis, the excessive deposition of scar tissue by fibroblasts, is one of the largest groups of diseases for which there is no therapy. Fibroblasts from lesional areas of scleroderma patients possess elevated abilities to contract matrix and produce α−smooth muscle actin (α-SMA), type I collagen and CCN2 (connective tissue growth factor, CTGF). The basis for this phenomenon is poorly understood, and is a necessary prerequisite for developing novel, rational anti-fibrotic strategies.

Methods and Findings

Compared to healthy skin fibroblasts, dermal fibroblasts cultured from lesional areas of scleroderma (SSc) patients possess elevated Rac activity. NSC23766, a Rac inhibitor, suppressed the persistent fibrotic phenotype of lesional SSc fibroblasts. NSC23766 caused a decrease in migration on and contraction of matrix, and α−SMA, type I collagen and CCN2 mRNA and protein expression. SSc fibroblasts possessed elevated Akt phosphorylation, which was also blocked by NSC23766. Overexpression of rac1 in normal fibroblasts induced matrix contraction and α−SMA, type I collagen and CCN2 mRNA and protein expression. Rac1 activity was blocked by PI3kinase/Akt inhibition. Basal fibroblast activity was not affected by NSC23766.

Conclusion

Rac inhibition may be considered as a novel treatment for the fibrosis observed in SSc.  相似文献   

3.

Introduction

Systemic sclerosis (SSc) is a connective tissue disease characterized by fibrosis of the skin and organs. Increase in oxidative stress and platelet-derived growth factor receptor (PDGFR) activation promote type I collagen (Col I) production, leading to fibrosis in SSc. Lipoic acid (LA) and its active metabolite dihydrolipoic acid (DHLA) are naturally occurring thiols that act as cofactors and antioxidants and are produced by lipoic acid synthetase (LIAS). Our goals in this study were to examine whether LA and LIAS were deficient in SSc patients and to determine the effect of DHLA on the phenotype of SSc dermal fibroblasts. N-acetylcysteine (NAC), a commonly used thiol antioxidant, was included as a comparison.

Methods

Dermal fibroblasts were isolated from healthy subjects and patients with diffuse cutaneous SSc. Matrix metalloproteinase (MMPs), tissue inhibitors of MMPs (TIMP), plasminogen activator inhibitor 1 (PAI-1) and LIAS were measured by enzyme-linked immunosorbent assay. The expression of Col I was measured by immunofluorescence, hydroxyproline assay and quantitative PCR. PDGFR phosphorylation and α-smooth muscle actin (αSMA) were measured by Western blotting. Student’s t-tests were performed for statistical analysis, and P-values less than 0.05 with two-tailed analysis were considered statistically significant.

Results

The expression of LA and LIAS in SSc dermal fibroblasts was lower than normal fibroblasts; however, LIAS was significantly higher in SSc plasma and appeared to be released from monocytes. DHLA lowered cellular oxidative stress and decreased PDGFR phosphorylation, Col I, PAI-1 and αSMA expression in SSc dermal fibroblasts. It also restored the activities of phosphatases that inactivated the PDGFR. SSc fibroblasts produced lower levels of MMP-1 and MMP-3, and DHLA increased them. In contrast, TIMP-1 levels were higher in SSc, but DHLA had a minimal effect. Both DHLA and NAC increased MMP-1 activity when SSc cells were stimulated with PDGF. In general, DHLA showed better efficacy than NAC in most cases.

Conclusions

DHLA acts not only as an antioxidant but also as an antifibrotic because it has the ability to reverse the profibrotic phenotype of SSc dermal fibroblasts. Our study suggests that thiol antioxidants, including NAC, LA, or DHLA, could be beneficial for patients with SSc.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-014-0411-6) contains supplementary material, which is available to authorized users.  相似文献   

4.
Nitric oxide ((.-)NO) is an important physiological signaling molecule and potent vasodilator. Recently, we have shown abnormal (.-)NO metabolism in the plasma of patients with systemic sclerosis (SSc), a disease that features excessive collagen overproduction as well as vascular dysfunction. The current study investigates the effects of (.-)NO and peroxynitrite (ONOO(-)) on secretion of type I collagen by SSc dermal fibroblasts, compared with those from normal dermal fibroblasts (CON) and a dermal fibroblast cell line (AG). Dermal fibroblasts were incubated with (.-)NO donors (SNP, DETA-NONOate) with or without the antioxidant ascorbic acid, or ONOO(-) for 24-72 h. In CON and AG fibroblasts, type I collagen was dose dependently decreased by SNP or DETA-NONOate. However, (.-)NO had no effect in SSc fibroblasts. Furthermore, the inhibition of collagen synthesis by (.-)NO was reversed by ascorbic acid and was not affected by 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one, an inhibitor of soluble guanyl cyclase, or 8-bromoguanosine cyclic 3',5'-monophosphate, a cGMP agonist. SNP also showed a significant up-regulation of matrix metalloproteinase-1 (MMP-1) protein and activity levels, an essential collagenase involved in collagen degradation, in the AG fibroblasts. Additionally, (.-)NO-treated fibroblasts had lower prolyl hydroxylase activity, an enzyme important in the post-translational processing of collagen, while there was no effect on total protein levels. There were no significant effects on type I collagen levels when dermal fibroblasts were treated with ONOO(-). Taken together, ()NO inhibits collagen secretion in normal dermal fibroblasts but regulation is lost in SSc fibroblasts, while ONOO(-) itself is ineffective. (.-)NO inhibition of collagen was by cGMP-independent regulatory mechanisms and in part may be due to up-regulation of MMP-1 and/or inhibition of prolyl hydroxylase. These differences may contribute to the observed pathology of SSc.  相似文献   

5.
TGF-β is the primary inducer of extracellular matrix proteins in scleroderma (systemic sclerosis, SSc). Previous studies indicate that in a subset of SSc fibroblasts TGF-β signaling is activated via elevated levels of activin receptor-like kinase (ALK) 1 and phosphorylated Smad1 (pSmad1). The goal of this study was to determine the role of endoglin/ALK1 in TGF-β/Smad1 signaling in SSc fibroblasts. In SSc fibroblasts, increased levels of endoglin correlated with high levels of pSmad1, collagen, and connective tissue growth factor (CCN2). Endoglin depletion via siRNA in SSc fibroblasts inhibited pSmad1 but did not affect pSmad2/3. Following endoglin depletion mRNA and protein levels of collagen and CCN2 were significantly decreased in SSc fibroblasts but remained unchanged in normal fibroblasts. ALK1 was expressed at similar levels in SSc and normal fibroblasts. Depletion of ALK1 resulted in inhibition of pSmad1 and a moderate but significant reduction of mRNA and protein levels of collagen and CCN2 in SSc fibroblasts. Furthermore, constitutively high levels of endoglin were found in complexes with ALK1 in SSc fibroblasts. Overexpression of constitutively active ALK1 (caALK1) in normal and SSc fibroblasts led to a moderate increase of collagen and CCN2. However, caALK1 potently induced endothelin 1 (ET-1) mRNA and protein levels in SSc fibroblasts. Additional experiments demonstrated that endoglin and ALK1 mediate TGF-β induction of ET-1 in SSc and normal fibroblasts. In conclusion, this study has revealed an important profibrotic role of endoglin in SSc fibroblasts. The endoglin/ALK1/Smad1 pathway could be a therapeutic target in patients with SSc if appropriately blocked.  相似文献   

6.
Endothelin-1 (ET-1) plays an important role in tissue remodelling and fibrogenesis by inducing synthesis of collagen I via protein kinase C (PKC). ET-1 signals are transduced by two receptor subtypes, the ETA- and ETB-receptors which activate different Galpha proteins. Here, we investigated the expression of both ET-receptor subtypes in human primary dermal fibroblasts and demonstrated that the ETA-receptor is the major ET-receptor subtype expressed. To determine further signalling intermediates, we inhibited Galphai and three phospholipases. Pharmacologic inhibition of Galphai, phosphatidylcholine-phospholipase C (PC-PLC) and phospholipase D (PLD), but not of phospholipase Cbeta, abolished the increase in collagen I by ET-1. Inhibition of all phospholipases revealed similar effects on TGF-beta1 induced collagen I synthesis, demonstrating involvement of PC-PLC and PLD in the signalling pathways elicited by ET-1 and TGF-beta1. ET-1 and TGF-beta1 each stimulated collagen I production and in an additive manner. ET-1 further induced connective tissue growth factor (CTGF), as did TGF-beta1, however, to lower levels. While rapid and sustained CTGF induction was seen following TGF-beta1 treatment, ET-1 increased CTGF in a biphasic manner with lower induction at 3 h and a delayed and higher induction after 5 days of permanent ET-1 treatment. Coincidentally at 5 days of permanent ET-1 stimulation, a switch in ET-receptor subtype expression to the ETB-receptor was observed. We conclude that the signalling pathways induced by ET-1 and TGF-beta1 leading to augmented collagen I production by fibroblasts converge on a similar signalling pathway. Thereby, long-time stimulation by ET-1 resulted in a changed ET-receptor subtype ratio and in a biphasic CTGF induction.  相似文献   

7.

Introduction

Scleroderma or systemic sclerosis (SSc) is a complex connective tissue disease characterized by fibrosis of skin and internal organs. Transforming growth factor beta (TGF-β) plays a key role in the pathogenesis of SSc fibrosis. We have previously identified CD109 as a novel TGF-β co-receptor that inhibits TGF-β signaling. The aim of the present study was to determine the role of CD109 in regulating extracellular matrix (ECM) production in human SSc skin fibroblasts.

Methods

CD109 expression was determined in skin tissue and cultured skin fibroblasts of SSc patients and normal healthy subjects, using immunofluorescence, western blot and RT-PCR. The effect of CD109 on ECM synthesis was determined by blocking CD109 expression using CD109-specific siRNA or addition of recombinant CD109 protein, and analyzing the expression of ECM components by western blot.

Results

The expression of CD109 proteinis markedly increased in SSc skin tissue in vivo and in SSc skin fibroblasts in vitro as compared to their normal counterparts. Importantly, both SSc and normal skin fibroblasts transfected with CD109-specific siRNA display increased fibronectin, collagen type I and CCN2 protein levels and enhanced Smad2/3 phosphorylation compared with control siRNA transfectants. Furthermore, addition of recombinant CD109 protein decreases TGF-β1-induced fibronectin, collagen type I and CCN2 levels in SSc and normal fibroblasts.

Conclusion

The upregulation of CD109 protein in SSc may represent an adaptation or consequence of aberrant TGF-β signaling in SSc. Our finding that CD109 is able to decrease excessive ECM production in SSc fibroblasts suggest that this molecule has potential therapeutic value for the treatment of SSc.  相似文献   

8.
Radiation induced fibrosis occurs following a therapeutic or accidental radiation exposure in normal tissues. Tissue fibrosis is the excessive accumulation of collagen and other extracellular matrix components. This study investigated how ionizing radiation affects the expression level and signal pathway of type I collagen. Real time RT-RCR showed that both α1 and α2 chain of type I collagen mRNA were elevated from 48 h after irradiation with 10 Gy in NIH3T3 cells. The relative luciferase activities of both genes and type I collagen marker were elevated at 72 h. TGF-β1 mRNA was elevated earlier than those of type I collagen genes. A Western blot analysis showed the elevation of Smad phosphorylation at 72 h. Conversely, treatment with TGF-β receptor inhibitor inhibited the mRNA and relative luciferase activity of type I collagen. The phosphorylation of Smad was repressed with the inhibitor, and the luciferase activity was cancelled using a mutant construct of Smad binding site of α2(I) collagen gene. However, the MAPK pathways, p38, ERK1/2 and JNK, were not affected with specific inhibitors or siRNA. The data showed that the Smad pathway mediated the expression of type I collagen in radiation induced fibrosis.  相似文献   

9.
Fibrotic diseases such as scleroderma (systemic sclerosis, SSc) are characterized by an excessive production of extracellular matrix and profibrotic proteins such as connective tissue growth factor (CTGF). In normal dermal fibroblasts, CTGF is not expressed unless induced by proteins such as tumor growth factor-beta (TGFbeta). Conversely, in fibroblasts cultured from fibrotic lesions CTGF mRNA and protein are constitutively expressed, even in the absence of exogenously added TGFbeta. Thus, studying the mechanism underlying CTGF overexpression in SSc fibroblasts is likely to yield valuable insights into the basis of the fibrotic phenotype of SSc and possibly other scarring disease. CTGF overexpression is mediated primarily by sequences in the CTGF promoter. In this report, we identify the minimal promoter element involved with the overexpression of CTGF in SSc fibroblasts. This element is distinct from the element necessary and sufficient for the induction of CTGF expression by TGFbeta in normal fibroblasts. Within this region is a functional Sp1 binding site. Blocking Sp1 activity reduces the elevated, constitutive levels of CTGF promoter activity and protein expression observed in SSc fibroblasts. Relative to those prepared from normal dermal fibroblasts, nuclear extracts prepared from SSc fibroblasts possess increased Sp1 binding activity. Removal of phosphate groups from nuclear extracts enhanced Sp1 binding activity, suggesting that phosphorylation of Sp1 normally reduces Sp1 binding to DNA. Thus, the constitutive overexpression of CTGF in SSc fibroblasts seems to be independent of TGFbeta signaling but dependent at least in part on Sp1.  相似文献   

10.
Fibrosis is a pathological situation in which excessive amounts of extracellular matrix (ECM) are deposited in the tissue. Myofibroblasts play a crucial role in the development and progress of fibrosis as they actively synthesize ECM components such as collagen I, fibronectin and connective tissue growth factor (CTGF) and cause organ fibrosis. Transforming growth factor beta 1 (TGF-β1) plays a major role in tissue fibrosis. Activin receptor-like kinase 1 (ALK1) is a type I receptor of TGF-β1 with an important role in angiogenesis whose function in cellular biology and TGF-β signaling is well known in endothelial cells, but its role in fibroblast biology and its contribution to fibrosis is poorly studied. We have recently demonstrated that ALK1 regulates ECM protein expression in a mouse model of obstructive nephropathy. Our aim was to evaluate the role of ALK1 in several processes involved in fibrosis such as ECM protein expression, proliferation and migration in ALK1+/+ and ALK1+/− mouse embryonic fibroblasts (MEFs) after TGF-β1 stimulations and inhibitors. ALK1 heterozygous MEFs show increased expression of ECM proteins (collagen I, fibronectin and CTGF/CCN2), cell proliferation and migration due to an alteration of TGF-β/Smad signaling. ALK1 heterozygous disruption shows an increase of Smad2 and Smad3 phosphorylation that explains the increases in CTGF/CCN2, fibronectin and collagen I, proliferation and cell motility observed in these cells. Therefore, we suggest that ALK1 plays an important role in the regulation of ECM protein expression, proliferation and migration.  相似文献   

11.

Introduction  

Increased levels of genes in the type I interferon (IFN) pathway have been observed in patients with systemic sclerosis (SSc), or scleroderma. How type I IFN regulates the dermal fibroblast and its participation in the development of dermal fibrosis is not known. We hypothesized that one mechanism by which type I IFN may contribute to dermal fibrosis is through upregulation of specific Toll-like receptors (TLRs) on dermal fibroblasts. Therefore, we investigated the regulation of TLR expression on dermal fibroblasts by IFN.  相似文献   

12.
13.
14.

Introduction

B lymphocytes might play a pathogenic role in dermal fibrosis in systemic sclerosis (SSc). B-cell activating factor (BAFF), a key cytokine for B-cell activation, is increased in the serum and the skin of patients with SSc. However, the ability of B cells directly to stimulate dermal fibroblasts and the role of BAFF are not fully understood. We therefore investigated the involvement of B cells and BAFF in the expression of collagen and profibrotic markers by dermal fibroblasts.

Methods

Cocultures of blood B cells from healthy blood donors and normal or SSc dermal fibroblasts stimulated with anti-IgM and BAFF were performed. Alpha-SMA, TIMP1, MMP9, COL1A1, COL1A2, and COL3A1 mRNA expression were determined by quantitative RT-PCR. Soluble collagen, BAFF, IL-6, IL-1β, TGF-β1, and CCL2 protein secretion were assessed.

Results

Coculture of blood B cells and dermal fibroblasts isolated from SSc patients induced IL-6, TGF-β1, CCL2, and collagen secretion, as well as Alpha-SMA, TIMP1, and MMP9 expression in dermal fibroblasts. Transwell assays demonstrated that this induction was dependent on cell-cell contact. Addition of anti-IgM and BAFF to the coculture increased IL-6, CCL2, TGF-β1, and collagen secretion. B cell- and BAFF-induced collagen secretion was highly reduced by anti-TGF-β1 antibodies.

Conclusions

Our results showed for the first time a direct role of B cells on the production of collagen by dermal fibroblasts, which is further enhanced by BAFF. Thus, these results demonstrate a new pathogenic role of B cells and BAFF in fibrosis and systemic sclerosis.  相似文献   

15.
Connective tissue growth factor (CTGF, CCN2) is overexpressed in lung fibroblasts isolated from patients with interstitial lung disease (ILD) and systemic sclerosis (SSc, scleroderma) and is considered to be a molecular marker of fibrosis. To understand the significance of elevated CTGF, we investigated the changes in lung fibroblast proteome in response to CTGF overexpression. Using 2-dimensional gel electrophoresis followed by in-gel proteolytic digestion and mass spectrometric analysis, we identified 13 proteins affected by CTGF. Several of the CTGF-induced proteins, such as pro-alpha (I) collagen and cytoskeletal proteins vinculin, moesin, and ezrin, are known to be elevated in pulmonary fibrosis, whereas 9 of 13 proteins have not been studied in pulmonary fibrosis and are, therefore, novel CTGF-responsive molecules that may have important roles in ILD. Our study demonstrates that 1 of the novel CTGF-induced proteins, IQ motif containing GTPase activating protein (IQGAP) 1, is elevated in lung fibroblasts isolated from scleroderma patients with ILD. IQGAP1 is a scaffold protein that plays a pivotal role in regulating migration of endothelial and epithelial cells. Scleroderma lung fibroblasts and normal lung fibroblasts treated with CTGF demonstrated increased rate of migration in a wound healing assay. Depletion of IQGAP1 expression by small interfering RNA inhibited CTGF-induced migration and MAPK ERK1/2 phosphorylation in lung fibroblasts. MAPK inhibitor U0126 decreased CTGF-induced cell migration and did not interfere with CTGF-induced IQGAP1 expression, suggesting that MAPK pathway is downstream of IQGAP1. These findings further implicate the importance of CTGF in lung tissue repair and fibrosis and propose that CTGF-induced migration of lung fibroblasts to the damaged tissue is mediated via IQGAP1 and MAPK signaling pathways.  相似文献   

16.
17.
18.
19.
Activation of fibroblasts and their differentiation into myofibroblasts, excessive collagen production and fibrosis occurs in a number of bladder diseases. Similarly, conversion of epithelial cells into mesenchymal cells (EMT) has been shown to increase fibroblasts like cells. TGF-β1 can induce the EMT and the role of TGF-β1-induced EMT during bladder injury leading to fibrosis and possible organ failure is gaining increasing interest. Here we show that EMT and fibrosis in porcine bladder urothelial (UC) cells are Smad dependent. Fresh normal porcine bladder urothelial cells were grown in culture with or without TGF-β1 and EMT markers were assessed. TGF-β1 treatment induced changes in cellular morphology as depicted by a significant decrease in the expression of E-cadherin and corresponding increase in N-cadherin and α-SMA. We knocked down Smad2 and Smad3 by Smad specific siRNA. Downregulation of E-cadherin expression by TGF-β1 was Smad3-dependent, whereas N-cadherin and α-SMA were dependent on both Smad2 and Smad3. Connective tissue growth factor (CTGF/CCN2), matrix metalloproteinase-2 and -9 (MMP-2, MMP-9) has been shown to play important roles in the pathogenesis of fibrosis. Induction of these genes by TGF-β1 was found to be time dependent. Upregulation of CTGF/CCN2 by TGF-β1 was Smad3 dependent; whereas MMP-2 was Smad2 dependent. Smad2 and Smad3 both participated in MMP-9 expression. TGF-β1 reprogrammed mesenchymal fibroblast like cells robustly expressed collagen I and III and these was inhibited by SB-431542, a TGF-β receptor inhibitor. Our results indicate that EMT of porcine bladder UC cells is TGF-β1 dependent and is mediated through Smad2 and Smad3. TGF-β1 may be an important factor in the development of bladder fibrosis via an EMT mechanism. This identifies a potential amenable therapeutic target.  相似文献   

20.
The main manifestation of systemic sclerosis (SSc) is the overproduction of extracellular matrix, predominantly type I collagen. This study was undertaken to evaluate the effects of noncytotoxic doses of the topoisomerase I inhibitor camptothecin (CPT) on collagen production in the activated dermal fibroblasts from patients with SSc and healthy donors. The fibroblasts were cultured in the presence or absence of CPT. Production of collagenous proteins by fibroblasts was determined in cell and matrix layers by ELISA and in conditioned media by [3H]proline incorporation, gel electrophoresis, and autoradiography. Expression of α2(I) collagen (COL1A2) mRNA was measured by northern blot, and the activity of COL1A2 promoter was determined by a chloramphenicol acetyltransferase assay. CPT (10-7 M) decreased the deposition of type I collagen by 68%, of type III by 38%, and of type VI by 21% in SSc fibroblasts and to a lesser degree in healthy controls. Similarly, CPT (10-8 M to 10-6 M) significantly inhibited secretion of newly synthesized collagenous proteins into conditioned media by 50%. CPT (10-8 M to 10-6 M) caused a significant dose-dependent inhibition of COL1A2 mRNA levels and COL1A2 promoter activity, both by as much as 60%. The inhibitory effect of CPT on collagen production by fibroblasts from patients with SSc suggests that topoisomerase I inhibitors may be effective in limiting fibrosis in such patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号