首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Amylocystis lapponica (Romell) Singer is a widely distributed wood‐decaying polypore fungus found throughout the Northern Hemisphere. Despite its huge distribution range it occurs rather patchily and seems narrowly associated with old‐growth forest stands. Notably, it has been used as an ‘indicator species’, believed to reflect the long‐term presence of dead wood, naturalness of forest stands, and indirectly, species richness and possibly composition. In this study we focused on the last issue – whether or not there is a link between the occurrence of A. lapponica and the species richness and composition of other wood‐decaying fungi. Selecting log characteristics and microclimate as similar as possible, we compared 12 logs with and 12 logs without visible fruit bodies of A. lapponica to examine: 1) if visible fruit bodies corresponded with molecular identification of the mycelia, 2) if fungal species richness and composition of the substrate were related to A. lapponica occurrence, and 3) if A. lapponica was restricted to certain parts of the log. Fungal species were recorded by inspecting visible fruit bodies and by culture isolation and ITS sequencing from wood disc samples. Laboratory and field identification of A. lapponica had 71% correspondence, and mycelia were identified in two logs without visible fruit bodies. Twice as many fungal species were detected using ITS sequencing compared to fruit body identification. Total species richness was similar between the two log categories, but number of species per log was slightly higher in A. lapponica logs. Antrodia serialis (Fr.) Donk, and possibly also Fomitopsis pinicola (Sw.:Fr.) P. Karst. and Phellinus nigrolimitatus (Romell) Bourdot & Galzin, occurred more frequently in A. lapponica logs. Mycelia of A. lapponica were restricted to less decayed parts of the wood in the centre of the middle part of the logs.  相似文献   

3.
Approximately 50% of the global natural fixation of nitrogen occurs in the oceans supporting a considerable part of the new primary production. Virtually all nitrogen fixation in the ocean occurs in the tropics and subtropics where the surface water temperature is 25°C or higher. It is attributed almost exclusively to cyanobacteria. This is remarkable firstly because diazotrophic cyanobacteria are found in other environments irrespective of temperature and secondly because primary production in temperate and cold oceans is generally limited by nitrogen. Cyanobacteria are oxygenic phototrophic organisms that evolved a variety of strategies protecting nitrogenase from oxygen inactivation. Free-living diazotrophic cyanobacteria in the ocean are of the non-heterocystous type, namely the filamentous Trichodesmium and the unicellular groups A–C. I will argue that warm water is a prerequisite for these diazotrophic organisms because of the low-oxygen solubility and high rates of respiration allowing the organism to maintain anoxic conditions in the nitrogen-fixing cell. Heterocystous cyanobacteria are abundant in freshwater and brackish environments in all climatic zones. The heterocyst cell envelope is a tuneable gas diffusion barrier that optimizes the influx of both oxygen and nitrogen, while maintaining anoxic conditions inside the cell. It is not known why heterocystous cyanobacteria are absent from the temperate and cold oceans and seas.  相似文献   

4.
The decline of one farmland bird, the migratory European starling, has been attributed to both agricultural intensification and farmland abandonment and to factors operating both during the winter and during the breeding season. We analysed population data from thirty‐three Swedish nestbox colonies over more than two decades to determine if the national decline was caused by a common factor affecting all colonies or by local changes in the breeding grounds affecting starling colonies. We found that numbers of breeding starling had declined significantly, but at different rates in different colonies. The local population sizes were affected by previous years’ productivity at both national and local scales, suggesting that changes in habitat quality at both scales could affect local population trends. There were no long‐term trends in reproductive output, but fledgling production was lowest at intermediate years. The local population changes were positively related to local changes in reproductive output, but only when including complete nest‐failures. A relationship between population declines and low mean local productivity was the result of the association between population sizes and reproductive success over time, since decline rates of starlings were not related to the average success during the first part of the study, but to the average success during the later part of the study. The relationship between population change and changes in reproductive output was evident, but fledgling production showed negative density‐dependence. In conclusion this study suggests that the decline of the starling population in Sweden has been affected by processes at small spatial scales during the breeding season affecting reproductive success, but does not exclude an additional role for processes at large spatial scales or outside the breeding season.  相似文献   

5.
The response of organisms to anthropogenic or natural modification of the environment is one of the most important questions in conservation biology and ecological theory. In spite of the fact that orchids are one of the most studied groups of plants, little information exists regarding their response to habitat alteration. The few existing studies are biased toward European orchid species and no consensus exists with regard to the response of orchids to human and natural disturbance. In this study, we sampled 30 transects (0.1 ha each) of oak forest located in Morelos, Central Mexico, and measured 13 variables related to forest aging and stump abundance, and six variables of orchid species richness and abundance. Neither abundance nor the richness and specific abundance of orchid genus or species were related to timber extraction. The abundance of dead standing trees in the forest, a surrogate variable of forest age, was positively related to abundance of orchids of the genus Malaxis, orchid richness and orchid abundance. This finding suggests that the conservation of all facets of the studied forest orchid community is dependent on natural processes (such as self-thinning) and the maintenance of older areas of the forest, and concurs with previous studies that suggest that natural disturbance is a key process for orchid survival.  相似文献   

6.
In Patagonian Monte, as in other arid ecosystems, grazing has triggered changes in vegetation and soil such as plant cover reduction, changes in species composition and soil nutrient losses. Several mechanisms were proposed interconnecting these changes, but evidence supporting them is very scarce. On the basis of published data concerning plant cover by species along grazing gradients and leaf litter production of dominant species, we estimated the effects of grazing on a – quality (N, soluble phenolics and lignin concentrations) and b – quantity (leaf litterfall (LLF) and inputs of nitrogen, soluble phenolics and lignin to the soil) of leaf litter in the Patagonian Monte, discriminating the effect of plant cover reduction from that of species composition. We also evaluated the relationship between senesced leaves traits and the response of species to grazing (i.e. their relative change in plant cover). Grazing causes a reduction in LLF and in the inputs of nitrogen, soluble phenolics and lignin to the soil. In the case of LLF, this reduction was not only a result of the decrease in plant cover but also due to changes in species composition. In contrast, our results showed that the reduction in nitrogen, soluble phenolics and lignin inputs to the soil by LLF is only a consequence of plant cover reduction. Additionally, litter quality was affected through increasing concentration of N and secondary compounds (soluble phenolics and lignin). N and soluble phenolics concentration on senesced leaves were positively related to the response of species to grazing, suggesting that other factors instead of N are relevant to sheep foraging decisions.  相似文献   

7.
The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but also the entire metabolome. Metabolomes are the final products of genotypes and are constrained by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from three closely related Pinus species with distant coevolutionary histories with the caterpillar of the processionary moth respond similarly to its attack. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the species and the responses to folivory reflected their macroevolutionary relationships, with Ppinaster having the most divergent metabolome. The concentrations of terpenes were in the attacked trees supporting the hypothesis that herbivores avoid plant individuals with higher concentrations. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant–insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade‐offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant–insect coevolution.  相似文献   

8.
We tested whether both shrubs and grasses are able to develop similar active fine-root systems in the upper soil layer of the arid Patagonian Monte ecosystem with non-seasonal precipitation. We selected in the field shrub patches consisting of one isolated modal plant of the dominant shrub Larrea divaricata Cav., grass patches formed by one or more bunches of the dominant grass Stipa tenuis Phil. (15 cm diameter), and mixed patches consisting of one individual of L. divaricata with bunches of S. tenuis under its canopy. We assessed the biomass, regrowth, and activity of fine roots (diameter <1.4 mm) of each species in the upper soil (50 cm depth) of each patch type at 3-month intervals. We also measured the N concentration in fine roots to estimate the relative contribution of each species to fine-root biomass of mixed patches. We injected Li+ in the soil as a chemical tracer to detect fine-root activity of each species in the upper soil. Fine-root biomass was higher in mixed patches than in grass patches while fine-root biomass in shrub patches did not differ from the two former. We did not find differences in fine-root regrowth among patch types. Li+ injection provided evidence of active fine roots of both species in the upper soil when it was wet. N concentration in fine roots suggested the prevalence of fine roots of L. divaricata in the upper soil of mixed patches. Our results support evidence of the ability of fine roots of both the shrub and the grass species to occupy the upper soil. These findings did not support the two-layer model (H Walter, Ecology of tropical and subtropical vegetation, Oliver and Boyd, Edinburgh, 1971) and provide evidence of this model would be less applicable to arid ecosystems with non-seasonal precipitation. Further, our results highlighted some issues deserving more research such as the outcome of belowground competition between neighboring plants of both contrasting life forms, the eventual limited fine-root carrying capacity of the upper soil, and differences in fine-root lifespan between species of both contrasting life form.  相似文献   

9.
Many plant species grow taller and have higher reproductive capacity where they are nonindigenous invaders than where they are native components of the flora. Traditionally, it has been accepted that this is a plastic response to a benign environment, though recently this assumption has been challenged and a genetic basis for increased plant size has been invoked. We tested the hypothesis that the increased size of certain weed species is genetically, rather than environmentally, based. A common environment growth experiment revealed no significant differences in the size of Carduus nutans , Digitalis purpurea , Echium vulgare or Senecio jacobaea sampled from alien (Australia and New Zealand) or native (Britain and continental Europe) habitats. We conclude that post-invasion genetic changes associated with increased size may be unusual and that the phenomenon, where it occurs, generally reflects a plastic response to a novel environment.  相似文献   

10.
Abstract Plant species richness influences primary productivity via mechanisms that (1) favour species with particular traits (selection effect) and (2) promote niche differentiation between species (complementarity). Influences of species evenness, plant density and other properties of plant communities on productivity are poorly defined, but may depend on whether selection or complementarity prevails in species mixtures. We predicted that selection effects are insensitive to species evenness but increase with plant density, and that the converse is true for complementarity. To test predictions, we grew three species of annuals in monocultures and in three‐species mixtures in which evenness of established plants was varied at each of three plant densities in a cultivated field in Texas, USA. Above‐ground biomass was smaller in mixtures than expected from monocultures because of negative ‘complementarity’ and a negative selection effect. Neither selection nor complementarity varied with species evenness, but selection effects increased at the greatest plant density as predicted.  相似文献   

11.
Although several hypotheses aim to explain insect herbivory on plants, the relative importance of plant traits, environment, and organizational scale (i.e., individual or community) to herbivory damage level is not well understood. We used an approach based on a local scale, divided into individual and community levels, to test if plant traits, soil characteristics, and plant density explain leaf damage. We sampled 983 individuals in 49 plots distributed over dense and open savanna formations in Emas National Park. In order to explain plant damage, we performed a multi-model inference analysis of four plant traits associated with plant damage, five soil characteristics, and plant density. We did not find any support to plant vigor or plant stress hypotheses at individual plant level. However, the resource concentration hypothesis and plant stress hypothesis explained leaf damage at the community level. We found that increased availability of calcium (Ca) in soils reduced plant damage at the community level. Because soil Ca concentration is a major constraint to plant development in the Brazilian savanna, we postulated that its increasing availability permits plants to invest more in defense strategies. We demonstrate that plant density, Ca soil concentration, and leaf size can be used to predict the plant damage suffered by woody species in savannas at community level.  相似文献   

12.
13.
Pollen limitation on a plant community level has received little attention, although it might show which pollination-related traits may cause pollen limitation to vary among species. To address several central questions in plant reproductive biology, we investigated pollen limitation in 11 plant species, including visitation and specialisation levels of all species. The female reproductive success of most species within the studied plant community was not pollen limited, but a general tradeoff between seed production and seed weight occurred as a response to supplemental pollination. In contrast to general notion, we did not find that less visited species were most pollen limited. Instead, it appears that species with high visitation rates were most pollen limited. Our study provided conflicting evidence to whether specialisation levels may affect the degree of pollen limitation within the study community. We discuss these findings in the context of recent reviews on the occurrence, causes and consequences of pollen limitation in plants. In particular, we propose that, although pollen limitation is an important phenomenon, 1) the majority of species within a plant community may not experience pollen limitation at a given moment, 2) that common notions of which plant species should experience pollen limited reproductive success do not hold true in the studied plant community, and 3) that offspring quality is as likely affected by surplus pollen loads as is the number of offspring.  相似文献   

14.
Field margins have considerable ecological significance in agriculture-dominated landscapes by supporting biodiversity and associated services. However, agricultural changes during mid-20th century led to their drastic loss with a serious threat for biodiversity. Using time-series data, we aimed to get better insights into processes underlying plant patterns of field margins through time by i) quantifying plant temporal beta diversity components, ii) assessing whether the observed changes in plant communities can be related to changes in management practices applied to field margins. During the springs of 1994, 1998 and 2001, we surveyed plant communities and management practices of the same 116 field margins in three contrasted landscapes. We estimated temporal beta diversity in plant communities and partitioned it into its two dissimilarity resultant components, accounting for replacement of species (i.e. turnover) and for the nested gain or loss of species (i.e. nestedness). We then tested whether the observed changes in plant communities between 1994 and 1998 and, between 1998 and 2001 were related to changes in management practices using linear models. Plant communities of field margins exhibited strong temporal beta diversity dominated by turnover. Temporal turnover in plant communities was partly related to changes in management practices, i.e., a decrease of grazing concomitant to an increase of herbicide spraying. However, relationships were not consistent between all landscape contexts nor time period, suggesting that other unmeasured deterministic or stochastic processes could be driving the observed plant patterns. Taken together, our results suggest that maintaining a wide diversity of field margins with contrasted management contribute to maintaining plant diversity at a landscape scale. They underline the value of investigating plant temporal diversity patterns using time-series data and thus, the need to develop long-term studies making it possible to understand ecological processes shaping plant communities in agricultural landscapes.  相似文献   

15.
16.
What structures the organization of mixed‐species bird flocks, so that some ‘nuclear’ species lead the flocks, and others follow? Previous research has shown that species actively listen to each other, and that leaders are gregarious; such gregarious species tend to make contact calls and hence may be vocally conspicuous. Here we investigated whether vocal characteristics are associated with leadership, using a global dataset of mixed‐species flock studies and recordings from sound archives. We first asked whether leaders are different from following or occasional species in flocks in the proportion of the recordings that contain calls (n = 58 flock studies, 145 species), and especially alarm calls (n = 111 species). We found that leaders tended to have a higher proportion of their vocalizations that were classified as calls than occasional species, and both leaders and following species had a significantly higher proportion of their calls rated as alarms compared to occasional species. Next, we investigated the acoustic characteristics of flock participants’ calls, hypothesizing that leaders would make more calls, and have less silence on the recordings. We also hypothesized that leaders’ calls would be simple acoustically, as contact calls tend to be, and thus similar to each other, as well as being detectable, in being low frequency and with high frequence bandwidth. The analysis (n = 45 species, 169 recordings) found that only one of these predictions was supported: leading species were less often silent than following or occasional species. Unexpectedly, leaders’ calls were less similar to each other than occasional species. The greater amount of information available and the greater variety of that information support the hypothesis that leadership in flocks is related to vocal communication. We highlight the use of sound archives to ask questions about behavioral and community ecology, while acknowledging some limitations of such studies.  相似文献   

17.
Krapovickas, V., Mancuso, A.C., Marsicano, C.A., Domnanovich, N.S. & Schultz, C.L. 2013: Large tetrapod burrows from the Middle Triassic of Argentina: a behavioural adaptation to seasonal semi‐arid climate? Lethaia, Vol. 46, pp. 154–169. We report the discovery of large burrow casts in the early Middle Triassic Tarjados Formation, at Talampaya National Park, north‐western Argentina. Facies analysis indicates the burrows are preserved in sandbars deposited by an ephemeral river under semi‐arid and seasonal climatic conditions. The structures are mostly preserved in longitudinal cross‐section and consist of an opening, an inclined tunnel (ramp), and a terminal chamber. The ramp is 8–14 cm in height, up to 130 cm in length and penetrates 49–63 cm bellow the palaeosurface with an inclination of 22°–30°. We studied burrow cast dimensions, overall architectural morphology, surficial marks, and compared them with other large burrows of both invertebrate and vertebrate origin. A tetrapod origin of the burrow casts was established based on: distinctive architecture, and size, which is more than twice the most common size range for large terrestrial invertebrate burrows. Comparison with other Upper Permian and Triassic tetrapod burrows allows us to identify three general morphological groups: (1) simple inclined burrows; (2) helical burrows; and (3) burrow network complexes, representing different behaviours. A study of tetrapod body fossils preserved within other Upper Permian and Triassic burrows shows that the Tarjados structures were most likely produced by non‐mammalian cynodonts. The environmental and climatic context suggests that aridity and seasonality played a fundamental role selecting burrowing behaviour in therapsids and that by the Early–Middle Triassic their burrowing behaviour attained a complexity comparable to modern mammals. □Argentina, behaviour, palaeoclimate, Permo‐Triassic, Tarjados Formation, Tetrapod burrows.  相似文献   

18.
This study compares soluble phenolics and lignin content in two wetland macrophytes with contrasting life strategies grown under a varying nutrient supply in the field and in a greenhouse experiment. The differences are explained in terms of the protein competition model (PCM) hypothesis relating changes in secondary metabolites to changing nutrient limitation. The two study species, Eleocharis cellulosa (EC) and Typha domingensis (TD), are both widespread in tropical and subtropical freshwater and brackish marshes of the New World, and are often found in P-limited rather than N-limited conditions. TD is a fast-growing competitor with large nutrient requirements. EC is a stress tolerator, quite well adapted to growth in nutrient-limiting environments. In both species, the concentration of phenolics was negatively correlated with increasing growth (due to increasing nutrient levels). This is in agreement with the PCM hypothesis, which predicts an increase in phenolic synthesis when protein synthesis (and consequently growth) is low due to limited resource availability. An interesting difference was found in the correlation between tissue nutrients and phenolics. TD from both the field and the greenhouse showed a negative correlation between tissue P and phenolics, while EC displayed a significant negative correlation between tissue N and phenolics. EC is adapted to low P, and increased tissue P content represents luxury consumption (uptake of P for storage) which is not reflected in increased growth and thus is not correlated with phenolics. These are the first steps in elucidating the relationship among nutrient availability, growth and phenolic content in two important primary producers of tropical and subtropical marshes.  相似文献   

19.
The aim of this paper was to analyse the active dispersal of Triatoma infestans and the role of chickens as passive carriers of this insect in peridomestic areas of La Rioja, Argentina. To measure active dispersal, monthly catches were made on six consecutive nights for five months (in the warm season) using light traps (for flying insects) and sticky dispersal barriers (for walking insects). The nutritional and reproductive states of adults were evaluated. Over the course of the sampling period, a total of eight flying adults, six walking nymphs and 10 walking adults of the species T. infestans were captured, as well as specimens of Triatoma guasayana, Triatoma eratyrusiformis and Triatoma platensis. Our data demonstrate for the first time that females of T. infestans can disperse by walking. This may be an adaptive strategy because it allows them to move with eggs and/or with good blood reserves, which are not possible when flying. All flying and walking individuals of both genders were of an appropriate physiological state that would allow for colonisation of the target habitat. However, manual inspection of 122 chickens suggests that it is unlikely that these animals passively transport T. infestans. Finally, the dispersal activity of T. infestans was compared with other triatomines using a dispersion index.  相似文献   

20.
Ardón M  Pringle CM 《Oecologia》2008,155(2):311-323
We examined the hypothesis that high concentrations of secondary compounds in leaf litter of some tropical riparian tree species decrease leaf breakdown by inhibiting microbial and insect colonization. We measured leaf breakdown rates, chemical changes, bacterial, fungal, and insect biomass on litterbags of eight species of common riparian trees incubated in a lowland stream in Costa Rica. The eight species spanned a wide range of litter quality due to varying concentrations of nutrients, structural and secondary compounds. Leaf breakdown rates were fast, ranging from 0.198 d−1 (Trema integerrima) to 0.011 d−1 (Zygia longifolia). Processing of individual chemical constituents was also rapid: cellulose was processed threefold faster and hemicellulose was processed fourfold faster compared to similar studies in temperate streams. Leaf toughness (r = −0.86, P = 0.01) and cellulose (r = −0.78, P = 0.02) were the physicochemical parameters most strongly correlated with breakdown rate. Contrary to our initial hypothesis, secondary compounds were rapidly leached (threefold faster than in temperate studies), with all species losing all secondary compounds within the first week of incubation. Cellulose was more important than secondary compounds in inhibiting breakdown. Levels of fungal and bacterial biomass were strongly correlated with breakdown rate (fungi r = 0.64, P = 0.05; bacteria r = 0.93, P < 0.001) and changes in structural compounds (lignin r = −0.55, P = 0.01). Collector−gatherers were the dominant functional group of insects colonizing litterbags, in contrast to temperate studies where insect shredders dominate. Insect biomass was negatively correlated with breakdown rate (r = −0.70, P = 0.02), suggesting that insects did not play an important role in breakdown. Despite a wide range of initial concentrations of secondary compounds among the eight species used, we found that secondary compounds were rapidly leached and were less important than structural compounds in determining breakdown rates. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号