首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rice stripe virus (RSV) is one of the most damaging diseases affecting rice in East Asia. Rice variety 502 is highly resistant to RSV, while variety 5112 is extremely susceptible. Field statistical data revealed that all “502 × 5112” F1 individuals were resistant to RSV and the ratio of resistant to susceptible plants was 3:1 in the F2 population and 1:1 in the BC1F1 population. These results indicated that a dominant gene, designated RSV1, controlled the resistance. Simple sequence repeat (SSR) analysis was subsequently carried out in an F2 population. Sixty SSR markers evenly distributed on the 12 rice chromosomes were screened and tested. Two markers, RM229 and RM206, showed linkage with RSV1. Based on this result, six SSR markers flanking RM229 and RM206 were further selected and tested. Results indicated that SSR markers RM457 and RM473E were linked to RSV1 with a genetic distance of 4.5 and 5.0 cM, respectively. All of the four SSR markers (RM229, RM473E, RM457 and RM206) linked to RSV1 were all located on chromosome 11, therefore RSV1 should be located on chromosome 11 also. In order to find some new markers more closely linked to the RSV1 gene, sequence-related amplified polymorphism (SRAP) analysis was performed. A total of 30 SRAP primer-pairs were analyzed, and one marker SR1 showed linkage with RSV1 at a genetic distance of 2.9 cM. Finally, RSV1 gene was mapped on chromosome 11 between SSR markers RM457 and SRAP marker SR1 with a genetic distance of 4.5 cM and 2.9 cM, respectively.  相似文献   

2.
 We used graphical genotyping and linkage analyses with molecular markers to determine the chromosomal location of the rice stripe disease resistance gene, Stv-b i . The stripe resistance gene from the indica rice (Oryza sativa) cv ‘Modan’ was introgressed into several Japanese rice varieties. We found 4 RFLP markers in ‘Modan’, five susceptible parental rice varieties (‘Norin No. 8’, ‘Sachihikari’, ‘Kanto No. 98’, ‘Hokuriku No.103’ and ‘Koganebare’) and four resistant progeny varieties (‘St. No. 1’, ‘Aichi No. 6’, ‘Aoisora’ and ‘Asanohikari’). Graphical genotyping of the resistant progeny revealed a chromosomal segment ascribable to ‘Modan’ and associated with stripe resistance. The chromosomal segment from ‘Modan’ was located at 35.85 cM on chromosome 11. Linkage analysis using 120 F2 individuals from a cross between ‘Koshihikari’ (susceptible) and ‘Asanohikari’ (resistant) revealed another 8 RFLP markers in the same chromosome. We performed a bioassay for rice stripe resistance in F3 lines of the F2 individuals using infective small brown planthoppers and identified an 1.8-cM segment harboring the rice stripe disease resistance gene, Stv-b i , between XNpb220 and XNpb257/ XNpb254. Furthermore, Stv-b i was linked by 0.0 cM to a RFLP marker, ST10, which was developed on the basis of the results of RAPD analysis. These DNA markers near the Stv-b i locus may be useful in marker-assisted selection and map-based cloning of the Stv-b i gene. Received: 26 September 1997 / Accepted: 4 November 1997  相似文献   

3.
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (PST), is one of the most destructive diseases of common wheat (Triticum aestivum L.). To determine inheritance of stripe rust resistance and map the resistance gene(s) in wheat variety C591, F1, F2, and F3 progenies derived from the Taichung 29 × C591 cross were inoculated with Chinese PST race CY32 in the greenhouse. Genetic analysis identified a single dominant gene, temporarily designated YrC591. A total of 178 SSR and 130 AFLP markers were used to test the parents and resistant and susceptible bulks. From the bulk segregant analysis, seven polymorphic SSR and two AFLP markers were selected for genotyping the F2 population. SSR marker Xcfa2040-7B, and SCAR marker SC-P35M48 derived from AFLP marker P35M48 373 were identified to be closely linked to the resistance gene with genetic distances of 8.0 and 11.7 cM, respectively. The SSR markers mapped the resistance gene on chromosome arm 7BL. In the seedling test with five PST races, the reaction patterns of C591 were different from wheat cultivars or lines carrying Yr2 or Yr6 that also are found on chromosome 7B. The results indicate that YrC591 is probably a novel stripe rust resistance gene.  相似文献   

4.
We have identified, genetically mapped and physically delimited the chromosomal location of a new blast resistance gene from a broad spectrum resistant genotype ‘DHR9’. The segregation analysis of an F2 progeny of a cross between a susceptible cv. ‘HPU741’ and the resistant genotype ‘DHR9’ suggested that the resistance was conditioned by a single dominant gene. A RAPD marker, OPA82000, linked to the resistance gene was identified by the linkage analysis of 109 F2 individuals. By chromosomal landing of the sequence of RAPD marker on the sequence of reference cv. Nipponbare, the gene was mapped onto rice chromosome 12. Further linkage analysis with two polymorphic simple sequence repeat (SSR) markers, RM2529 and RM1337 of chromosome 12, confirmed the chromosomal localization of the resistance gene. Based on linkage analysis of 521 susceptible F2 plants and comparative haplotype structure analysis of the parental genotypes with SSR and sequence tagged site (STS) markers developed from the Nipponbare PAC/BAC clones of chromosome 12, the resistance gene was delimited within a 2 cM interval defined by STS marker, STS5, on the telomeric side and SSR marker, RRS6 on the centromeric side. By aligning the sequences of linked markers on the sequence of cv. Nipponbare, a ~4.18 Mb cross-over cold region near the centromere of chromosome 12 was delineated as the region of blast resistance gene. In this region, six putatively expressed NBS-LRR genes were identified by surveying the equivalent genomic region of cv. Nipponbare in the TIGR Whole Genome Annotation Database (http://www.tigr.org). NBS-LRR locus, LOC_Os12g18374 situated in BAC clone OJ1115_G02 (Ac. No. AL772419) was short-listed as a potential candidate for the resistance gene identified from DHR9. The new gene was tentatively designated as Pi-42(t). The markers tightly linked to gene will facilitate marker-assisted gene pyramiding and cloning of the resistance gene.  相似文献   

5.

Wild emmer wheat, Triticum dicoccoides, the progenitor of modern tetraploid and hexaploid wheats, is an important resource for new variability for disease resistance genes. T. dicoccoides accession pau4656 showed resistance against prevailing leaf rust and stripe rust races in India and was used for developing stable introgression lines (IL) in T. durum cv Bijaga yellow and named as IL pau16068. F5 Recombinant inbred lines (F5 RILs) were developed by crossing IL pau16068 with T. durum cultivar PBW114 and RIL population was screened against highly virulent Pt and Pst pathotypes at the seedling and adult plant stages. Inheritance analyses revealed that population segregated for two genes for all stage resistance (ASR) against leaf rust, one ASR gene against stripe rust and three adult plant resistance (APR) genes for stripe rust resistance. For mapping these genes a set of 483 SSR marker was used for bulked segregant analysis. The markers showing diagnostic polymorphism in the resistant and susceptible bulks were amplified on all RILs. Single marker analysis placed all stage leaf rust resistance genes on chromosome 6A and 2A linked to the SSR markers Xwmc256 and Wpaus268, respectively. Likewise one all stage stripe rust resistance gene were mapped on long arm of chromosome 6A linked to markers 6AL-5833645 and 6AL-5824654 and two APR genes mapped on chromosomes 2A and 2B close to the SSR marker Wpaus268 and Xbarc70, respectively. The current study identified valuable leaf rust and stripe rust resistance genes effective against multiple rust races for deployment in the wheat breeding programme.

  相似文献   

6.
Host-plant resistance is the preferred strategy for management of Asian rice gall midge (Orseolia oryzae), a serious pest in many rice-growing countries. The deployment of molecular markers linked to gall midge resistance genes in breeding programmes can accelerate the development of resistant cultivars. In the present study, we have tagged and mapped a dominant gall midge resistance gene, Gm1, from the Oryza sativa cv. W1263 on chromosome 9, using SSR markers. A progeny-tested F2 mapping population derived from the cross W1263/TN1 was used for analysis. To map the gene locus, initially a subset of the F2 mapping population consisting of 20 homozygous resistant and susceptible lines each was screened with 63 parental polymorphic SSR markers. The SSR markers RM316, RM444 and RM219, located on chromosome 9, are linked to Gm1 at genetic distances of 8.0, 4.9 and 5.9 cM, respectively, and flank the gene locus. Further, gene/marker order was also determined. The utility of the co-segregating SSR markers was tested in a backcross population derived from the cross Swarna/W1263//Swarna, and allelic profiles of these markers were analysed in a set of donor rice genotypes possessing Gm1 and in a few gall midge-susceptible, elite rice varieties.  相似文献   

7.
Pyrenophora graminea is the seed-borne pathogen causal agent of barley leaf stripe disease. Near-isogenic lines (NILs) carrying resistance of the cv ”Thibaut” against the highly virulent isolate Dg2 were obtained by introgressing the resistance into the genetic background of the susceptible cv ”Mirco”. The segregation of the resistance gene was followed in a F2 population of 128 plants as well as on the F3 lines derived from the F2 plants; the segregation fitted the 1:2:1 ratio for a single gene. By using NILs, a RAPD marker associated with the resistance gene was identified; sequence-specific (STS) primers were designed on the basis of the amplicon sequence and a RILs mapping population with an AFLP-based map were used to position this molecular marker to barley chromosome 1 S (7HS). STS and CAPS markers were developed from RFLPs mapped to the telomeric region of barley chromosome 7HS and three polymorphic PCR-based markers were developed. The segregation of these markers was followed in the F2 population and their map position with respect to the resistance gene was determined. Our results indicate that the Thibaut resistance gene, which we designated as Rdg2a, maps to the telomeric region of barley chromosome 7HS and is flanked by the markers OPQ-9700 and MWG 2018 at distances of 3.1 and 2.5 cM respectively. The suitability of the PCR-based marker MWG2018 in selection- assisted barley breeding programs is discussed. Received: 22 June 2000 / Accepted: 16 October 2000  相似文献   

8.
We have used rice line Tetep as a resistant donor with the aim of mapping a durable blast resistance gene Pi-k h using RAPD and AFLP techniques in conjunction with bulk segregant analysis. An F2 mapping population consisting of 205 plants was generated by crossing Tetep with HP2216, a highly susceptible cultivar. Inoculation with specific isolate (PLP-1) of Magnaporthe grisea at seeding stage showed that the Pi-k h gene inherited as a single dominant gene in F2 population. RAPD analysis was performed with 240 primers to detect polymorphism between resistant and susceptible parents. Of these, 48 primers produced polymorphic banding pattern between resistant and susceptible parents. Bulk segregant analysis was performed with 48 primers of which 5 showed polymorphism between resistant and susceptible bulks. A 700 bp DNA band was obtained in resistant F2 plants with primer 5-129 indicating its linkage to the resistance gene. Out of 64 AFLP primer combinations used for polymorphism survey between HP 2216 and Tetep, 11 AFLP primer combinations were able to distinguish the resistant and susceptible bulks. An AFLP band of 75 bp obtained with primer combination, E-TAlM-CTC co-segregated with the resistance gene. The RAPD marker 5-129700 and AFLP75 were placed on the linkage map at a distance of 2.1 eM and 15.1 eM flanking to Pi-k hgene, respectively. The RAPD band closely linked to Pi-k h gene was sequenced and used for the development of CAPs markers which also co-segregated with resistant phenotype in the mapping population. On sequence analysis and homology search of RAPD fragment with whole rice genome sequence database and the information available on physical, genetic and sequence maps of rice, the co-segregating CAPs marker was placed at long arm of rice chromosome 11. CAPs marker developed in this study showed polymorphism in different rice cultivars grown in North-Western Himalayan region and is being used for the pyramiding of Pi-k h gene along with other blast resistance genes using marker-assisted selection.  相似文献   

9.
The gene Pi-ar confers resistance to Pyricularia grisea in a somaclone of the upland rice cultivar Araguaia developed from callus culture of immature panicles. The somaclone SC09 exhibited resistant reaction to all of the 182 P. grisea test isolates belonging to 15 different races. The study on inheritance showed that the resistance to pathotype IB-9 of P. grisea is monogenic and dominant. In order to identify marker linked to this gene, the F2 population from a cross between the highly susceptible cultivar Lijiangxintuanheigu (LTH) and the somaclone SC09 of rice cultivar Araguaia was screened using RAPD primers. Initially, the polymorphism between parents, the cultivar LTH and somaclone SC09 was analyzed using 577 random 10-bp primers. The susceptible and resistant bulks of the F2 population, along with DNA of the two parents were tested with 176 primers that differentiated susceptible and resistant parents. Thirty-six primers differentiated the susceptible and resistant bulks, as well as the cultivar LTH of the somaclone SC09. However, one primer OPK17 was found to be closely linked (5.3 cM) to the resistance gene of somaclone and this can be used in the marker assisted selection.  相似文献   

10.
11.
The maize inbred lines 1145 (resistant) and Y331 (susceptible), and the F1, F2 and BC1F1 populations derived from them were inoculated with the pathogen Pythium inflatum Matthews, which causes stalk rot in Zea mays. Field data revealed that the ratio of resistant to susceptible plants was 3:1 in the F2 population, and 1:1 in the BC1F1population, indicating that the resistance to P. inflatum Matthews was controlled by a single dominant gene in the 1145×Y331 cross. The gene that confers resistance to P. inflatum Matthews was designated Rpi1 for resistance to P. inflatum) according to the standard nomenclature for plant disease resistance genes. Fifty SSR markers from 10 chromosomes were first screened in the F2 population to find markers linked to the Rpi1 gene. The results indicated that umc1702 and mmc0371 were both linked to Rpi1, placing the resistance gene on chromosome 4. RAPD (randomly amplified polymorphic DNA) markers were then tested in the F2population using bulked segregant analysis (BSA). Four RAPD products were found to show linkage to the Rpi1 gene. Then 27 SSR markers and 8 RFLP markers in the region encompassing Rpi1 were used for fine-scale mapping of the resistance gene. Two SSR markers and four RFLP markers were linked to the Rpi1 gene. Finally, the Rpi1 gene was mapped between the SSR markers bnlg1937 and agrr286 on chromosome 4, 1.6 cM away from the former and 4.1 cM distant from the latter. This is the first time that a dominant gene for resistance to maize stalk rot caused by P. inflatum Matthews has been mapped with molecular marker techniques.  相似文献   

12.
The Roegneria kamoji accession ZY 1007 was resistant to the mixed predominant races of Puccinia striiformis f.sp. tritici (Pst) in China based on field tests at adult‐plant stage. The seedling resistance evaluation of ZY 1007 showed that it was resistant to stripe rust physiological strains CYR29, CYR33 and PST‐V26, which were the predominant races of Pst in China. The female parent R. kamoji cv. Gansi No.1 (susceptible to Pst) was crossed with ZY 1007 (resistant to Pst). Parents, F1 and F2 populations were tested in a field inoculated with the mixed urediniospores. ZY 1007 and all the observed 11 F1 hybrid plants were resistant, while plants of Gansi No.1 were susceptible. Among the 221 F2 plants, 168 plants were resistant and 53 were susceptible, and the segregation of resistant and susceptible plants fits 3R:1S ratio (χ2 = 0.074, P > 0.75). It confirmed that the resistance of stripe rust in ZY 1007 was controlled by a single dominant gene and temporarily designated as YrK1007.  相似文献   

13.
The brown planthopper (BPH) is one of the most destructive insect pests of rice in Thailand. We performed a cluster analysis that revealed the existence of four groups corresponding to the variation of virulence against BPH resistance genes in 45 BPH populations collected in Thailand. Rice cultivars Rathu Heenati and PTB33, which carry Bph3, showed a broad-spectrum resistance against all BPH populations used in this study. The resistant gene Bph3 has been extensively studied and used in rice breeding programs against BPH; however, the chromosomal location of Bph3 in the rice genome has not yet been determined. In this study, a simple sequence repeat (SSR) analysis was performed to identify and localize the Bph3 gene derived from cvs. Rathu Heenati and PTB33. For mapping of the Bph3 locus, we developed two backcross populations, BC1F2 and BC3F2, from crosses of PTB33 × RD6 and Rathu Heenati × KDML105, respectively, and evaluated these for BPH resistance. Thirty-six polymorphic SSR markers on chromosomes 4, 6 and 10 were used to survey 15 resistant (R) and 15 susceptible (S) individuals from the backcross populations. One SSR marker, RM190, on chromosome 6 was associated with resistance and susceptibility in both backcross populations. Additional SSR markers surrounding the RM190 locus were also examined to define the location of Bph3. Based on the linkage analysis of 208 BC1F2 and 333 BC3F2 individuals, we were able to map the Bph3 locus between two flanking SSR markers, RM589 and RM588, on the short arm of chromosome 6 within 0.9 and 1.4 cM, respectively. This study confirms both the location of Bph3 and the allelic relationship between Bph3 and bph4 on chromosome 6 that have been previously reported. The tightly linked SSR markers will facilitate marker-assisted gene pyramiding and provide the basis for map-based cloning of the resistant gene.  相似文献   

14.
Rice stripe virus (RSV) is a viral disease that seriously impacts rice production in East Asia, most notably in Korea, China, and Japan. Highly RSV-resistant transgenic japonica rice plants were generated using a dsRNAi construct designed to silence the entire sequence region of the RSV-CP gene. Transgenic rice plants were inoculated with a population of viruliferous insects, small brown planthoppers (SBPH), and their resistance was evaluated using ELISA and an infection rate assay. A correlation between the expression of the RSV-CP homologous small RNAs and the RSV resistance of the transgenic rice lines was discovered. These plants were also analyzed by comparing the expression pattern of invading viral genes, small RNA production and the stable transmission of the RSV resistance trait to the T3 generation. Furthermore, the agronomic trait was stably transmitted to the T4 generation of transgenic plants.  相似文献   

15.
 The Yr15 gene of wheat confers resistance to the stripe rust pathogen Puccinia striiformis West., which is one of the most devastating diseases of wheat throughout the world. In the present study, molecular markers flanking the Yr15 gene of wheat have been identified using the near-isogenic-lines approach. RFLP screening of 76 probe-enzyme combinations revealed one polymorphic marker (Nor/TaqI) between the susceptible and the resistant lines. In addition, out of 340 RAPD primers tested, six produced polymorphic RAPD bands between the susceptible and the resistant lines. The genetic linkage of the polymorphic markers was tested on segregating F2 population (123 plants) derived from crosses between stripe rust-susceptible Triticum durum wheat, cv D447, and a BC3F9 resistant line carrying Yr15 in a D447 background. A 2.8-kb fragment produced by the Nor RFLP probe and a 1420-bp PCR product generated by the RAPD primer OPB13 showed linkage, in coupling, with the Yr15 gene. Employing the standard maximum-likelihood technique it was found that the order OPB13 1420 Yr15Nor1 on chromosome 1B appeared to be no less than 1000-times more probable than the closest alternative. The map distances between OPB13 1420 Yr15Nor1 are 27.1 cM and 11.0 cM for the first and second intervals, respectively. The application of marker-assisted selection for the breeding of new wheat cultivars with the stripe rust resistance gene is discussed. Received: 27 February 1997/Accepted: 7 March 1997  相似文献   

16.
The japonica rice cultivar Hokkai 188 shows a high level of partial resistance to leaf blast. For mapping genes conferring the resistance, a set of 190 F2 progeny/F3 families was developed from the cross between the indica rice cultivar Danghang-Shali, with a low level of partial resistance, and Hokkai 188. Partial resistance to leaf blast in the F3 families was assessed in upland nurseries. From a primary microsatellite (SSR) linkage map and QTL analysis using a subset of 126 F2 progeny/F3 families randomly selected from the above set, one major QTL located on chromosome 1 was detected in the vicinity of SSR marker RM1216. This QTL was responsible for 69.4% of the phenotypic variation, and Hokkai 188 contributed the resistance allele. Segregation analysis in the F3 families for partial resistance to leaf blast was in agreement with the existence of a major gene, and the gene was designated as Pi35(t). Another QTL detected on chromosome 8 was minor, explained 13.4% of the phenotypic variation, and an allele of Danghang-Shali increased the level of resistance in this QTL. Additional SSR markers of the targeted Pi35(t) region were further surveyed in the 190 F2 plants, and Pi35(t) was placed in a 3.5-cM interval flanked by markers RM1216 and RM1003.  相似文献   

17.
 A sequence-tagged-site (STS) marker is reported linked to Lr28, a leaf rust resistance gene in wheat. RAPD (random amplified polymorphic DNA) analysis of near-isogenic lines (NILs) of Lr28 in eight varietal backgrounds was carried out using random primers. Genomic DNA enriched for low-copy sequences was used for RAPD analysis to overcome the lack of reproducibility due to the highly repetitive DNA sequences present in wheat. Of 80 random primers tested on the enriched DNA, one RAPD marker distinguished the NILs and the donor parent from the susceptible recurrent parents. The additional band present in resistant lines was cloned, sequenced, and STS primers specific for Lr28 were designed. The STS marker (Indian patent pending: 380 Del98) was further confirmed by bulk segregation analysis of F3 families. It was consistently present in the NILs, the resistant F3 bulk and the resistant F3 lines, but was absent in recurrent parents, the susceptible F3 bulk and the susceptible F3 lines. Received: 20 February 1998 / Accepted: 4 March 1998  相似文献   

18.
Stripe rust, caused by Puccinia striiformis f.sp. tritici (Pst), is one of the most widespread and destructive diseases of wheat worldwide. Resistance breeding is constantly pursued for decades to tackle the variations of prevalent Pst races. Zhongliang 12 has strong resistance to abiotic stresses, wide adaptability, higher resistance to stripe rust and excellent biological characteristics. To identify the resistance gene(s) against stripe rust, Zhongliang 12 was crossed with stripe rust susceptible genotype Mingxian 169, and F1, F2, F2 : 3 and BC1 progenies were tested with Chinese Pst race CYR30 and CYR31 in seedling stage in greenhouse. Zhongliang 12 possessed different dominant genes for resistance to each race. Linkage maps were constructed with four simple sequence repeats (SSRs) markers, Xwmc695, Xcfd20, Xbarc121 and Xbarc49, for the gene on wheat chromosome 7AL conferring resistance to CYR30 (temporarily designated as Yrzhong12‐1) with genetic distance ranging from 3.1 to 10.8 cM and four SSR markers, Xpsp3003, Xcfd2129, Xwmc673 and Xwmc51, for the gene on wheat chromosome 1AL conferring resistance to CYR31 (temporarily designated as Yrzhong12‐2) with genetic distance ranging from 3.9 cM to 9.3 cM. The molecular markers closely linked to each gene should be useful in marker‐assisted selection in breeding programmes for against stripe rust.  相似文献   

19.
Field resistance is defined as the resistance that allows effective control of a parasite under natural field conditions and is durable when exposed to new races of that parasite. To identify the genes for field resistance to rice blast, quantitative trait loci (QTLs) conferring field resistance to rice blast in Japanese upland rice were detected and mapped using RFLP and SSR markers. QTL analysis was carried out in F4 progeny lines from the cross between Nipponbare (moderately susceptible, lowland) and Owarihatamochi (resistant, upland). Two QTLs were detected on chromosome 4 and one QTL was detected on each of chromosomes 9 and 12. The phenotypic variation explained by each QTL ranged from 7.9 to 45.7% and the four QTLs explained 66.3% of the total phenotypic variation. Backcrossed progeny lines were developed to transfer the QTL with largest effect using the susceptible cultivar Aichiasahi as a recurrent parent. Among 82 F3 lines derived from the backcross, resistance segregated in the expected ratio of resistant 1 : heterozygous 2 : susceptible 1. The average score for blast resistance measured in the field was 4.2 ± 0.67, 7.5 ± 0.51and 8.2 ± 0.66, for resistant, heterozygous and susceptible groups, respectively. The resistance gene, designated pi21, was mapped on chromosome 4 as a single recessive gene between RFLP marker loci G271 and G317 at a distance of 5.0 cM and 8.5 cM, respectively. The relationship to previously reported major genes and QTLs conferring resistance to blasts, and the significance of marker-assisted selection to improve field resistance, are discussed. Received: 8 June 2000 / Accepted: 24 November 2000  相似文献   

20.
Molecular tagging and mapping of the erect panicle gene in rice   总被引:6,自引:0,他引:6  
Erect panicle (EP) is one of the more important traits of the proposed ideotype of high-yielding rice. Several rice cultivars with the EP phenotype, which has been reported to be controlled by a dominant gene, have been successfully developed and released for commercial production in North China. To analyze the inheritance of the EP trait, we generated segregating F2 and BC1F1 populations by crossing an EP-type variety, Liaojing 5, and a curved-panicle-type variety, Fengjin. Our results confirmed that a dominant gene controls the EP trait. Simple-sequence repeat (SSR) and bulked segregant analyses of the F2 population revealed that the EP gene is located on chromosome 9, between two newly developed SSR markers, RM5833-11 and RM5686-23, at a genetic distance of 1.5 and 0.9 cM, respectively. Markers closer to the EP gene were developed by amplified fragment length polymorphism (AFLP) analysis with 128 AFLP primer combinations. Three AFLP markers were found to be linked to the EP gene, and the nearest marker, E-TA/M-CTC200, was mapped to the same location as SSR marker RM5686-23, 1.5 cM from the EP gene. A local map around the EP gene comprising nine SSR and one AFLP marker was constructed. These markers will be useful for marker-assisted selection (MAS) for the EP trait in rice breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号