首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insecticide resistance is a broadly recognised and well‐studied management problem resulting from intensive insecticide use, which also provides useful evolutionary models of newly adapted phenotypes to changing environments. Two common assumptions in such models are the existence of fitness costs associated with insecticide resistance, which will place the resistant individuals at a disadvantage in insecticide‐free environments, and the prevalence of random mating among insecticide‐resistant and ‐susceptible individuals. However, cases of insecticide resistance lacking apparent fitness disadvantages do exist impacting the evolution and management of insecticide resistance. Assortative mating, although rarely considered, may also favour the evolution and spread of insecticide resistance. Thus, the possible existence of both conditions in the maize weevil (Sitophilus zeamais), a key pest of stored cereals, led to the assessment of the mating behaviour and reproductive fitness of insecticide‐resistant and ‐susceptible weevil strains and their reciprocal crosses. The patterns of female and male mating choice also were assessed. Although mating behaviour within and between weevil strains was similar without mate choice, mating within the resistant strain led to higher reproductive output than within the susceptible strain; inter‐strain matings led to even higher fertility. Thus, no apparent fitness cost associated with resistance seems to exist in these weevils, favouring the evolution of this phenotype that is further aided by the higher fertility of inter‐strain matings. Mate choice reduced latency to mate and no inter‐strain preference was detected, but female weevils were consistent in their mate selection between 1st and 2nd matings indicating existence of female mating preference among maize weevils. Therefore, if female mate selection comes to favour trait(s) associated with insecticide resistance, higher reproductive fitness will be the outcome of such matings favouring the evolution and spread of insecticide resistance among maize weevil populations reverting into a management concern.  相似文献   

2.
Phenotypic plasticity contributes to the adaptative evolution of populations exposed to new or altered environments. Feeding plasticity is a component of phenotypic plasticity not usually considered in insect strains adapted to insecticide‐altered environments, but which may either accentuate or mitigate insecticide resistance. This is a concern in the pyrethroid‐resistant strains of the maize weevil Sitophilus zeamais Motsch. (Col., Curculionidae), and the reason for this study. A pyrethroid‐susceptible and two pyrethroid‐resistant strains of maize weevil were subjected to free‐choice and no‐choice tests with maize grains sprayed with increasing doses of the pyrethroid, deltamethrin. The insects from the pyrethroid‐resistant strains exhibited higher feeding avoidance with increased deltamethrin doses than insects from the susceptible strain when subjected to free‐choice tests. The strains of maize weevil physiologically resistant to pyrethroids were also behaviourally resistant to deltamethrin – an additional management concern. The resistant strains avoid deltamethrin‐sprayed grains and are less nutritionally affected by this compound, with divergent responses from the susceptible strain with increased doses of deltamethrin. Furthermore, the higher relative growth rate and consequently higher efficiency of food conversion observed in the insecticide‐resistant strains were significant even without insecticide exposure, indicating that these traits are stimulus‐independent and may persist even without further insecticide selection, potentially limiting the options available for their management.  相似文献   

3.
Sublethal responses to insecticides are frequently neglected in studies of insecticide resistance, although stimulatory effects associated with low doses of compounds toxic at higher doses, such as insecticides, have been recognized as a general toxicological phenomenon. Evidence for this biphasic dose–response relationship, or hormesis, was recognized as one of the potential causes underlying pest resurgence and secondary pest outbreaks. Hormesis has also potentially important implications for managing insecticide‐resistant populations of insect‐pest species, but evidence of its occurrence in such context is lacking and fitness parameters are seldom considered in these studies. Here, we reported the stimulatory effect of sublethal doses of the pyrethroid insecticide deltamethrin sprayed on maize grains infested with a pyrethroid‐resistant strain of the maize weevil (Sitophilus zeamais) (Coleoptera: Curculionidae). The parameters estimated from the fertility tables of resistant insects exposed to deltamethrin indicated a peak in the net reproductive rate at 0.05 ppm consequently leading to a peak in the intrinsic rate of population growth at this dose. The phenomenon is consistent with insecticide‐induced hormesis and its potential management implications are discussed.  相似文献   

4.
Abstract.  A common assumption in models of insecticide resistance evolution is the association between resistance and fitness costs in the absence of insecticides. There is empirical evidence of such associations, but their physiological basis (and mitigation) is little investigated. Pyrethroid-resistant populations of the maize weevil Sitophilus zeamais (Coleoptera: Curculionidae) offer this opportunity. Pyrethroid resistance in this species was initially observed in five Brazilian states by 1995, but the phenomenon apparently decreased and did not spread to other regions, probably due to the occurrence of a fitness disadvantage in resistant individuals in the absence of insecticides. The present investigation aims to verify whether differences in respiration rate and fat body morphology are related to differences in rate of development in Brazilian populations of S. zeamais resistant to insecticides, and thereby provide evidence for the existence (or not) of a physiological fitness cost acting against insecticide resistance in maize weevils. This may occur due to a possible energy trade-off between insecticide resistance and other physiological processes associated with development and reproduction. To achieve this, studies of the rate of development, respiration and fat body cytomorphology are carried out in one insecticide-susceptible (from Sete Lagoas) and two resistant populations (from Jacarezinho and Juiz de Fora) of S. zeamais . The resistant population from Jacarezinho shows that higher body mass is associated with higher energy reserves (larger trophocyte area) for development and reproduction, as well as for insecticide resistance. However, the resistant population from Juiz de Fora does not appear to have large enough energy allocation for insecticide-resistance expression and development and/or reproductive performance, suggesting a trade-off between resistance and other life history traits.  相似文献   

5.
Insecticide resistance is frequently associated with fitness disadvantages in the absence of insecticides. However, intense past selection with insecticides may allow the evolution of fitness modifier alleles that mitigate the cost of insecticide resistance and their consequent fitness disadvantages. Populations of Sitophilus zeamais with different levels of susceptibility to insecticides show differences in the accumulation and mobilization of energy reserves. These differences may allow S. zeamais to better withstand toxic compounds without reducing the beetles' reproductive fitness. Enzymatic assays with carbohydrate- and lipid-metabolizing enzymes were, therefore, carried out to test this hypothesis. Activity levels of trehalase, glycogen phosphorylase, lipase, glycosidase and amylase were determined in two insecticide-resistant populations showing (resistant cost) or not showing (resistant no-cost) associated fitness cost, and in an insecticide-susceptible population. Respirometry bioassays were also carried out with these weevil populations. The resistant no-cost population showed significantly higher body mass and respiration rate than the other two populations, which were similar. No significant differences in glycogen phosphorylase and glycosidase were observed among the populations. Among the enzymes studied, trehalase and lipase showed higher activity in the resistant cost population. The results obtained in the assays with amylase also indicate significant differences in activity among the populations, but with higher activity in the resistant no-cost population. The inverse activity trends of lipases and amylases in both resistant populations, one showing fitness disadvantage without insecticide exposure and the other not showing it, may underlay the mitigation of insecticide resistance physiological costs observed in the resistant no-cost population. The higher amylase activity observed in the resistant no-cost population may favor energy storage, preventing potential trade-offs between insecticide resistance mechanisms and basic physiological processes in this population, unlike what seems to take place in the resistant cost population.  相似文献   

6.
The codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), has developed resistance to various insecticides. Relative fitness of one susceptible strain (Sv) and two strains selected for resistance to diflubenzuron (Rt) and deltamethrin (Rv), respectively, was measured in the absence of insecticide selection pressure. Mating rate, fecundity, fertility, developmental time, fifth instar weight, and adult longevity were compared. Both resistant strains were less fecund and fertile, developed more slowly, weighed less, and had shorter life-spans than the susceptible strain. These results indicate that biological constraints are associated with insecticide resistance in the codling moth. We also found that fitness estimates of the Rv strain did not differ statistically from those of the Rt strain. Enhanced mixed-function oxidase and glutathione-S-transferase activities have been shown to be involved in insecticide resistance in both Rt and Rv strains. This suggests that the fitness cost described in both resistant strains was mainly associated to metabolic resistance. The impact of such deleterious pleiotropy of insecticide resistance in C. pomonella in terms of resistance management in the field is discussed.  相似文献   

7.
Insecticides cause a range of sub‐lethal effects on targeted insects, which are frequently detrimental to them. However, targeted insects are able to cope with insecticides within sub‐lethal ranges, which vary with their susceptibility. Here we assessed the response of three strains of the maize weevil Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) to sub‐lethal exposure to the pyrethoid insecticide cypermethrin. We expected enzyme induction associated with cypermethrin resistance since it would aid the resistant insects in surviving such exposure. Lower respiration rate and lower activity were also expected in insecticide‐resistant insects since these traits are also likely to favor survivorship under insecticide exposure. Curiously though, cypermethrin did not affect activity of digestive and energy metabolism enzymes, and even reduced the activity of some enzymes (particularly for cellulase and cysteine‐proteinase activity in this case). There was strain variation in response, which may be (partially) related to insecticide resistance in some strains. Sub‐lethal exposure to cypermethrin depressed proteolytic and mainly cellulolytic activity in the exposed insects, which is likely to impair their fitness. However, such exposure did not affect respiration rate and walking behavior of the insects (except for the susceptible strain where walking activity was reduced). Walking activity varies with strain and may minimize insecticide exposure, which should be a concern, particularly if associated with (physiological) insecticide resistance.  相似文献   

8.
抗溴氰菊酯家蝇在不同用药方式下的敏感性变化及其机制   总被引:3,自引:0,他引:3  
邱立红  李学锋 《昆虫学报》1999,42(3):248-256
以具有极高抗水平的抗溴氰菊酯家蝇Musca domestica vicina Macquart DR0品系为试虫,模拟田间几种常见的用药方式(混用、轮用、使用增效剂),在室内进行平行汰选,并以不用药和继续用原药汰选的为比较,研究试虫在这几种用药方式下的敏感性变化及其变化机制。抗性家蝇用辛溴混剂、辛硫磷以及溴氰菊酯+SV1汰选后,在F16(F17)代以前,对溴氰菊酯及汰选药剂的抗性发展相对都比较缓慢;F16(F17)代以后,用溴氰菊酯+SV1汰选的家蝇对溴氰菊酯的敏感性迅速下降,抗性发展很快。家蝇对溴氰菊酯的敏感性变化与药剂中溴氰菊酯的选择压有关。生化分析结果表明,在不同用药方式汰选下,家蝇体内酯酶、多功能氧化酶、谷胱甘肽-S-转移酶、乙酰胆碱酯酶的酶活或特性发生了不同的变化。  相似文献   

9.
Fitness cost is usually associated with insecticide resistance and may be mitigated by increased energy accumulation and mobilization. Preliminary evidence in the maize weevil (Coleoptera: Curculionidae) suggested possible involvement of amylases in such phenomenon. Therefore, α-amylases were purified from an insecticide-susceptible and two insecticide-resistant strains (one with fitness cost [resistant cost strain], and the other without it [resistant no-cost strain]). The main α-amylase of each strain was purified by glycogen precipitation and ion-exchange chromatography (≥70-fold purification, ≤19% yield). Single α-amylase bands with the same molecular mass (53.7 kDa) were revealed for each insect strain. Higher activity was obtained at 35-40 °C and at pH 5.0-7.0 for all of the strains. The α-amylase from the resistant no-cost strain exhibited higher activity towards starch and lower inhibition by acarbose and wheat amylase inhibitors. Opposite results were observed for the α-amylase from the resistant cost strain. Although the α-amylase from the resistant cost strain exhibited higher affinity to starch (i.e., lower Km), its Vmax-value was the lowest among the strains, particularly the resistant no-cost strain. Such results provide support for the hypothesis that enhanced α-amylase activity may be playing a major role in mitigating fitness costs associated with insecticide resistance.  相似文献   

10.
The effect of selection for methidathion resistance on fitness components of aP. persimilis strain was analysed by different means. The resistant strain was compared with the susceptible one from which it was selected. The life history and some parameters essential to the successful use of this species in biological control (voracity, resistance to starvation and drought) were analysed. Methidathion resistance was followed for 6 months under rearing conditions free of insecticide in the resistant and in a mixed strain. The investigations showed that the fitness of resistant mites did not seem altered by methidathion selection. It thus appears possible to increase pesticide resistance in beneficial arthropods without adversely affecting their main fitness components.  相似文献   

11.
Insecticide resistance in the codling moth, Cydia pomonella, partly results from increased metabolic detoxification. The aim of this study was to follow the age variations in larval susceptibility to deltamethrin and teflubenzuron in one susceptible (S) strain, and two resistant (Rv and Rt) ones selected for resistance to deltamethrin and diflubenzuron, respectively. The age variation of the activities of cytochrome P450-dependent monooxygenase (MFO), glutathione S-transferases (GST), and esterases in S and both resistant strains were simultaneously investigated. The highest levels of insecticide resistance were recorded in late instars in both resistant strains, although Rv neonates exhibited enhanced resistance to deltamethrin. The involvement of an additional deltamethrin-specific mechanism of resistance, which could be mainly expressed in early instars, was supported by previous demonstration of a kdr point mutation in the Rv strain. The cross-resistance between deltamethrin and teflubenzuron indicated the involvement of non-specific metabolic pathways in resistance to teflubenzuron, rather than target site modification. A positive correlation between enhanced GST activities and deltamethrin resistance suggested that this mechanism might take place into the adaptive response of C. pomonella to pyrethroids treatments. Enhanced MFO activity was recorded in each instar of the two resistant strains compared to the susceptible one. But these activities were not correlated to the responses to deltamethrin nor to teflubenzuron. In the light of these findings, studying age-dependence of responses to selection is central to the implementation of monitoring tests of resistances, especially if the target instars are difficult to collect in the field.  相似文献   

12.
The insecticide resistance status of Culex quinquefasciatus Say (Diptera: Culicidae) to DDT and deltamethrin across army cantonments and neighbouring villages in northeastern India was investigated. In India, DDT is still the insecticide of choice for public health programmes. In military stations, pyrethroids, especially deltamethrins, are used for insecticide‐treated nets (ITNs). Recent information on the levels of resistance to DDT and deltamethrin in mosquito populations of northeastern India is scare. Continued monitoring of insecticide resistance status, identification of the underlying mechanisms of resistance in local mosquito populations and the establishment of a baseline data bank of this information are of prime importance. Insecticide susceptibility assays were performed on wild‐caught adult female Cx. quinquefasciatus mosquitoes to the discriminating doses recommended by the World Health Organisation (WHO) to DDT (4%) and deltamethrin (0.05%). Across all study sites, mortality as a result of DDT varied from 11.9 to 50.0%, as compared with 91.2% in the susceptible laboratory strain (S‐Lab), indicating that Cx. quinquefasciatus is resistant to DDT. The species was found to be 100% susceptible to deltamethrin in all study sites except Benganajuli and Rikamari. Knock‐down times (KDT) in response to deltamethrin varied significantly between study sites (P < 0.01) from 8.3 to 17.8 min for KDT50 and 37.4 to 69.5 min for KDT90. All populations exceeded the threshold level of alpha‐esterase, beta‐esterase and glutathion S‐transferase (GST) established for the S‐Lab susceptible strain, and all populations had 100% elevated esterase and GST activity, except Missamari and Solmara. Beta‐esterase activity in Field Unit II (96.9%) was less than in any of the other populations. Benganajuli had the highest activity level for all the enzymes tested. There was a significant correlation between all enzyme activity levels and insecticide resistance phenotype by populations (P < 0.05). The results presented here provide the first report and baseline information of the insecticide resistance status of Cx. quinquefasciatus in northeastern India, and associated information about biochemical mechanisms that are essential for monitoring the development of insecticide resistance in the area.  相似文献   

13.
Extensive use of insecticides on cotton has prompted resistance development in the cotton aphid, Aphis gossypii (Glover) in China. A deltamethrin‐selected population of cotton aphids from Xinjiang Uygur Autonomous Region, China with 228.59‐fold higher resistance to deltamethrin was used to examine how carboxylesterase conferred resistance to this pyrethroid insecticide. The carboxylesterase activity in the deltamethrin‐resistant strain was 3.67‐, 2.02‐ and 1.16‐fold of the susceptible strain when using α‐naphthyl acetate (α‐NA), β‐naphthyl acetate (β‐NA) and α‐naphthyl butyrate (α‐NB) as substrates, respectively. Carboxylesterase cDNA was cloned and sequenced from both deltamethrin‐resistant and susceptible strains. The cDNA contained 1581 bp open reading frames (ORFs) coding a 526 amino acid protein. Only one amino acid substitution (Val87‐Ala) was observed between deltamethrin‐resistant and susceptible strains but it is not genetically linked to resistance by the catalytic triad and signature motif analysis. The real‐time polymerase chain reaction analysis indicated that the resistant strain had a 6.61‐fold higher level of carboxylesterase mRNA than the susceptible strain. The results revealed that up‐regulation of the carboxylesterase gene, not modified gene structure, may be responsible for the development of resistance in cotton aphids to deltamethrin.  相似文献   

14.
BackgroundAedes albopictus is one of the most invasive species in the world as well as the important vector for mosquito-borne diseases such as dengue fever, chikungunya fever and zika virus disease. Chemical control of mosquitoes is an effective method to control mosquito-borne diseases, however, the wide and improper application of insecticides for vector control has led to serious resistance problems. At present, there have been many reports on the resistance to pyrethroid insecticides in vector mosquitoes including deltamethrin to Aedes albopictus. However, the fitness cost and vector competence of deltamethrin resistant Aedes albopictus remain unknown. To understand the impact of insecticide resistant mosquito is of great significance for the prevention and control mosquitoes and mosquito-borne diseases.Methodology/Principal findingsA laboratory resistant strain (Lab-R) of Aedes albopictus was established by deltamethrin insecticide selecting from the laboratory susceptible strain (Lab-S). The life table between the two strains were comparatively analyzed. The average development time of Lab-R and Lab-S in larvae was 9.7 days and 8.2 days (P < 0.005), and in pupae was 2.0 days and 1.8 days respectively (P > 0.05), indicating that deltamethrin resistance prolongs the larval development time of resistant mosquitoes. The average survival time of resistant adults was significantly shorter than that of susceptible adults, while the body weight of resistant female adults was significantly higher than that of the susceptible females. We also compared the vector competence for dengue virus type-2 (DENV-2) between the two strains via RT-qPCR. Considering the results of infection rate (IR) and virus load, there was no difference between the two strains during the early period of infection (4, 7, 10 day post infection (dpi)). However, in the later period of infection (14 dpi), IR and virus load in heads, salivary glands and ovaries of the resistant mosquitoes were significantly lower than those of the susceptible strain (IR of heads, salivary glands and ovaries: P < 0.05; virus load in heads and salivary glands: P < 0.05; virus load in ovaries: P < 0.001). And then, fourteen days after the DENV-2-infectious blood meal, females of the susceptible and resistant strains were allow to bite 5-day-old suckling mice. Both stains of mosquito can transmit DENV-2 to mice, but the onset of viremia was later in the mice biting by resistant group as well as lower virus copies in serum and brains, suggesting that the horizontal transmission of the resistant strain is lower than the susceptible strain. Meanwhile, we also detected IR of egg pools of the two strains on 14 dpi and found that the resistant strain were less capable of vertical transmission than susceptible mosquitoes. In addition, the average survival time of the resistant females infected with DENV-2 was 16 days, which was the shortest among the four groups of female mosquitoes, suggesting that deltamethrin resistance would shorten the life span of female Aedes albopictus infected with DENV-2.Conclusions/SignificanceAs Aedes albopictus developing high resistance to deltamethrin, the resistance prolonged the growth and development of larvae, shorten the life span of adults, as well as reduced the vector competence of resistant Aedes albopictus for DENV-2. It can be concluded that the resistance to deltamethrin in Aedes albopictus is a double-edged sword, which not only endow the mosquito survive under the pressure of insecticide, but also increase the fitness cost and decrease its vector competence. However, Aedes albopictus resistant to deltamethrin can still complete the external incubation period and transmit dengue virus, which remains a potential vector for dengue virus transmission and becomes a threat to public health. Therefore, we should pay high attention for the problem of insecticide resistance so that to better prevent and control mosquito-borne diseases.  相似文献   

15.
Exposure of Eriopis connexa (Germar) to pyrethroid residues in agroecosystems has resulted in selection for resistance (R). Pyrethroid resistance allows E. connexa to survive lambda-cyhalothrin applications. Following a field release of E. connexa, development of resistance in an incipient population may depend on three major factors such as the maintenance of: (i) selection pressure, (ii) frequency of mating with susceptible phenotypes (S) and (iii) differential reproductive performance due to the fitness costs associated with resistance. To investigate the potential effects of these three factors on the development of pyrethroid resistance by progeny of field released E. connexa, our experiments included panmictic mating between R and S phenotypes, followed by descendant rearing with and without insecticide selection pressure, reselection and determination of resistance levels. In addition, we measured the reproductive performance of the parental R and S phenotypes and their descendants to assess the cost of resistance after crossing and reselection. Survival of R × S descendants exposed to lambda-cyhalothrin was reduced across successive generations in the absence of selection pressure, but still enhanced after four generations indicating the persistent presence of resistant phenotypes in the population. Under selection pressure with exposure to lambda-cyhalothrin applied at label rates, descendant survival was >50%. Fecundity and survival were higher in the first-generation of crossed R × S females, but higher fecundity was not sustained after reselection. Adults of the R population exhibited a fitness cost, reduced longevity, when compared to S phenotypes and R × S crossed populations. Therefore, resistance maintenance in E. connexa after release will depend on selection pressures imposed by insecticide exposure. In the absence of selection pressure, the phenotype for resistance was reduced, but not completely lost. Further, resistant phenotypes can be reselected following insecticide exposure and this can explain, in part, the high frequency of field-evolved resistance to lambda-cyhalothrin in E. connexa.  相似文献   

16.
Phosphine is the most widely used fumigant with ever‐growing problems of phosphine resistance among insect pests of stored products. One such insect is the maize weevil Sitophilus zeamais, a key pest of stored cereals. Despite its importance as a fumigant, the mechanisms of phosphine toxicity and resistance remain unclear, although the mitochondrion is broadly recognised as its site of action. Here we explored the phosphine susceptibility of maize weevil populations and its association with insect respiration rate, and we tested the association of phosphine susceptibility with the mitochondrial lineages from the field populations studied. We also assessed the action of phosphine in the degradation of mitochondria from muscle cells. Survival under phosphine treatment varied among weevil populations and was negatively correlated with the respiration rate and body mass of the insect. Phosphine produced little lysis of mitochondria and the more phosphine‐resistant population exhibited a slightly higher mitochondria fluorescence intensity under confocal imaging. Therefore, reduced respiration rate is correlated with reduced phosphine activity, but its association with high mitochondria fluorescence intensity in muscle cells seems marginal. There was no association between mitochondrial lineages and phosphine susceptibility, which evolved independently, and the mitochondrial gene fragments of cytochrome oxidase I and II were not useful molecular markers of phosphine susceptibility.  相似文献   

17.
Effective chemical control relies on reducing vector population size. However, insecticide selection pressure is often associated with the development of resistant populations that reduce control success. In treated areas, these resistant individuals present an adaptive advantage due to enhanced survival. Resistance can also lead to negative effects when the insecticide pressure ceases. In this study, the biological effects of deltamethrin resistance were assessed in the Chagas disease vector Triatoma infestans. The length of each developmental stage and complete life cycle, mating rate, and fecundity were evaluated. Susceptible and resistant insects presented similar mating rates. A reproductive cost of resistance was expressed as a lower fecundity in the resistant colony. Developmental costs in the resistant colony were in the form of a shortening of the second and third nymph stage duration and an extension of the fifth stage. A maternal effect of deltamethrin resistance is suggested as these effects were identified in resistant females and their progeny independently of the mated male's deltamethrin response. Our results suggest the presence of pleiotropic effects of deltamethrin resistance. Possible associations of these characters to other traits such as developmental delays and behavioral resistance are discussed.  相似文献   

18.
Helicoverpa armigera (Hübner) populations from West Africa recently developed resistance to pyrethroid insecticides through enhanced metabolism by mixed-function oxidases. The combination index method was used to study the synergism of pyrethroids by organophosphorus insecticides. Several mixtures of insecticides currently registered to control cotton pest complex in West Africa were tested, including: cypermethrin/ethion, cypermethrin/profenofos, deltamethrin/ triazophos, deltamethrin/chlorpyriphos, cyfluthrin/chlorpyriphos, and betacyfluthrin/chlorpyriphos. In the resistant strain, the organophosphorus insecticides significantly increased the toxicity of pyrethroids suppressing the resistance effect, either by additive or synergistic effects. Significant synergism was shown for the following mixtures: cypermethrin/ethion, deltamethrin/triazophos, and deltamethrin/chlorpyriphos. The use of synergism from these insecticide mixtures should prove to be an additional tool in the overall resistance management strategy because the pyrethroid resistance in H. armigera from West Africa is not yet stable, decreasing between cotton seasons and increasing with treatments. In absence of selection, the susceptibility of H. armigera to insecticides should be restored.  相似文献   

19.
Although the evolution of plant response to herbivory can involve either resistance (a decrease in susceptibility to herbivore damage) or tolerance (a decrease in the per unit effect of herbivory on plant fitness), until recently few studies have explicitly incorporated both of these characters. Moreover, theory suggests these characters do not evolve independently, and also that the pattern of natural selection acting on resistance and tolerance depends on their costs and benefits. In a genotypic selection analysis on an experimental population of Brassica rapa (Brassicaceae) I found a complex set of correlational selection gradients acting on resistance and tolerance of damage by flea beetles (Phyllotreta cruciferae: Chrysomelidae) and weevils (Ceutorhynchus assimilis: Curculionidae), as well as directional and stabilizing selection on resistance to attack by weevils. Evolution of response to flea beetle attack is constrained by a strong allocation cost of tolerance, and this allocation cost may be caused by a complex correlation among weevil resistance, weevil tolerance, flea beetle resistance, and flea beetle tolerance. Thus, one important conclusion of this study is that ecological costs may involve complex correlations among multiple characters, and for this reason these costs may not be detectable by simple pairwise correlations between characters. The evolution of response to weevil attack is probably constrained by a series of correlations between weevil resistance, weevil tolerance, and fitness in the absence of weevil damage, and possibly by a cost of tolerance of weevil damage. However, the nature of these constraints is complicated by apparent overcompensation for weevil damage. Because damage by both flea beetles and weevils had non-linear effects on plant fitness, standard measures of tolerance were not appropriate. Thus, a second important contribution of this study is the use of the area under the curve defined by the regression of fitness on damage and damage-squared as a measure of tolerance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
辛硫磷和溴氰菊酯混剂对家蝇抗性发展的影响   总被引:4,自引:2,他引:2  
以家蝇(Musca domestica vicina Macquart)为试虫,用辛硫磷溴氰菊酯单剂及不同配比的混剂进行汰选试验。所有混剂选育的家蝇抗性发展都很缓慢,而单剂抗性发展都很快。增效试验表明,辛硫磷与溴氰菊酯混配有明显增效作用,特别是对抗性品系。生化分析结果表明,对澳氰菊酯的抗性发展与酯酶的酶活升高有关。对辛硫磷抗性发展与多功能氧化酶的酶活升高和乙酰胆碱酯酶敏感性降低有关。混剂选育的家蝇其对单剂的敏感性的变化及酶系的变化,随着混剂的配比而变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号