首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Treelines are temperature sensitive transition zones that are expected to respond to climate warming by advancing beyond their current position. Response to climate warming over the last century, however, has been mixed, with some treelines showing evidence of recruitment at higher altitudes and/or latitudes (advance) whereas others reveal no marked change in the upper limit of tree establishment. To explore this variation, we analysed a global dataset of 166 sites for which treeline dynamics had been recorded since 1900 AD. Advance was recorded at 52% of sites with only 1% reporting treeline recession. Treelines that experienced strong winter warming were more likely to have advanced, and treelines with a diffuse form were more likely to have advanced than those with an abrupt or krummholz form. Diffuse treelines may be more responsive to warming because they are more strongly growth limited, whereas other treeline forms may be subject to additional constraints.  相似文献   

2.
Alpine treelines are expected to move upslope with a warming climate. However, so far treelines have responded inconsistently and future shifts remain difficult to predict since many factors unrelated to temperature, such as biotic interactions, affect responses at the local scale. Especially during the earliest regeneration stages, trees can be strongly influenced by alpine vegetation via both competition and facilitation. We aimed to understand the relative importance of these two types of interaction in different vegetation structures for treeline regeneration dynamics. Effects of herbaceous alpine vegetation on seedling emergence and first‐year performance were studied in a field experiment in the French Alps (2100 m a.s.l.) with five important European treeline tree species: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia. Total emergence and locally‐germinated seedling survival were not affected, but for seedlings planted at two months of age, negative vegetation impacts dominated for all response parameters: first‐year survival, growth and carbohydrate accumulation. However, in the winter half‐year, evergreen tree seedlings increased carbohydrate reserves under the protection of senescent herbs. Also, responses of locally‐germinated seedlings suggest facilitative vegetation effects in the first two months after emergence. Thus, the interaction switched between competition and facilitation according to ontogenetic stage and seasons. Still, the net outcome after one year was negative, but species differed in their susceptibilities. Because initial establishment is the first bottleneck determining whether treelines remain stable or move upslope, understanding establishment, including site‐, life‐stage and species‐specific processes, is essential for understanding observed treeline spatial patterns and dynamics. When developing predictive models of treeline dynamics, all these ‘local’ aspects should be incorporated in addition to more global drivers like changes in temperature.  相似文献   

3.
Treeline position is mainly determined by growth season temperature, but the response of treelines to climate warming is not uniform worldwide. We compared treeline structure, dynamics and thermal profile in nearby areas with different treeline type, species composition and bioclimatic conditions. We performed a detailed survey of different treeline types in three areas of Italian Alps and northern Apennines. Every tree individual was recorded along altitudinal transects from the closed forest to the species limit. Treeline structure and dynamics were described through altitudinal limits of tree height, density and age. Data were elaborated by principal components analysis. Temperature regime of the three sites was assessed from homogeneous historical climatic data. Treeline was different in the three areas for species composition, shape and dynamics. Both Alpine sites showed diffuse treeline, but only one showed advancing dynamics. Apennine treeline was abrupt and static, with higher temperature at the tree limit. Our study showed the variable dynamics of treelines within a relatively restricted area and the connection between treeline shape and dynamics. An important role is played by species composition, determined by bioclimatic and historical features. These factors should be taken into account when modelling future treeline dynamics at global scale.  相似文献   

4.
高山林线变化的更新受限机制研究进展   总被引:1,自引:0,他引:1  
沈维  张林  罗天祥 《生态学报》2017,37(9):2858-2868
全球林线位置对气候变暖的响应表现为上升、无变化或下降等截然不同趋势,表明影响林线位置及动态的因子十分复杂,除了较普遍认为的低温调控机制外,还存在其它控制林线位置变化的机制。林线向上迁移开始于种子向林线以上的传播及幼苗在林线以上的定居,这些过程中的限制因子均会影响林线的位移,因此研究更新过程及其限制因子对理解高山林线对气候变化的响应具有重要的科学意义。主要从种子和幼苗两个关键阶段综述高山林线森林更新的研究进展。在种子阶段,夏季积温不足导致种子产量和活力下降,风速过低和浓密灌丛限制种子向林线以上传播,近地表的霜冻/水分胁迫和灌木释放的化感物质会阻碍种子在林线以上萌发。在幼苗阶段,除冬季低温外,生长季内较大的温度日振幅和偶然出现的冻害事件也是导致幼苗死亡的重要原因,而低温环境下的强烈光照引起的低温光抑制会显著降低生长季的光合作用;土壤低温、由土壤温度昼夜变化引起的冻举事件、夏季土壤干旱可能会导致幼苗光合作用下降和死亡率上升;积雪太浅会导致生长季早期幼苗水分供应的严重缺乏,但积雪太深会导致幼苗感染真菌的可能性增加;浓密的灌木和草本植物以及植食动物的啃食也会降低林线以上的幼苗存活率。气候变暖对林线幼苗定居的影响复杂且具有很大不确定性,需要进一步研究气候变暖导致的环境因子变化对林线更新各关键阶段的影响。未来气候变暖无疑会导致生长季起始日提前,结束日推迟,这很可能会增加生长季期间尤其是早期的低温冻害事件,对高山林线树种幼苗的存活具有重要影响。在未来研究中,需要找出定义生长季冻害事件的温度阈值,利用长期气象观测数据分析增温背景下生长季早期冻害事件特征的变化趋势,并进一步开展野外模拟增温实验以深刻理解林线树种的种子萌发和幼苗定居与生长季冻害事件的关系,加强对不同地区林线树种的繁殖策略研究,这将有助于人们进一步理解不同区域林线的形成机制并预测未来气候变化条件下林线的动态变化趋势。  相似文献   

5.
Low‐temperature growth limitation largely determines alpine treeline position globally, but treeline elevation also varies locally at a range of scales in response to multiple biotic and abiotic factors. In this study, we conceptualise how variability in treeline elevation is related to abiotic factors that act as thermal modifiers, physiological stressors, or disturbance agents. We then present a novel analytical framework for quantifying how abiotic factors influence treeline elevation at different spatial scales using New Zealand Nothofagus treelines as a case study. We delineated Nothofagus treelines in a GIS, along which we extracted data for treeline elevation and eight abiotic explanatory variables at 54 000 points. Each location was classified at each of five spatial scales based on nested river catchments, ranging from large regional to small hillslope catchments. We used hierarchical linear models to partition the variation in both treeline elevation and the eight abiotic variables by spatial scale, and then quantified the relationships between these at each spatial scale in turn. Nothofagus treeline elevation varied from 800–1740 m a.s.l. across New Zealand. Abiotic factors explained 82% of the variation in treeline elevation at the largest (regional) scale and 44–52% of variation at the four finer scales. Broad‐scale variation in Nothofagus treeline elevation was strongly associated with thermal modifiers, consistent with the idea that treelines coincide with a temperature‐driven, physiological limit. However, much of the finer‐scale variation in treeline elevation was explained by a combination of thermal, physiological stress‐related, and disturbance variables operating at different spatial scales. The conceptual model and analytical methods developed here provide a general framework for understanding treeline variation at different spatial scales.  相似文献   

6.
Alpine treeline ecotones are considered early-warning monitors of the effects of climate change on terrestrial ecosystems, but it is still unclear how accurately treeline dynamics may track the expected temperature rises. Site-specific abiotic constraints, such as topography and demographic trends may make treelines less responsive to environmental fluctuations. A better understanding on how local processes modulate treelines’ response to warming is thus required. We developed a model of treeline dynamics based on individual data of growth, mortality and reproduction. Specifically, we modeled growth patterns, mortality rates and reproductive size thresholds as a function of temperature and stand structure to evaluate the influence of climate- and stand-related processes on treeline dynamics. In this study, we analyze the dynamics of four Pyrenean mountain pine treeline sites with contrasting stand structures, and subjected to differing rates of climate warming. Our models indicate that Pyrenean treelines could reach basal areas and reproductive potentials similar to those currently observed in high-elevation subalpine forest by the mid twenty-first century. The fastest paces of treeline densification are forecasted by the late twenty-first century and are associated with higher warming rates. We found a common densification response of Pyrenean treelines to climate warming, but contrasting paces arise due to current size structures. Treelines characterized by a multistratified stand structure and subjected to lower mean annual temperatures were the most responsive to climate warming. In monostratified stands, tree growth was less sensitive to temperature than in multistratified stands and trees reached their reproductive size threshold later. Therefore, our simulations highlight that stand structure is paramount in modulating treeline responsiveness to ongoing climate warming. Synthesis. Treeline densification over the twenty-first century is likely to occur at different rates contingent on current stand structure and its effects on individual-level tree growth responses to warming. Accurate projections of future treeline dynamics must thus incorporate site-specific factors other than climate, specifically those related to stand structure and its influence on tree growth.  相似文献   

7.
The upper elevational range edges of most tropical cloud forest tree species and hence the ‘treeline’ are thought to be determined primarily by temperatures. For this reason, the treeline ecotone between cloud forests and the overlying grasslands is generally predicted to shift upslope as species migrate to higher elevations in response to global warming. Here, we propose that other factors are preventing tropical trees from shifting or expanding their ranges to include high elevation areas currently under grassland, resulting in stationary treelines despite rising mean temperatures. The inability of cloud forest species to invade the grasslands, a phenomenon which we refer to as the ‘grass ceiling’ effect, poses a major threat to tropical biodiversity as it will greatly increase risk of extinctions and biotic attrition in diverse tropical cloud forests. In this review, we discuss some of the natural factors, as well as anthropogenic influences, that may prevent cloud forest tree species from expanding their ranges to higher elevations. In the absence of human disturbances, tropical treelines have historically shifted up‐ and down‐slope with changes in temperature. Over time, increased human activity has limited forests to lower elevations (i.e. has depressed treelines), and often broken the equilibrium between species range limits and climate. Yet even in areas where anthropogenic influences are halted, cloud forests have not expanded to higher elevations. Despite the critical importance of understanding the distributional responses of tropical species to climate change, few studies have addressed the factors that influence treeline location and dynamics, severely hindering our ability to predict the fate of these diverse and important ecosystems.  相似文献   

8.
Above-average climate warming occurred during the 20th century in high altitude regions, and alpine treelines are believed to be an early indicator to respond to these warming-related changes. However, empirical investigations on treeline dynamics showed diverse results. The main objectives of this study are: (1) to investigate if treeline position shifted and if tree recruitment changed along with climate warming, and (2) to test if adult trees have “nursing effect” on tree establishment at treelines. We investigated two Balfour spruce (Picea balfouriana Rehd. et Wils.) treelines in Chang Niang (CNT) and Dang Dui (DDT), Dingqing county, Changdu prefecture, eastern Tibet. At each treeline site, three replicate plots with a size 30 m × 50 m were established. The coordinates of each tree within the plots were recorded and the age of each tree was identified by dendrochronological method. The changes in treeline position and tree recruitment were examined from spatially fine-scale distribution of trees and their age structure. The spatial patterns of individual trees were analyzed to infer the neighborhood effects. Results indicate that plots CNT2, CNT3, DDT1 and DDT2 showed stable treeline position during the last century, whereas plots CNT1 and DDT3 showed treeline advancing movement. Tree recruitments in all the six plots were enhanced during the 20th century, with two peaks occurring in the 1890–1910s and the 1950–1990s. Seedlings and saplings showed a general clustered distribution in all the six plots. The diverse pattern of treeline movement and episodic regeneration suggest that the treeline activity is not merely a result of climate change. “Nursing effects” from adult trees may play an important role in shaping the treeline activities on the eastern Tibetan Plateau. Our findings reveal diverse patterns in treeline dynamics at a local scale and highlight the importance of incorporating biotic interactions into species distribution modeling approaches.  相似文献   

9.
Treeline advance has occurred throughout the twentieth century in mountainous regions around the world; however, local variation and temporal lags in responses to climate warming indicate that the upper limits of some treelines are not necessarily in climatic equilibrium. These observations suggest that factors other than climate are constraining tree establishment beyond existing treelines. Using a seed addition experiment, we tested the effects of seed availability, predation and microsite limitation on the establishment of two subalpine tree species (Picea engelmannii and Abies lasiocarpa) across four treelines in the Canadian Rocky Mountains. The effect of vegetation removal on seedling growth was also determined, and microclimate conditions were monitored. Establishment limitations observed in the field were placed in context with the effects of soil properties observed in a parallel experiment. The seed addition experiment revealed reduced establishment with increasing elevation, suggesting that although establishment within the treeline ecotone is at least partially seed limited, other constraints are more important beyond the current treeline. The effects of herbivory and microsite availability significantly reduced seedling establishment but were less influential beyond the treeline. Microclimate monitoring revealed that establishment was negatively related to growing season temperatures and positively related to the duration of winter snow cover, counter to the conventional expectation that establishment is limited by low temperatures. Overall, it appears that seedling establishment beyond treeline is predominantly constrained by a combination of high soil surface temperatures during the growing season, reduced winter snowpack and unfavourable soil properties. Our study supports the assertion that seedling establishment in alpine treeline ecotones is simultaneously limited by various climatic and nonclimatic drivers. Together, these factors may limit future treeline advance in the Canadian Rocky Mountains and should be considered when assessing the potential for treeline advance in alpine systems elsewhere  相似文献   

10.
The sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change are increasingly discussed in terms of climate change, often forgetting that climate is only one aspect of environmental variation. As treeline heterogeneity increases from global to regional and smaller scales, assessment of treeline sensitivity at the landscape and local scales requires a more complex approach than at the global scale. The time scale (short‐, medium‐, long‐term) also plays an important role when considering treeline sensitivity. The sensitivity of the treeline to a changing environment varies among different types of treeline. Treelines controlled mainly by orographic influences are not very susceptible to the effects of warming climates. Greatest sensitivity can be expected in anthropogenic treelines after the cessation of human activity. However, tree invasion into former forested areas above the anthropogenic forest limit is controlled by site conditions, and in particular, by microclimates and soils. Apart from changes in tree physiognomy, the spontaneous advance of young growth of forest‐forming tree species into present treeless areas within the treeline ecotone and beyond the tree limit is considered to be the best indicator of treeline sensitivity to environmental change. The sensitivity of climatic treelines to climate warming varies both in the local and regional topographical conditions. Furthermore, treeline history and its after‐effects also play an important role. The sensitivity of treelines to changes in given factors (e.g. winter snow pack, soil moisture, temperature, evaporation, etc.) may vary among areas with differing climatic characteristics. In general, forest will not advance in a closed front but will follow sites that became more favourable to tree establishment under the changed climatic conditions.  相似文献   

11.

Key message

The treeline on Changbai Mountain controlled by low temperature and water stress, has not reached the position most commonly expected.

Abstract

Treeline pattern is an important consideration in exploring the general mechanisms controlling the response of treelines to climatic change. However, most of the present conclusions were derived from evergreen and/or conifer treeline, it is still not clear about the deciduous treeline. This study analyzed concentrations of non-structural carbohydrates (NSC) and their components (total soluble sugars and starch) in tree tissues of the deciduous species Erman’s birch (Betula ermanii) at four points along an elevational gradient ranging from 1,908–2,058 m a.s.l at the end of the growing season on Changbai Mountain in Northeast China. The mean 10-cm soil temperature of 8.2 °C under trees across the 129-day growing season at the treeline in this region was higher than that of the average threshold temperature found at treeline positions in the global and China’s climate studies. However, altitudinal trends of NSC concentrations increased significantly in all tissue types along the altitudinal gradients, revealing no depletion of carbon reserves at the treeline on Changbai Mountain. At the same time, the pronounced variation of δ13C in leaves and aged branches suggested that low temperature and water stress may simultaneously be operating at high altitudes to restrict the growth and NSC accumulation in trees above the treeline. In light of the above, we conclude that treeline formation on Changbai Mountain is no carbon depletion at the end of growing season, and most likely the result of sink limitation reflecting the combined effects of low temperature and water stress that determined the actual position of the treeline.  相似文献   

12.
Many hypotheses have been put forward to explain the structure and position of alpine treelines. The spatial complexity of the ecotone, ranging from sharp boundaries to networks of tree patches within a heath matrix, may explain why no consensus has been reached. In this paper, we discuss factors from abiotic disturbances to herbivory that may help understand the spatial structure of the alpine treeline ecotone in Fennoscandia. The ecotone is dominated by mountain birch (Betula pubescens ssp. tortuosa), and may show a wide range of spatial structures. We discuss the influence of topography, seed limitations, seedling establishment, growth limitations, abiotic disturbances and herbivory as structuring factors. All of these factors may operate, but their relative importance in space and time is unknown. There is a basic difference between factors that prevent the establishment of trees, and thus act on early life history stages, and factors that thin out a previously dense forest, and thus act on adult trees. Mortality caused directly or indirectly by geometrid moths may belong to the latter category. We suggest that seedling and sapling mortality is more important than seed limitation for the establishment of new individuals in the treeline ecotone. Important mortality factors may be abiotic disturbances, competition (or allelopathy) from field layer plants and herbivory. The relative role of these factors needs to be examined further.  相似文献   

13.
Aims We investigated the treeline dynamics of two environmentally contrasting areas in the Nepalese Himalaya to address the following questions: (i) Does the timing of establishment of the current treeline differ between the two study areas, and can area-specific treeline developments be identified? (ii) Do recruitment patterns and height growth indicate recent climate-driven treeline advance, following the general prediction for the central Himalayan region, in the two study areas?Methods A dry-climate treeline dominated by Pinus wallichiana and a mesic-climate treeline with Abies spectabilis were selected for study. In each area, we sampled the size and age structure of the study species along three elevational transects (20-m wide) from the forest line to the tree species line crossing the treeline. We also sampled treeline trees from within and outside transects to reconstruct past treeline establishment dynamics.Important findings Despite differences in moisture regimes, tree species and recent climate trends, our two study areas showed very similar treeline dynamics over the past six decades. In both areas, the recruitment of treeline trees indicates stationary treelines over the past six decades with the current treelines being dominated by trees that were established around 1990. The mesic area has experienced an overall climatic warming trend, and the stationary Abies treeline is hypothesized to be regulated by non-climatic factors, notably grazing. The dry area has not experienced warming but increased climatic variability and some very cool summers in the recent decades may explain the stationary to weakly receding Pinus treeline, which appears more climatically controlled with decreased recruitment over the past decades and decreased growth towards higher elevations. In both areas, there is a potential for treeline advance, depending on future land use and climate change. Our results highlight the importance of conducting treeline ecotone analyses for several sites or areas, and considering both climatic and non-climatic drivers of the treeline dynamics within each of these areas, for understanding regional treeline dynamics.  相似文献   

14.
No single hypothesis or theory has been widely accepted for explaining the functional mechanism of global alpine/arctic treeline formation. The present study tested whether the alpine treeline is determined by (1) the needle nitrogen content associated with photosynthesis (carbon gain); (2) a sufficient source-sink ratio of carbon; or (3) a sufficient C-N ratio. Nitrogen does not limit the growth and development of trees studied at the Himalayan treelines. Levels of non-structural carbohydrates (NSC) in trees were species-specific and site-dependent; therefore, the treeline cases studied did not show consistent evidence of source/carbon limitation or sink/growth limitation in treeline trees. However, results of the combined three treelines showed that the treeline trees may suffer from a winter carbon shortage. The source capacity and the sink capacity of a tree influence its tissue NSC concentrations and the carbon balance; therefore, we suggest that the persistence and development of treeline trees in a harsh alpine environment may require a minimum level of the total NSC concentration, a sufficiently high sugar:starch ratio, and a balanced carbon source-sink relationship.  相似文献   

15.
The Altitude of Alpine Treeline: A Bellwether of Climate Change Effects   总被引:3,自引:0,他引:3  
Because of the characteristically low temperatures and ambient CO2 concentrations associated with greater altitudes, mountain forests may be particularly sensitive to global warming and increased atmospheric CO2. Moreover, the upper treeline is probably the most stressful location within these forests, possibly providing an early bellwether of forest response. Most treeline studies of the past century, as well as recently, have correlated temperatures with the altitudinal limits observed for treelines. In contrast, investigations on pre-establishment seedlings, the most vulnerable life stage of most tree species, are rare. There appears to be specific microclimatic factors dictated by wind and sky exposure that limit seedling survival, and also generate the distorted tree forms commonly observed at treeline. Seedling survival appears critical for creating the biological facilitation of microclimate at the community level which is necessary for the growth of seedlings to normal tree stature, forming new subalpine forest at a higher altitude.  相似文献   

16.
木本植物幼苗是高山林线生态交错区的重要组成部分,其更新对气候变化背景下树线的移动至关重要.本研究通过对近几十年来全球范围内林线生态交错区的木本植物幼苗分布特征、更新机制及其对气候变化响应的研究总结得出:林线生态交错区木本植物幼苗的空间分布类型主要为渐变型和聚集型,且不同分布类型对树线动态的指示意义各异.在全球尺度上,其分布的海拔高限通常与生长季长度、均温和物种特性等有关,而在区域尺度上则多受降水影响.在幼苗更新初期,种源在很大程度上决定了种子的萌发及分布位置,之后微环境的促进作用为幼苗的定植提供庇护,提高其存活率,而在更新后期多种生物和非生物因素及其相互作用则非常关键.气候变暖促使林线生态交错区气温升高、降水充沛,有利于幼苗生长,使其向高海拔区域扩张而成为树线上移的先兆,但部分物种受遗传特性或适应策略影响,仅表现为密度增加,使树线保持相对稳定.未来应借助树轮、14C等精确定年技术,通过长期的野外定位观测和室内模拟,加强多时空尺度下林线幼苗的空间分布特征和更新机制研究,分析不同类型林线内木本植物幼苗的适应策略,预测气候变化背景下的树线动态,为山地生态系统恢复及保护提供科学依据.  相似文献   

17.
A world-wide study of high altitude treeline temperatures   总被引:43,自引:0,他引:43  
Aim At a coarse scale, the treelines of the world's mountains seem to follow a common isotherm, but the evidence for this has been indirect so far. Here we aim at underpinning this with facts. Location We present the results of a data‐logging campaign at 46 treeline sites between 68° N and 42° S. Methods We measured root‐zone temperatures with an hourly resolution over 1–3 years per site between 1996 and 2003. Results Disregarding taxon‐, landuse‐ or fire‐driven tree limits, high altitude climatic treelines are associated with a seasonal mean ground temperature of 6.7 °C (±0.8 SD; 2.2 K amplitude of means for different climatic zones), a surprisingly narrow range. Temperatures are higher (7–8 °C) in the temperate and Mediterranean zone treelines, and are lower in equatorial treelines (5–6 °C) and in the subarctic and boreal zone (6–7 °C). While air temperatures are higher than soil temperatures in warm periods, and are lower than soil temperatures in cold periods, daily means of air and soil temperature are almost the same at 6–7 °C, a physics driven coincidence with the global mean temperature at treeline. The length of the growing season, thermal extremes or thermal sums have no predictive value for treeline altitude on a global scale. Some Mediterranean (Fagus spp.) and temperate South Hemisphere treelines (Nothofagus spp.) and the native treeline in Hawaii (Metrosideros) are located at substantially higher isotherms and represent genus‐specific boundaries rather than boundaries of the life‐form tree. In seasonal climates, ground temperatures in winter (absolute minima) reflect local snow pack and seem uncritical. Main conclusions The data support the hypothesis of a common thermal threshold for forest growth at high elevation, but also reflect a moderate region and substantial taxonomic influence.  相似文献   

18.

Premise of the Study

The growth limitation hypothesis (GLH) and carbon limitation hypothesis (CLH) are two dominant explanations for treeline formation. The GLH proposes that low temperature drives the treeline through constraining C sinks more than C sources, and it predicts that non‐structural carbohydrate (NSC) levels are static or increase with elevation. Although the GLH has received strong support globally for evergreen treelines, there is still no consensus for deciduous treelines, which experience great asynchrony between supply and demand throughout the year.

Methods

We investigated growth and the growing‐season C dynamics in a common deciduous species, Erman's birch (Betula ermanii), along an elevational gradient from the closed forest to the treeline on Changbai Mountain, Northeast China. Samples were collected from developing organs (leaves and twigs) and main storage organs (stems and roots) for NSC analysis.

Key Results

Tree growth decreased with increasing elevation, and NSC concentrations differed significantly among elevations, organs, and sampling times. In particular, NSC levels varied slightly during the growing season in leaves, peaked in the middle of the growing season in twigs and stems, and increased continuously throughout the growing season in roots. NSCs also tended to increase or vary slightly in developing organs but decreased significantly in mature organs with increasing elevation.

Conclusions

The decrease in NSCs with elevation in main storage organs indicates support for the CLH, while the increasing or static trends in new developing organs indicate support for the GLH. Our results suggest that the growth limitation theory may be less applicable to deciduous species' growth than to that of evergreen species.  相似文献   

19.
Thermal control of treeline position is mediated by local environmental and ecological factors, making trends in treeline migration difficult to extrapolate geographically. We investigated the ecological dynamics of conifer establishment at treeline in the Mealy Mountains (Labrador, Canada) and the potential for its expansion with climate warming. Available seedbed and tree seedling emergence in the treeline ecotone were monitored, and seeds and seedlings of Picea mariana were planted along an elevational gradient from open-canopy forest through tree islands to alpine tundra. Experimental treatments included passive warming of daytime air, ground disturbance, and vertebrate herbivore exclosures. Responses in seed germination and seedling growth, damage, and mortality were monitored over two growing seasons, and re-surveyed after 5 years. While no tree seedlings were observed growing naturally above the treeline, planted seeds were able to germinate, develop and overwinter, and persist for 4 years in all habitats examined. Disturbance of the seedbed was important for seedling emergence in the forest and tree islands. While temperature enhancement alone had little impact on emergence, even moderate temperature increases had significantly disproportionate effects on emergence of seedlings in the alpine habitat when combined with soil disturbance, indicating that future climate warming could lead to treeline advance if viable seed and suitable substrate for recruitment are available. The positive effect of excluding herbivores suggests that herbivory may be an important filter modifying future species distribution. While seedbed conditions and herbivory would control the rate of individual species advance, the results indicate potential upslope migration of the treeline in the Mealy Mountains, with consequent loss of alpine ecosystems.  相似文献   

20.
高山林线形成机理研究进展   总被引:1,自引:0,他引:1  
高山林线是郁闭森林与高山植被之间的分布界限,作为重要的生态过渡带,对全球和区域性气候变化的反应极为敏感,被认为是气候变化的理想监测器.高山林线研究从最初的形态描述到林线成因假说都是为了寻找高山林线形成的原因.迄今出现的高山林线成因假说都能够在局地尺度解释高山林线成因,但仍然缺乏可以普遍解释全球高山林线现象的假说.温度是林线分布的限制因子,低温限制了林线树种的生存及生长,但是低温影响了哪一个生化过程仍不明确,其影响机理还需进一步探讨.本文对高山林线形成机理,特别是对低温对高山林线植物光合特性、养分特征、非结构性碳水化合物和抗氧化系统的影响等研究进展进行综述,并提出了未来林线研究应该关注的问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号