首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two South African mountain fynbos sites, similar in drainage, elevation, slope angle, slope aspect and soil type but with differing fire histories, were studied to measure how the effect of high densities of overstorey proteas in one fire cycle affects the α-diversity levels of the plant community in the following fire-cycle, how their repeated absence due to several short fire-cycles affects their species richness and finally, at what spatial scale such patterns are most appropriately measured. High prefire canopy cover percentages and densities of overstorey proteas increase the postfire α-diversity of understorey species. In addition, the increase in species richness observed occurred for all higher plant life history types present. At sites where one or more short fire cycles resulted in the repeated absence of overstorey proteas, the number of plant species present in the understorey was lower than at a site where overstorey proteas persisted. These results are dependent on the spatial scale at which the α-diversity of understorey species is measured. At small quadrat sizes (< 5 m2), overstorey proteas decrease the number of understorey species present, while at larger quadrat sizes (100 m2) higher species richness is observed. The contradiction in conclusions when α-diversity is measured at different spatial scales can be attributed to the patchiness of fynbos communities. Overstorey proteas play an important role in maintaining the patchiness component of fynbos communities by diminishing the effect of understorey resprouting species, making available regeneration niches for the maintenance of plant species richness. Where small quadrats are used, the effect of patchiness on the dynamics of the mountain fynbos community is lost. Thus, it is the fire history prior to the last fire and how it affects overstorey proteas that is important in the determination of α-diversity levels in mountain fynbos plant communities.  相似文献   

2.
Abstract. In this study we compared the effects of fire on understorey vegetation in the Québec southern boreal forest with effects of salvage‐logging (clear‐cutting after fire). All 61 400‐m2 sampling sites were controlled for overstorey composition (Deciduous, Mixed and Coniferous) and disturbance type, which consisted of three fire impact severity (FIS) classes (Light, Moderate and Extreme) and two harvesting techniques (Stem‐only and Whole‐tree Harvesting). Percent‐cover data of vegetation and post‐disturbance environmental characteristics were recorded in the field during the first two years after fire as well as soil texture. Ordination of fire alone demonstrated that, on Coniferous sites, fire initiates a succession whereby the understorey Coniferous sites approaches that of Deciduous‐Mixed sites, due to the release of the understorey from Sphagnum spp. dominance, this pattern being a function of FIS. On Deciduous‐Mixed stands, increased FIS resulted in a transition from herb to shrub dominance. Ordination of all five disturbance types showed that the impact of salvage‐logging on understorey composition was within the range of fire, but marginalized to the extreme end of the FIS spectrum. Variance partitioning demonstrated that overstorey and soil texture were the most important explanatory variables of fire alone, while disturbance type explained the largest independent fraction of understorey variation when salvage‐logging was introduced. Salvage‐logging also results in significant reductions in understorey abundance, richness and diversity, while indicator species analysis suggests that it favours mesoxerophytic to xeric species. Results are interpreted in light of shade‐tolerance dynamics, forest floor disturbance and soil moisture regimes. Implications for sustainable forest management are discussed.  相似文献   

3.
Abstract. We describe a model of heath vegetation, in which species were classified into five functional groups based on characteristics of their propagule pools, post-fire growth, timing and mode of reproduction and competitive status. The model assumes no recruitment without fire and a simple competitive hierarchy based on vertical stature. A critical feature of the model is an initial post-fire window of 5–6 yr in which competition from overstorey species on understorey species is reduced. Understorey functional groups differ in their ability to exploit this window. In the field, we tested five predictions derived from the model: (a) overall species richness of understorey varies inversely with overstorey density as a result of a trend in richness of woody species, but not in herbaceous species; (b) where an overstorey was present in the previous fire interval, post-fire population density is reduced in a functional group of understorey serotinous resprouting shrubs, but not in a group of understorey obligate-seeding shrubs with soil seed banks; (c) in understorey serotinous resprouting shrubs, post-fire regrowth in resprouting individuals is adversely affected by the presence of an overstorey in the preceding fire interval; (d) in understorey serotinous resprouting shrubs, levels of pre-fire propagules are lower in the presence of an overstorey, reducing the density of post-fire recruits; and (e) in understorey serotinous resprouting shrubs, recruitment relative to the pre-fire population is unaffected by overstorey species within the window of reduced competition. Of these, three tests (a,b,d) supported the model, one (e) may support the model, but the results were inconclusive and one (c) did not support the model. Limitations and further applications of the model are discussed. Our results suggest that maintenance of high densities of overstorey populations is in conflict with conservation of some understorey species. Models of the type we propose will help identify and resolve such conflicts and promote the judicious use of fire to maintain full species diversity of plant communities.  相似文献   

4.
Abstract. Previous studies in the mountain fynbos of South Africa have demonstrated that short fire cycles favour the establishment of dense covers of understorey sprouters while longer fire intervals enable the establishment from seed of overstorey proteas and the formation of a overstorey. One consequence of these differences between fire cycle lengths is the effect that understorey sprouters and an overstorey protea canopy have on species richness. In the case of short fire intervals, species richness is decreased while longer intervals between fires allow species richness to decrease or increase depending on the patchiness of the overstorey canopy. Such results are suggestive of competitive effects between understorey sprouters and overstorey canopy proteas. In this study, data were collected from several pyric successional stages in mountain fynbos to study the effect of overstorey proteas on the growth and flowering of understorey sprouters since the last fire. Data were also collected to determine the effect that understorey sprouters had on the establishment and fecundity of overstorey protea species. Competitive interactions between overstorey proteas and sprouting understorey species were evident at all the sites studied. The vegetative growth and seed production of understorey sprouters, which grew under a canopy of overstorey proteas during the current interfire period, were significantly lower than that for plants growing in the open. In addition, the postfire growth and seed production of understorey sprouters were significantly lower for individuals, which grew under an overstorey protea canopy during the previous fire cycle, than for those individuals which grew in the open. The fecundity of overstorey proteas, which grew near understorey sprouters, was lower than that of plants which grew in the open. This effect was evident for up to the first 15 years after a fire. However, not all understorey sprouters affected the overstorey proteas equally. Also, seedlings of overstorey proteas established significantly less successfully in close proximity to understorey sprouters after a fire than in the open or under proteas. Finally, the results demonstrate that complex species‐specific, understorey–overstorey interactions are important in mountain fynbos. For example, some overstorey species depend on trophically similar species to reduce potential competition from understorey sprouters for their successful establishment at a site.  相似文献   

5.
Net photosynthetic fixation of wetland plant communities is confined to the period of the year when the surface soil is not waterlogged and is thus well aerated. In the open‐structured vegetation continuum across freshwater wetlands on sandy soils in subtropical and tropical Australia, the sum of the foliage projective covers (FPCs) of the overstorey and understorey strata remains constant, while that of the overstorey decreases to zero as seasonal waterlogging (and anaerobic conditions) in the surface root systems increases. Density and height of the overstorey trees – of only one or two species – and species richness (number of species per hectare) in the understorey decreases along this waterlogging gradient. Melaleuca paperbark trees, possessing surface roots with cortical aerenchyma, may form a closed‐forest at the edge of the wetland continuum wherever there is a continuous flow of aerated water. As global warming progresses, an increase in air temperature in the atmosphere flowing over and through the wetland continuum during the short period of annual foliage‐growth will affect the combined FPCs of overstorey and understorey strata, as well as the leaf‐specific weights of all leaves throughout the plant community. With a reduction in net photosynthetic fixation, species richness of the plant community will slowly decline.  相似文献   

6.
Aim This paper uses null model analysis to explore the pattern of species co‐occurrence of terrestrial vertebrate fauna in fire‐prone, mixed evergreen oak woodlands. Location The Erico–Quercion ilicis of the Mediterranean belt (50–800 m a.s.l.) in the Madonie mountain range, a regional park in northern Sicily (37°50′ N, 14°05′ E), Italy. Methods The stratified sampling of vertebrates in a secondary succession of recent burned areas (BA, 1–2 years old), intermediate burned areas (INT, 4–10 years old) and ancient burned areas (CNB, > 50 years old), plus forest fragments left within burned areas (FF, 1–2 years old) permitted the comparison of patterns of species co‐occurrence using a set of separate presence/absence matrices. First, the breeding avifauna derived from standardized point counts was analysed using Stone & Roberts’C‐score, and by a null model algorithm (fixed/equiprobable). Secondly, the analysis was repeated using all vertebrate species recorded in the succession. Results Sixty‐five species were recorded in the 2‐year study period in the four sample treatments. Birds were found to make up the largest component (63%) of the recorded assemblage. The BA treatment had the lowest species richness, followed in order by the small, medium and large FFs, and then by the CNBs. For both analyses (birds and total vertebrates), the C‐scores were quite small and not significantly different from those that could be expected by chance in the BA and INT burned areas; this indicates a random co‐occurrence among vertebrates of those assemblages. Contrariwise, for both analyses in the CNBs, the C‐scores were large and significantly different from the simulated indices, thereby indicating a non‐random co‐occurrence pattern (segregation) of vertebrates in the undisturbed woodlands. In addition, C‐score values for the surviving FFs show a significant aggregation of species. Main conclusions The null model analyses highlighted a new aspect of fire disturbance in Mediterranean woodland ecosystems: the disruption in patterns of co‐occurrence in the terrestrial vertebrate community. Wildfire alters community organization, inducing, for at least 10 years, a random aggregate of species. Communities re‐assemble themselves, showing the occurrence of species segregation at least 50 years after fire.  相似文献   

7.
Question: Two questions about within‐stand spatial variability are addressed in this paper. How does species richness of tree regeneration respond to small‐scale ecological gradients, and what effect does natural Abies balsamea abundance have on the species richness of other tree regeneration? Location: A long‐term, gap‐silviculture experiment, Acadian mixed‐wood forest, Maine, USA. Methods: Eight stands treated with and without gap harvesting were sampled to capture sub‐stand heterogeneity of understorey tree regeneration concurrently with patterning of local stand conditions. Spatial and non‐spatial models were developed to test the relationships between two response variables [species richness of small (height ≥0.1 m, but <0.75 m) and large (height ≥0.75 m, but <1.4 m) regeneration] and five explanatory variables (depth to water table, percentage canopy transmittance, A. balsamea regeneration density, and overstorey basal area and species richness). Results: Despite high unexplained variance for all models, consistent associations among variables were found. Negative associations were found between: (1) the species richness of small regeneration and A. balsamea regeneration density and (2) the species richness of large regeneration and overstorey basal area. Positive associations were found between: (1) the species richness of small regeneration and both overstorey basal area and species richness and (2) the species richness of small and large regeneration and canopy transmittance. Conclusions: Promoting tree species diversity in Acadian mixed‐wood stands may not be achievable through the use of gap‐harvesting alone if the density of understorey Abies balsamea is not reduced either naturally or through silvicultural intervention.  相似文献   

8.
Foliage Projective Cover of the overstorey (canopy) of a‘climax’community appears to reach an equilibrium value determined largely by the prevailing climate. Overstorey FPC decreases in‘climax’communities in a graded series from humid to arid regions. Understorey cover (of all strata below the canopy) in‘climax’communities attains a balance with overstorey FPC. Disturbance (gaps, microhabitats, fire, overgrazing, invasion of woody weeds, etc.) may reduce the overstorey cover which will be compensated by an increase in understorey cover. Secondary succession back to the‘climax’structure will follow a path maintaining an inverse linear relationship between understorey cover and overstorey cover. At the same time, species diversity appears to decrease as overstorey cover increases.  相似文献   

9.
Questions: How does the time interval between subsequent stand‐replacing fire events affect post‐fire understorey cover and composition following the recent event? How important is fire interval relative to broad‐ or local‐scale environmental variability in structuring post‐fire understorey communities? Location: Subalpine plateaus of Yellowstone National Park (USA) that burned in 1988. Methods: In 2000, we sampled understorey cover and Pinus contorta density in pairs of 12–yr old stands at 25 locations. In each pair, the previous fire interval was either short (7–100 yr) or long (100–395 yr). We analysed variation in understorey species richness, total cover, and cover of functional groups both between site pairs (using paired t‐tests) and across sites that experienced the short fire intervals (using regression and ordination). We regressed three principal components to assess the relative importance of disturbance and broad or local environmental variability on post‐fire understorey cover and richness. Results: Between paired plots, annuals were less abundant and fire‐intolerant species (mostly slow‐growing shrubs) were more abundant following long intervals between prior fires. However, mean total cover and richness did not vary between paired interval classes. Across a gradient of fire intervals ranging from 7–100 yr, total cover, species richness, and the cover of annuals and nitrogen‐fixing species all declined while the abundance of shrubs and fire‐intolerant species increased. The few exotics showed no response to fire interval. Across all sites, broad‐scale variability related to elevation influenced total cover and richness more than fire interval. Conclusions: Significant variation in fire intervals had only minor effects on post‐fire understorey communities following the 1988 fires in Yellowstone National Park.  相似文献   

10.
Abstract. Two South African mountain fynbos sites were studied to determine the effect of short fire cycles on the cover and density of understorey sprouting species and their subsequent effect on plant-species richness. Frequent fires (4–6 years between burns) increased the cover of sprouting species by 32% when compared to an adjacent site where the penultimate fire was 28 years previously. There was little or no effect of fire frequency on the densities of understorey sprouters; however, individuals were larger at sites with short fire cycles. The response of individual species of sprouters was variable with one species, Hypodiscus striatus , showing no response to fire frequency. The impact of sprouting species on the species richness of the plant community was great. The mean number of species recorded in quadrats with a high cover of sprouters was 60% lower in comparison to quadrats with low covers or under the burned skeletons of overstorey proteas. The effect of sprouters was consistent for all functional groups of species (i.e. sprouters, non-sprouters, short-lived and long-lived species), in each case reducing the number of species present.  相似文献   

11.
Tree species composition and stand structural complexity are valuable indicators of sustainable forest management. This article aims to investigate the relative influence of forest overstorey composition and structural attributes on understorey composition and diversity, taking into account also site characteristics and broad-scale environmental variables. We sampled vascular plant species composition and forest structure in 132 plots in the Cilento and Vallo di Diano National Park (southern Italy). Spearman’s non-parametric correlation coefficients were calculated between overstorey and understorey diversity indices, beech percentage, and altitude and environmental indices. A complete partitioning of the variation in understorey composition was then performed through canonical correspondence analysis considering four sets of variables: (1) overstorey composition, (2) structural attributes, (3) topography, and (4) landscape abiotic variables. Finally, we constructed a regression tree analysis of understorey species richness using the same explanatory variables. Understorey diversity indices were positively correlated with overstorey diversity indices and with environmental indices (i.e., light and soil heterogeneity). Overstorey and understorey diversity indices were negatively correlated with both altitude and the dominance of beech in the overstorey. Compositional variation was due primarily to overstorey composition and secondarily to structural attributes. Regression tree analysis revealed that altitude, overstorey species richness, and structural attributes play an important role in determining understorey species richness. According to our results, understorey composition and diversity are strongly related to overstorey composition and structural attributes. Indeed, the latter proved to be effective indicators of understorey characteristics in the study area.  相似文献   

12.
The species richness (number of vascular plants per hectare) of Australian plant communities (containing a mosaic of gap, regeneration, maturation and senescent phases) is correlated with the annual biomass productivity of the overstorey canopy.The annual production of leaves and stem in the canopy of the plant community is shown to be limited by the requirements of photosynthesis (particularly light and the availability of water) and the length of the growing season.The species richness of Australian plant communities is the product of the blance between the dominance of the overstorey and the response of the understorey to the shading of the overstorey. For all climatic regions and zones the species richness of the overstorey of the plant community is shown to be exponentially related to the annual shoot growth of the overstorey canopy, until the latitudinal or altitudinal tree line is reached. With latitudinal increase outside the tropics, overstorey canopies of forest communities absorb increasingly more of the incident solar radiation. markedly reducing the species richness of the understorey strata. In contrast, in these latitudes the overstorey of plant communities with widely spaced trees or tall shrubs will absorb far less solar radiation, thus enabling the species richness of the understorey to be maintained.  相似文献   

13.
Question: Knowledge of the interaction between understorey herb and overstorey tree layer diversity is mostly restricted to temperate forests. How do tree layer diversity and environmental variables affect herb layer attributes in subtropical forests and do these relationships change in the course of succession? Do abundance and diversity of woody saplings within the herb layer shift during succession? Location: Subtropical broad‐leaved forests in southeast China (29°8′18″‐29°17′29″N, 118°2′14″118°11′12″E). Methods: A full inventory of the herb layer including all plants below 1‐m height was done in 27 plots (10 × 10 m) from five successional stages (<20, <40, <60, <80 and ≥80 yr). We quantified the contribution of different life forms (herbaceous, woody and climber species) to herb layer diversity and productivity and analysed effects of environmental variables and tree layer diversity on these attributes. Results: Herb layer composition followed a successional gradient, as revealed by non‐metric multidimensional scaling (NMDS), but diversity was not correlated to the successional gradient. There was no correlation of diversity across layers. Herb layer productivity was neither affected by tree layer diversity nor by herb layer diversity. Although abundance of woody species in the herb layer decreased significantly during succession, woody species contributed extraordinarily to herb layer species diversity in all successional stages. All environmental factors considered had little impact on herb layer attributes. Conclusions: The subtropical forest investigated displays an immense richness of woody species in the herb layer while herbaceous species are less prominent. Species composition of the herb layer shows a clear successional pattern, however, the presence or absence of certain species appears to be random.  相似文献   

14.
We propose that nonharvest plantations could provide important opportunities for restoration of indigenous forest cover and related ecosystem services. We assessed the relative performance of three Podocarpaceae (podocarps) species planted into a degraded Ponderosa Pine (Pinus ponderosa) plantation, central North Island, New Zealand. We hypothesised that the degraded pine plantation overstorey could provide suitable conditions for the development of a podocarp‐dominated forest structure within ca. 50 years of underplanting and that podocarp growth would differ depending on the species suitability to the site. Rimu (Dacrydium cupressinum) significantly outperformed both Totara (Podocarpus totara) and Kahikatea (Dacrycarpus dacrydioides) in height and diameter growth. Rimu was now the structurally dominant tree where it occurred rather than pine. Per annum scaled carbon storage within Rimu stands was significantly greater than the Totara, Kahikatea or Pine stands. All podocarp species had attained a greater stand density compared to the pine overstorey. Possible reasons for the differing podocarp growth performance include different light requirements, response to soil nutrients, elevational distributions and frost susceptibility. There were significant differences in understorey species richness among the different stands of podocarp species. Underplanting accelerated successional development by incorporating late‐successional indigenous canopy dominants within the forest succession and overcame limitations imposed on forest succession at the site from its isolation from indigenous forest tree seed sources.  相似文献   

15.
Little is known about the importance of the forest overstorey relative to other factors in controlling the spatial variability in understorey species composition in near-natural temperate broadleaved forests. We addressed this question for the 19 ha ancient forest Suserup Skov (55°22′ N, 11°34′ E) in Denmark, one of the few old-growth temperate broadleaved forest remnants in north-western Europe, by inventorying understorey species composition and environmental conditions in 163 100 m2 plots. We use unconstrained and constrained ordinations, variation partitioning, and Indicator Species Analysis to provide a quantitative assessment of the importance of the forest overstorey in controlling understorey species composition. Comparison of the gradients extracted by unconstrained and constrained ordinations showed that the main gradients in understorey species composition in our old-growth temperate broadleaved forest remnant are not caused by variability in the forest overstorey, but are related to topography and soil, edge effects, and unknown broad-scale factors. Nevertheless, overstorey-related variables uniquely accounted for 15% of the total explained variation in understorey species composition, with the pure overstorey-related (Rpo), topography and soil (Rpt), edge and anthropogenic disturbance effects (Rpa), and spatial (Rps) variation fractions being of equal magnitude. The forward variable selection showed that among the overstorey-related variables understorey light availability and to a lesser extent vertical forest structure were most important for understorey species composition. No unique influence of overstorey tree species identity could be documented. There were many indicator species for high understorey light levels and canopy gap centres, but none for medium or low light or closed canopy. Hence, no understorey species behaved as obligate shade plants. Our study shows that, the forest overstorey has a weak control of understorey species composition in near-natural broadleaved forest, in contrast to results from natural and managed forests comprising both conifer and broadleaved species. Nevertheless, >20% of the understorey species found were indicators of high light conditions or canopy openings. Hence, variability in canopy structure and understorey light availability is important for maintaining understorey species diversity.  相似文献   

16.
The expansion of rainforest pioneer trees into long‐unburnt open forests has become increasingly widespread across high rainfall regions of Australia. Increasing tree cover can limit resource availability for understorey plant communities and reduce understorey diversity. However, it remains unclear if sclerophyll and rainforest trees differ in their competitive exclusion of understory plant communities, which contain most of the floristic diversity of open forests. Here, we examine dry open forest across contrasting fire histories (burnt and unburnt) and levels of rainforest invasion (sclerophyll or rainforest midstorey) to hindcast changes in understorey plant density, richness and composition. The influence of these treatments and other site variables (midstorey structure, midstorey composition and soil parameters) on understorey plant communities were all examined. This study is the first to demonstrate significantly greater losses of understorey species richness, particularly of dry open‐forest specialists, under an invading rainforest midstorey compared to a typical sclerophyll midstorey. Rainforest pioneers displaced over half of the understorey plant species, and reduced ground cover and density of dry forest specialists by ~90%. Significant understorey declines also occurred with increased sclerophyll midstorey cover following fire exclusion, although losses were typically less than half that of rainforest‐invaded sites over the same period. Understorey declines were closely related to leaf area index and basal area of rainforest and wattle trees, suggesting competitive exclusion through shading and potentially belowground competition for water. Around 20% of displaced species lacked any capacity for population recovery, while transient seed banks or distance‐limited dispersal may hinder recovery for a further 68%. We conclude that rainforest invasion leads to significant declines in understorey plant diversity and cover in open forests. To avoid elimination of local native plant populations in open forests, fires should occur with sufficient frequency to prevent overstorey cover from reaching a level where shade‐intolerant species fail to thrive.  相似文献   

17.
The North American woody species, Prunus serotina Ehrh., is an aggressive invader of forest understories in Europe. To better understand the plant invasion process, we assessed understorey plants and Prunus serotina seedlings that have colonized a 35-year-old replicated common-garden experiment of 14 tree species in south-western Poland. The density and size of established (> 1 year old) P. serotina seedlings varied among overstorey species and were related to variation in light availability and attributes of the understorey layer. In a multiple regression analysis, the density of established P. serotina seedlings was positively correlated with light availability and understorey species richness and negatively correlated with understorey species cover. These results suggest that woody invader success is adversely affected by overstorey shading and understorey competition for resources. Simultaneously, however, invader success may generally be positively associated with understorey species richness because both native and invasive plant colonization respond similarly to environmental conditions, including those influenced by overstorey tree species. Identification of characteristics of forests that increase their susceptibility to invasion may allow managers to target efforts to detect invasives and to restore forests to states that may be less invasible.  相似文献   

18.
Tozer  M.G.  Bradstock  R.A. 《Plant Ecology》2003,164(2):213-223
Overstorey shrub species are known to influence the composition of theunderstorey in Southern Hemisphere heathlands. Overstorey densities aresusceptible to variations in fire frequency; thus, fire regimes may influenceoverstorey/understorey interactions and overall floristic composition. Wecompared patches of Banksia heath which had supported anoverstorey during a fire interval of about 30 y with patches wherethe overstorey was absent during the same period, and tested for differences inspecies composition as a function of overstorey presence. Floristic compositionvaried significantly between overstorey patches and open patches. Most specieswere less abundant in overstorey patches, however some were more abundant. Therelative abundance of species in relation to overstorey was unrelated to theirfire response, propagule longevity or propagule storage location. There wassignificantly less biomass in overstorey patches compared with open patches.Theeffect of the overstorey varied with soil moisture. In a dry area, the numberof species was lower in overstorey patches, with fewer herb and shrub speciespresent compared with open patches. Fewer species were recorded in a wetterarea, but overstorey had no effect on the number of species recorded. Reducedintensity of competition among understorey species in overstorey patches couldbe responsible for the higher abundance of some species in these patches. Wepostulate that full diversity will be maintained when the density of overstoreyshrubs fluctuates widely over a relatively short period of time. This is mostlikely when fire frequency is highly variable.  相似文献   

19.
Aim Our objectives were to compare understorey plant community structure among forest types, and to test hypotheses relating understorey community structure within lower montane and subalpine forests to fire history, forest structure, fuel loads and topography. Location Forests on the North Rim of Grand Canyon National Park, Arizona, USA. Methods We measured understorey (< 1.4 m) plant community structure in 0.1‐ha plots. We examined differences in univariate response variables among forest types, used permutational manova to assess compositional differences between forest types, and used indicator species analysis to identify species driving the differences between forest types. We then compiled sets of proposed models for predicting plant community structure, and used Akaike's information criterion (AICC) to determine the support for each model. Model averaging was used to make multi‐model inferences if no single model was supported. Results Within the lower montane zone, pine–oak forests had greater understorey plant cover, richness and diversity than pure stands of ponderosa pine (Pinus ponderosa P. & C. Lawson var. scopulorum Engelm.). Plant cover was negatively related to time since fire and to ponderosa pine basal area, and was highest on northern slopes and where Gambel oak (Quercus gambelii Nutt.) was present. Species richness was negatively related to time since fire and to ponderosa pine basal area, and was highest on southern slopes and where Gambel oak was present. Annual forb species richness was negatively related to time since fire. Community composition was related to time since fire, pine and oak basal area, and topography. Within subalpine forests, plant cover was negatively related to subalpine fir basal area and amounts of coarse woody debris (CWD), and positively related to Engelmann spruce basal area. Species richness was negatively related to subalpine fir basal area and amounts of CWD, was positively related to Engelmann spruce basal area, and was highest on southern slopes. Community composition was related to spruce, fir and aspen basal areas, amounts of CWD, and topography. Main conclusions In montane forests, low‐intensity surface fire is an important ecological process that maintains understorey communities within the range of natural variability and appears to promote landscape heterogeneity. The presence of Gambel oak was positively associated with high floristic diversity. Therefore management that encourages lightning‐initiated wildfires and Gambel oak production may promote floristic diversity. In subalpine forests, warm southern slopes and areas with low amounts of subalpine fir and CWD were positively associated with high floristic diversity. Therefore the reduction of CWD and forest densities through managed wildfire may promote floristic diversity, although fire use in subalpine forests is inherently more difficult due to intense fire behaviour in dense spruce–fir forests.  相似文献   

20.
Summary The Gnangara Groundwater Mound, centred 38 km north of Perth, Western Australia, is a large, shallow unconfined aquifer that is currently under abstraction as part of the public metropolitan water supply. To investigate the impact of lowering groundwater levels on a Banksia woodland on the Mound, vegetation monitoring near a groundwater abstraction bore (known as P50) began 1 year before becoming operational. In February 1991, 2 years after abstraction commenced, extensive death of the Banksia overstorey was observed within close proximity of the bore, following a short period of high summer temperatures. The site was subsequently revisited and the understorey floristic composition, abundance and vigour of overstorey species resurveyed, and compared with data collected from a site under long‐term monitoring and not currently influenced by abstraction. A lowering of groundwater level by 2.2 m at P50 between the summers of 1990 and 1991, resulting from the cumulative effects of abstraction and below average annual rainfall (low groundwater recharge), coincided with a loss of between 20 and 80% of adults of overstorey species and up to 64% of adults of understorey species within 200 m of the bore. Over a similar time period no significant decreases in the abundance of overstorey or understorey species were recorded in the monitored site not influenced by groundwater abstraction. Of the overstorey species, Holly‐leaf Banksia (Banksia ilicifolia) displayed the greatest susceptibility and lowest net recovery following the abstraction event at P50. The negative impact of groundwater drawdown on Holly‐leaf Banksia populations makes this overstorey species an important indicator of decreasing groundwater levels on the Gnangara Groundwater Mound. Water stress may have been the primary cause of vegetation death in close proximity to the P50 bore, although this would have been exacerbated by extreme summer temperatures (> 45°C) recorded during February 1991. The P50 scenario represents a localized response to an acute drawdown event, in association with other environmental factors, and provides invaluable information on the assessment of groundwater abstraction and poor groundwater recharge events on a Banksia woodland community. However, there are limitations in using the community response at P50 to manage the impact of drawdown events on other plant communities occurring on sandy, shallow aquifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号