首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modelling the occupancy of species is a key part of the discipline of ecology, with particular efforts often focused on identifying which environmental, vegetation and other factors influence why a given species occurs where it does. Here, based on data gathered between 2003 and 2016, we developed models of the environmental, terrain and vegetation factors associated with site occupancy of the Southern Long‐nosed Bandicoot (Perameles nasuta Geoffroy) at Booderee National Park in the Jervis Bay Territory, south‐eastern Australia. The Long‐nosed Bandicoot is a nocturnal omnivorous marsupial which feeds primarily on subterranean invertebrates and fungi. The species has undergone a major reduction in abundance and site occupancy following a peak irruption in 2006 with the percentage of the sites at which the species was present declining from 74.3% of sites trapped in 2006 to 10.5% of sites trapped in 2016. We found the Long‐nosed Bandicoot was distributed widely across Booderee National Park and occurred in all six broad vegetation types in the reserve (forest, heathland, woodland, shrubland, sedgeland and rainforest). Detection‐occupancy modelling revealed that the persistence and colonisation of sites by the species were negatively associated with the per cent cover of leaf litter, irrespective of broad vegetation type. Occupancy models are an important tool in identifying parts of landscapes most likely to support populations of particular species, such as the Long‐nosed Bandicoot over time, and they may assist management of protected areas to prioritise resources to manage the habitat of those areas.  相似文献   

2.
Anthropogenic habitat disturbance has potential consequences for ant communities. However, there is limited information on the effects of ant responses on associated ecological processes such as seed dispersal. We investigated the effect of disturbance on the abundance, richness, and composition of ant communities and the resulting seed‐dispersal services for a herbaceous myrmecochore, Corydalis giraldii (Papaveraceae), in an undisturbed habitat (forest understory), moderately disturbed habitat (abandoned arable field), and highly disturbed habitat (road verge) on Qinling Mountains, China. In total, we recorded 13 ant species, and five out of these were observed to transport seeds. The community composition of dispersers was significantly different amongst habitats. The richness of the dispersers did not differ among the habitats, but their total abundance varied significantly across habitats and was 21% lower in the road verge than in the abandoned arable fields. The major seed‐dispersing ant species in both the forest understory and the abandoned arable field were large‐bodied (Myrmica sp. and Formica fusca, respectively), whereas the major seed‐dispersing ants found in the road verge were the small‐bodied Lasius alienus. This difference resulted in lower seed removal rates and dispersal distances in the road verge than in the other two habitats. The different dispersal patterns were attributed primarily to differences in dispersing ant abundance and identity, most likely in response to habitats with different degree of anthropogenic disturbance. The possible influence of disturbance on the ecological specialization of ant‐seed dispersal interaction is also discussed.  相似文献   

3.
Broad-scale reciprocity in an avian seed dispersal mutualism   总被引:1,自引:0,他引:1  
Aim Coevolved relationships between individual species of birds and plants rarely occur in seed dispersal mutualisms. This study evaluates whether reciprocal relationships may occur between assemblages of bird and plant species. Location Vancouver Island, British Columbia, Canada (48°50′‐N, 125°22′‐W). Methods The distribution and fruiting phenologies of seven shrub species were compared to seasonal changes in habitat selection and seed dispersal by six fruit‐eating bird species. Results Shrub species inhabiting forest understorey habitat had earlier fruiting phenologies than shrub species inhabiting forest edge habitat along lake and bog margins. Birds showed a parallel pattern in habitat selection, being more abundant in the forest understorey early in the fruiting season, and more abundant in the forest edge later in the season. Rates of seed deposition covaried with avian habitat selection, in such a way that birds directed seed dispersal into habitats preferred by shrubs. Conclusions These results depict a broad‐scale pattern in the abundance of birds and fruits indicative of reciprocal interactions. Seasonal changes in seed dispersal to each habitat appear to reinforce the relationship between shrub habitat affinities and fruiting phenologies. Phenological differences between habitats may also reinforce seasonal changes in avian habitat selection. Therefore, although reciprocal interactions between pairs of bird and plant species are rare, broad‐scale reciprocal relationships may occur between assemblages of bird and plant species.  相似文献   

4.
Daniel Ramp  Graeme Coulson 《Oikos》2002,98(3):393-402
For a free‐ranging forager, the suitability of a patch is dependent on population density, resource supply, resource quality, and the costs of foraging or dispersal. We quantified differences among three foraging habitats and compared this variation to temporal patterns of habitat preference by free‐ranging eastern grey kangaroos, Macropus giganteus. We investigated selection on a fine‐grained spatial scale, and asked whether habitat preference is constrained by density‐dependent mechanisms. Variation in the quantity and quality of resources among habitats was greatest during spring, when biomass and quality were highest, and differences among habitats were most pronounced. However, consistent and discernable differences among habitats were not obtained, indicating that the system fluctuated around an equilibrium state. Using isodar regressions to examine the consumer‐density relationships among habitats, open‐woodland habitat was favoured over the two open‐forest habitats for foraging. Seasonal isodars indicated that density dependence regulated preference between the three foraging habitats during autumn, spring and summer, but not during winter, when variability in resources among habitats was lowest.  相似文献   

5.
In the Mediterranean region of Europe, land-use changes have allowed for rapid colonisation of open habitats by woody species. As a result, it is critical to gather information on how protected species in open habitats respond to forest spread in such areas. Our objective is to quantify whether spatial heterogeneity of the vegetation associated with recent forest closure influences demographic structure and maternal fertility in a population of the protected Paeonia officinalis L. In closed woodland, adult plants of P. officinalis are almost exclusively vegetative, in open habitats seedlings are rare and on the woodland edge there is a relative over-representation of flowering plants and seedlings. Forest closure dramatically reduces flowering frequency, but has no significant effect on maternal fertility of flowering plants. The spatial aggregation of seedlings close to the maternal plants suggests that dispersal is spatially restricted. Together, these results suggest that the viability of the population requires a transitional habitat between open garrigues or grassland with spaced trees and woodland. A management programme incorporating tree and shrub thinning and cutting of parcels in rotation to maximise the length of the forest edge could maintain a habitat mosaic that favours the persistence of this species in the study site.  相似文献   

6.
Abstract We investigated the structure, composition and environmental correlates of leaf‐litter invertebrate assemblages in Pinus radiata plantations and in neighbouring native eucalypt woodland in the Jenolan Caves Karst Conservation Reserve, south‐east Australia. Invertebrate assemblages of plantations were compared with remnant eucalypt woodland located well away from the influence of plantations to determine the direct effects of plantations as a result of habitat‐replacement with a non‐native plantation species. We also included in our comparisons edge habitat of eucalypt woodland located immediately adjacent to plantations. This unique edge habitat is exposed to the intrusion of large volumes of pine leaf‐litter from plantations, which has the potential to affect indirectly invertebrate assemblages of surrounding woodland. We found that species richness of invertebrates was significantly lower in pine plantations compared with remnant eucalypt woodland. There was a complete absence of species from 12 invertebrate orders that were found in surrounding eucalypt woodland. A rich and abundant native plant understorey that provides increased habitat heterogeneity is the most likely explanation for the richer invertebrate assemblage found in remnant eucalypt woodland. The total abundance of all invertebrate taxa in pine plantations in winter was significantly higher than in remnant eucalypt woodland, pine‐litter edges and pine‐free edges. Plantations were characterized by particularly high abundances of species in two orders, Acari and Collembola. High abundances of acarine and collembolan species in plantations were associated with a decompositional environment represented by comparatively higher moisture contents and higher C : N ratios of both leaf‐litter and soil, higher soil conductivity and lower soil pH. We suggest that implementation of The Plantation Biodiversity Benefits Score will be a fruitful way forward to assess the environmental benefits that can be gained from pine plantations in this region of south‐eastern Australia.  相似文献   

7.
In Europe, the consequences of commercial plantation management for birds of conservation concern are poorly understood. The European Nightjar Caprimulgus europaeus is a species of conservation concern across Europe due to population depletion through habitat loss. Pine plantation‐forest is now a key Nightjar nesting habitat, particularly in northwestern Europe, and increased understanding of foraging habitat selection is required. We radiotracked 31 Nightjars in an extensive (185‐km2) complex conifer plantation landscape in 2009 and 2010. Home‐range 95% kernels for females, paired males and unpaired males were an order of magnitude larger than song territories of paired males, emphasizing the importance of habitats beyond the song territory. Nightjars travelled a mean maximum distance of 747 m from the territory centre each night. Home‐range placement relative to landscape composition was examined by compositional analysis. Pre‐closure canopy forest (aged 5–10 years) was selected at all scales (MCP, 95% and 50% kernels), with newly planted forest (aged 0–4 years) also selected within 50% kernels. For telemetry fixes relative to habitat composition within 2 km of their territory centre, individuals again selected pre‐closure and newly planted forest, and also grazed grass heath. Open ungrazed habitat was not selected, with implications for open habitat planning for biodiversity conservation within public‐owned forests. Despite the Nightjars’ selection for younger growth, moth biomass was greater in older forest stands, suggesting that foraging site selection reflects ease of prey capture rather than prey abundance. Within large plantation‐forest landscapes, a variety of growth stages is important for this species and our results suggest that grazing of open habitats within and adjacent to forest will additionally benefit the European Nightjar.  相似文献   

8.
Question: Disturbance effects on dry forest epiphytes are poorly known. How are epiphytic assemblages affected by different degrees of human disturbance, and what are the driving forces? Location: An inter‐Andean dry forest landscape at 2300 m elevation in northern Ecuador. Methods: We sampled epiphytic bryophytes and vascular plants on 100 trees of Acacia macracantha in five habitats: closed‐canopy mixed and pure acacia forest (old secondary), forest edge, young semi‐closed secondary woodland, and isolated trees in grassland. Results: Total species richness in forest edge habitats and on isolated trees was significantly lower than in closed forest types. Species density of vascular epiphytes (species per tree) did not differ significantly between habitat types. Species density of bryophytes, in contrast, was significantly lower in edge habitat and on isolated trees than in closed forest. Forest edge showed greater impoverishment than semi‐closed woodland and similar floristic affinity to isolated trees and to closed forest types. Assemblages were significantly nested; habitat types with major disturbance held only subsets of the closed forest assemblages, indicating a gradual reduction in niche availability. Distance to forest had no effect on species density of epiphytes on isolated trees, but species density was closely correlated with crown closure, a measure of canopy integrity. Main conclusions: Microclimatic changes but not dispersal constraints were key determinants of epiphyte assemblages following disturbance. Epiphytic cryptogams are sensitive indicators of microclimate and human disturbance in montane dry forests. The substantial impoverishment of edge habitat underlines the need for fragmentation studies on epiphytes elsewhere in the Tropics.  相似文献   

9.
To determine whether ground‐disturbance increased Woodlark Lullula arborea abundance, we examined responses over 3 years to four treatments varying in establishment method (shallow‐ or deep‐cultivated) and complexity (homogeneous or ‘complex‐mosaics’ comprising fallow and recently cultivated subplots), plus controls, replicated across the largest lowland grass‐heath in the UK. Abundance increased through the study and was higher on plots closer to woodland and across all treatments. Within complex‐mosaics, Woodlark preferentially used recently cultivated subplots over 1‐ or 2‐year‐old fallows. Regardless of treatment detail, providing suitable foraging habitat within c. 45 m of woodland, through annual ground‐disturbance, can increase Woodlark abundance within lowland grass‐heaths characterized by closed swards.  相似文献   

10.
As human population, food consumption, and demand for forest products continue to rise over the next century, the pressures of land‐use change on biodiversity are projected to intensify. In tropical regions, countryside habitats that retain abundant tree cover and structurally complex canopies may complement protected areas by providing suitable habitats and landscape connectivity for a significant portion of the native biota. Species with low dispersal capabilities are among the most at risk of extinction as a consequence of land‐use change. We assessed how the spatial distribution of the brown‐throated sloth (Bradypus variegatus), a model species for a vertebrate with limited dispersal ability, is shaped by differences in habitat structure and landscape patterns of countryside habitats in north‐central Costa Rica using a multi‐scale framework. We quantified the influence of local habitat characteristics and landscape context on sloth occurrence using mixed‐effects logistic regression models. We recorded 27 sloths within countryside habitats and found that both local and landscape factors significantly influenced their spatial distribution. Locally, sloths favored structurally complex habitats, with greater canopy cover and variation in tree height and basal area. At the landscape scale, sloths demonstrated a preference for habitats with high proportions of forest and nearby large tracts of forest. Although mixed‐use areas and tree plantations are not substitutes for protected forests, our results suggest they provide important supplemental habitats for sloths. To promote the conservation and long‐term viability of sloth populations in the tropical countryside, we recommend that land managers retain structurally complex vegetation and large patches of native habitat.  相似文献   

11.
Urbanization results in widespread habitat loss and fragmentation and generally has a negative impact upon native wildlife, in particular ground‐dwelling mammals. The northern brown bandicoot (Isoodon macrourus; Marsupialia: Peramelidae) is one of relatively few native Australian ground‐dwelling mammals that is able to survive within urbanized landscapes. As a consequence of extensive clearing and urban development within the city of Brisbane, bandicoots are now restricted to the mostly small (<10 ha) bushland fragments scattered across the city landscape. Our study examined the behavioural ecology of northern brown bandicoots within habitat fragments located on a major creek‐line, using mark‐recapture population monitoring and radio telemetry. Bandicoots at monitored sites were found to occur at high densities (typically one individual ha?1), although one‐third of the populations were transient. Radio tracking revealed that bandicoots had relatively small home ranges (mean 1.5 ± 0.2 ha) comprised largely of bushland/grassland with dense, often weed‐infested ground cover. Bandicoots sheltered by day in these densely covered areas and also spent most time foraging there at night, although they occasionally ventured small distances to forage in adjacent maintained parklands and residential lawns. We suggest that introduced tall grasses and other weeds contribute to high habitat quality within riparian habitat fragments and facilitate the persistence of high density populations, comprised of individuals with small home ranges. The generalized dietary and habitat requirements of northern brown bandicoots, as well as a high reproductive output, undoubtedly facilitate the survival of the species in urban habitat fragments. Further research is required on other native mammal species in urbanized landscapes to gain a greater understanding of how best to conserve wildlife in these heavily modified environments.  相似文献   

12.
Predicting population colonisations requires understanding how spatio‐temporal changes in density affect dispersal. Density can inform on fitness prospects, acting as a cue for either habitat quality, or competition over resources. However, when escaping competition, high local density should only increase emigration if lower‐density patches are available elsewhere. Few empirical studies on dispersal have considered the effects of density at the local and landscape scale simultaneously. To explore this, we analyze 5 years of individual‐based data from an experimental introduction of wild guppies Poecilia reticulata. Natal dispersal showed a decrease in local density dependence as density at the landscape level increased. Landscape density did not affect dispersal among adults, but local density‐dependent dispersal switched from negative (conspecific attraction) to positive (conspecific avoidance), as the colonisation progressed. This study demonstrates that densities at various scales interact to determine dispersal, and suggests that dispersal trade‐offs differ across life stages.  相似文献   

13.
A population of mountain pygmy‐possums Burramys parvus was studied at the Mount Blue Cow ski resort in Kosciuszko National Park between 1986 and 1989. Forty‐eight individuals were radiotracked during the snow‐free months and 21 individuals were tracked during winter over the 3 years of study. Trapping and radiotracking showed that the density, population structure, movements and home range sizes of B. parvus on Mount Blue Cow were strongly correlated with elevation and changed with the season. Female densities were greatest in habitats characterized by deep boulderfields, at high elevations with an abundance of Bogong moths. Males visited the areas where females were located to breed in November–December and then by February, the majority migrated to lower elevations or north and westerly aspects. Females that nested at lower elevations also visited high‐elevation habitats to access the high concentrations of Bogong moths, which were the main food source in summer. A high proportion of the juvenile males and some juvenile females dispersed to lower elevations in March and April. The resulting sexual segregation during autumn and winter may be a result of female aggression or scramble competition, but is also explainable by differences in energy requirements, seed availability and hibernation strategies between the sexes. The extraordinarily large nightly and seasonal movements between habitat patches of up to 2 km for females and 3 km for males, sexual segregation and the use of different hibernation sites have important implications for the management of this species. These include the need for movement and dispersal corridors and the conservation of boulder‐heath habitats outside the main boulderfields.  相似文献   

14.
Aim To explore successional processes associated with rain forest expansion in Eucalyptus‐dominated woodland savanna vegetation in north‐eastern Australia. Location Iron Range National Park and environs, northeast Queensland, Australia. This remote region supports probably the largest extent of lowland (< 300 m) rainforest remnant in Australia. Rainfall (c. 1700 mm p.a.) occurs mostly between November and June, with some rain typically occurring even in the driest months July–October. Methods (1) Sampling of rain forest seedling distributions, and other vegetation structural attributes, in fifteen 10 × 10 m quadrats distributed equi‐distantly between mature rain forest margins (range: 70–840 m), at each of 10 sites which were open‐canopied vegetation in 1943. (2) Assessment of relationships between rain forest seedling densities and structural characteristics, including distance‐to‐rain forest‐margin, canopy height, stem density. (3) Assessment of lifeform and dispersal spectra for defined vegetation structural types. Results Rates of rain forest invasion were found to be substrate‐mediated. Transects established on hematite schist, diorite, riverine alluvium, and granite developed closed canopies (termed phase III sites) by 1991. The remainder (four transects on poorly drained colluvial/alluvial sediments; one on dune sands) continued to occur either as grassy woodland (phase I), or with developing rain forest understoreys (phase II). Rain forest seedlings were observed at maximum sampled distances from mature rain forest margins at all sites. Lifeform and dispersal spectra data illustrated that: (1) the proportions of woodland trees, shrubs and graminoids declined with successional phase, with concomitant increases in rain forest primary trees and all other lifeform categories save rain forest trees; (2) the proportions of major dispersal syndromes did not vary between successional phases, neither for rain forest nor woodland taxa. Main conclusions Rain forest seedling distribution data for phases I and II sites illustrate three successional processes: margin extension – seedling density significantly negatively correlated with distance from mature rain forest margins at two sites; nucleation – seedling densities significantly positively correlated with tall trees at two sites; and irruption – seedling densities at two sites neither correlated with distance from mature rain forest margins, nor with measured vegetation structural features. The observation of irruptive rain forest regeneration at these sites, combined with decadal‐scale rain forest canopy development at the five remaining sites, illustrates that under conditions conducive to growth (moisture, substrate), low fire disturbance, and maintenance of diverse dispersal processes (high frugivore richness), rain forest can rapidly invade regional landscapes.  相似文献   

15.
Seed dispersers, like white‐handed gibbons (Hylobates lar), can display wide inter‐group variability in response to distribution and abundance of resources in their habitat. In different home ranges, they can modify their movement patterns along with the shape and scale of seed shadow produced. However, the effect of inter‐group variability on the destination of dispersed seeds is still poorly explained. In this study, we evaluate how seed dispersal patterns of this arboreal territorial frugivore varies between two neighboring groups, one inhabiting high quality evergreen forest and one inhabiting low quality mosaic forest. We predicted a difference in seed dispersal distance between the two groups (longer in the poor quality forest). We hypothesized that this difference would be explained by differences in home range size, daily path length, and ranging tortuosity. After 6 months of data collection, the evergreen group had a smaller home range (12.4 ha) than the mosaic group (20.9 ha), significantly longer daily path lengths (1507 m vs. 1114 m respectively) and greater tortuosity (39.1 vs. 16.1 respectively). Using gut passage times and displacement rates, we estimated the median seed dispersal distance as 163 m for the evergreen group (high quality forest) and of 116 m for the mosaic group (low quality forest). This contradiction with our initial prediction can be explained in term of social context, resource distribution, and habitat quality. Our results indicate that gibbons are dispersers of seeds between habitats and that dispersal distances provided by gibbons are influenced by a range of factors, including habitat and social context.  相似文献   

16.
Abstract This study investigates how abundance, diversity and composition of understorey spiders were influenced by four different forest habitats in a southern Brazilian Araucaria forest. The study area encompasses a landscape mosaic comprised of Araucaria forest, Araucaria plantation, Pinus plantation, and Eucalyptus plantation. Understorey spiders were collected by beating the vegetation inside three patches of each forest habitat. To assess possible predictors of spider assemblage structure, several patch features were analysed: potential prey abundances, estimation of vegetation cover, diversity index of vegetation types, patch ages, patch areas, and geographical distance between patches. To assess the influence of high‐level taxa approaches on spider assemblage patterns, analyses were carried out individually for family, genera and species levels. Additionally, Mantel tests were carried out in underlying similarity matrices between each taxon. Significant differences in spider abundances among forest habitats were found. Pinus plantations showed the highest abundance of spiders and Eucalyptus plantations showed the lowest abundance. Spider abundance was significantly influenced by patch ages, geographical distance and vegetation cover. Expected numbers of families, genera and species did not vary among forest habitats. Spider composition of two Eucalyptus patches differed from the other forest patches, probably due to their low vegetation cover and isolation. Genera composition was the best correlate of species composition, showing that a higher‐level surrogate can be an alternative to the species approach. The understorey spider diversity in this managed area could be maintained when suitable habitat structures are provided, thus ensuring the connectivity between different habitat types. Further studies should focus on individual species responses to the conversion of native forest to monocultures.  相似文献   

17.
The walking and flight dispersal of marked overwintered and summer Colorado potato beetles (CPB), Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), released in field box‐plots was monitored simultaneously in six habitats over a period of 4 days. The emigration out of plots by walking beetles was calculated from the catch in linear pitfall traps completely surrounding each box‐plot and emigration flight was estimated from the number of beetles missing from the plot or captured by the trap. Overwintered beetles dispersed sooner after release than summer beetles. Overall, the mean number of beetles retained by the habitat was significantly higher in the host habitat (potato) than in any non‐host habitat tested (soybean, pasture, bare ground, water, woodland). Unexpectedly, there was no or little difference in overall beetle retention between non‐host habitats except for higher retention in the water habitat. No difference in the ratio of flight over walking could be detected by the study between overwintered and summer CPB except in the water and woodland habitats. Twenty‐four hours after release, the highest ratios were obtained in the water and woodland habitats and the lowest in the bare‐ground habitat, but ratios were similar for all habitats, except water, after 96 h. As a population, under these experimental conditions, 96 h after release, it seems that CPB displayed a slight preference for flight over walking, with walking as a default mode. A fed and starved pre‐release treatment had no effect on dispersal rates or mode of dispersal. Essentially, our results showed that over a 96‐h period, northeastern North American CPB emigrated at similar rates from the various non‐host habitats encountered, except for water, using walking as much as flight. The host habitat retained CPB significantly longer than non‐host habitats but with a mode of dispersal ratio similar to that in non‐host habitats. The impact on dispersal of the various habitats encountered by CPB in the agro‐ecosystem was less important than expected suggesting that the interaction of environmental parameters is likely to have the most significant impact in determining dispersal rates and dispersal modes.  相似文献   

18.
The distribution and abundance, and habitat differences in biomass of subterranean termites, were assessed through soil trenching for woodland, mallee and heath habitats in the central wheatbelt of Western Australia. Over an 11 month sampling period, there were no significant habitat differences in biomass. Mean dry biomass in the surficial layer of soil (per 5000 cm3) averaged 46 mg in woodland, 28 mg in mallee, and 23 mg in heath. Termite biomass peaked in September, with 141 mg for woodland, 83 mg for mallee and 47 mg for heath (per 5000 cm3). Soil moisture and termite activity near the surface were positively correlated. A total of 36 species of termites, comprising 11 genera, were identified, and species abundance within and across habitats differed significantly.  相似文献   

19.
I examined the effect of riparian forest restoration on plant abundance and diversity, including weed species, on agricultural lands along the Sacramento River in California (United States). Riparian forest restoration on the Sacramento River is occurring on a large‐scale, with a goal of restoring approximately 80,000 ha over 160 km of the river. In multiuse habitats, such as the Sacramento River, effects of adjoining habitat types and movement of species across these habitats can have important management implications in terms of landscape‐scale patterns of species distributions. Increased numbers of pest animals and weeds on agricultural lands associated with restored habitats could have negative economic impacts, and in turn affect support for restoration of natural areas. In order to determine the distribution and abundance of weeds associated with large‐scale restoration, I collected seed bank soil samples on orchards between 0 and 5.6 km from adjacent restored riparian, remnant riparian, and agricultural habitats. I determined the abundance, species richness, and dispersal mode of plant species in the seed bank and analyzed these variables in terms of adjacent habitat type and age of restored habitat. I found that agricultural weed species had higher densities at the edge of restored riparian habitat and that native plants had higher densities adjacent to remnant riparian habitat. Weed seed abundance increased significantly on walnut farms adjacent to restored habitat with time since restored. I supply strong empirical evidence that large areas of natural and restored habitats do not lead to a greater penetration of weed species into agricultural areas, but rather that weed penetration is both temporally and spatially limited.  相似文献   

20.
Nurse‐plants generally have positive effects on understorey species by creating more suitable conditions for stress‐intolerant plants relative to open micro‐habitats. However, long‐term effects of this plant–plant facilitation system have been rarely examined. Seeds of five desert annual species from Atiquipa coastal desert in Southern Peru were used to examine whether different microenvironmental conditions under the nurse‐plants Caesalpinia spinosa Molina (Kuntze) lead to differences in seed biology and germinability of annual plants relative to open, canopy‐free conditions. Seeds collected from plants associated with nurse‐plants were predicted to be (i) larger due to more favourable growing conditions, (ii) more viable and with greater germination rates, (iii) less variable in size and viability due to reduced environmental heterogeneity, and (iv) to germinate faster to avoid apparent competition with other annuals. Seed attribute measurements and germination trials in growth chambers were used to test these predictions. Although the plant abundance of only 2 of 5 species was strongly facilitated by the nurse‐plant, no significant differences were found in seed mass, viability or relative variability between understorey and open micro‐habitats for any of the species. Contrary to our predictions, final seed germination rates of seeds from open micro‐habitats were higher, and the open micro‐habitat treatment was more favourable for germination of seeds from both open and understorey environments. Taken together, these results suggest that plant–plant facilitation does not necessarily affect seed biology traits. Further studies addressing larger distribution ranges and/or density gradients of understorey species will illuminate the potential evolutionary effects of nurse‐plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号