首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phages of halophilic vibrios and their use]   总被引:1,自引:0,他引:1  
The range of the lytic activity of 46 phages of parahemolytic vibrios isolated from lysogenic strains, sea water samples, crabs and mussels has been studied. The phages are represented by virions belonging to morphological groups II, IV, V according to the phage classification currently used in Russia and to different serological groups. No relationship between the sensitivity of vibrio strains to the phages under study and the specificity of serotypes O and K has been established. The preparation of diagnostic phage [see text] suitable for the identification of 82% of strains of parahemolytic vibrios has been proposed.  相似文献   

2.
Abstract. Blue crabs (Callinectes sapidus) prey on hooked mussels (Ischadium recurvum) growing epizoically on oyster clumps in estuaries along the Louisiana coast. In prey size‐selection experiments, blue crabs preferred small mussels (<30‐mm shell length) to larger mussels, possibly because handling time increased with mussel size. When crabs were given a choice of solitary mussels versus mussels in clumps on oysters in the laboratory, mortality was lower by 86% in clumped mussels. However, no size selection by crabs occurred with mussels in clumps, likely because smaller mussels escaped predation in crevices between larger mussels or oysters. When individuals of two size classes of mussels were exposed to water containing the scent of crabs and of mussels consumed by blue crabs, an increase in byssal thread production was induced in all mussels, but byssal thread production rate was higher for small mussels than for large mussels. We conclude that increased predation risk for small mussels has resulted in higher size‐specific production of byssal threads, and that predator‐induced production of byssal threads, which may increase clumping behavior, may reduce their risk of mortality to predatory blue crabs.  相似文献   

3.
4.
段云峰  朱宝利 《生物工程学报》2020,36(12):2511-2515
微生物是人体、动植物、土壤、沉积物、水体、空气等生境中最重要的生命体。对这些生境中微生物的分析已经成为一项基础的研究技术。微生物组测序与分析作为近年来快速发展的技术,已经在人类健康、环境污染治理、食品工业以及农牧业等领域得到了广泛应用。为了梳理和总结微生物组测序与分析技术的现状、发展状况和应用前景,本专题收录了16篇本领域的论文,分别从样本保存和处理、单菌基因组测序与分析、特殊生境中的微生物组特征分析、微生物组相关数据库和算法以及微生物组测序与分析专家共识等方面,详细介绍了微生物组测序与分析领域的发展态势,为推动我国微生物组测序与分析产业和科研的快速发展、促进微生物组相关产业的良性发展提供必要的参考。  相似文献   

5.
The habitat function of mangroves for terrestrial and marine fauna: A review   总被引:2,自引:10,他引:2  
Mangroves are defined by the presence of trees that mainly occur in the intertidal zone, between land and sea, in the (sub) tropics. The intertidal zone is characterised by highly variable environmental factors, such as temperature, sedimentation and tidal currents. The aerial roots of mangroves partly stabilise this environment and provide a substratum on which many species of plants and animals live. Above the water, the mangrove trees and canopy provide important habitat for a wide range of species. These include birds, insects, mammals and reptiles. Below the water, the mangrove roots are overgrown by epibionts such as tunicates, sponges, algae, and bivalves. The soft substratum in the mangroves forms habitat for various infaunal and epifaunal species, while the space between roots provides shelter and food for motile fauna such as prawns, crabs and fishes. Mangrove litter is transformed into detritus, which partly supports the mangrove food web. Plankton, epiphytic algae and microphytobenthos also form an important basis for the mangrove food web. Due to the high abundance of food and shelter, and low predation pressure, mangroves form an ideal habitat for a variety of animal species, during part or all of their life cycles. As such, mangroves may function as nursery habitats for (commercially important) crab, prawn and fish species, and support offshore fish populations and fisheries. Evidence for linkages between mangroves and offshore habitats by animal migrations is still scarce, but highly needed for management and conservation purposes. Here, we firstly reviewed the habitat function of mangroves by common taxa of terrestrial and marine animals. Secondly, we reviewed the literature with regard to the degree of interlinkage between mangroves and adjacent habitats, a research area which has received increasing attention in the last decade. Finally, we reviewed current insights into the degree to which mangrove litter fuels the mangrove food web, since this has been the subject of long-standing debate.  相似文献   

6.
In recent decades, human–wildlife interaction and associated anthropogenic food provisioning has been increasing and becoming more severe due to fast population growth and urban development. Noting the role of the gut microbiome in host physiology like nutrition and health, it is thus essential to understand how human–wildlife interactions and availability of anthropogenic food in habitats can affect an animal's gut microbiome. This study, therefore, set out to examine the gut microbiota of Japanese macaques (Macaca fuscata) with varying accessibility to anthropogenic food and the possibility of using gut microbiota as indicator for macaques’ reliance on anthropogenic food. Using 16S ribosomal RNA gene sequencing, we described the microbial composition of Japanese macaques experiencing different types of human disturbance and anthropogenic food availability—captive, provisioned, crop‐raiding, and wild. In terms of alpha diversity, our results showed that observed richness of gut microbiota did not differ significantly between disturbance types but among collection sites, whereas Shannon diversity index differed by both disturbance types and sites. In terms of beta diversity, captive populations harbored the most distinctive gut microbial composition, and had the greatest difference compared with wild populations. Whereas for provisioned and crop‐raiding groups, the macaques exhibited intermediate microbiota between wild and captive. We identified several potential bacterial taxa at different taxonomic ranks whose abundance potentially could help in assessing macaques’ accessibility to anthropogenic food. This study revealed the flexibility of the gut microbiome of Japanese macaques and provided possible indices based on the gut microbiome profile in assessing macaques’ accessibility to/reliance on anthropogenic foods.  相似文献   

7.
Water, sediment, plankton, and animal samples from five coastal sites from North Carolina to Georgia were sampled for their lactose-fermenting vibrio populations. Over 20% of all vibrios tested were sucrose negative and o-nitrophenyl-beta-D-galactopyranoside (ONPG) positive, suggesting identification as the human pathogen Vibrio vulnificus. These vibrios were isolated from all sample sites and sources (water, sediment, plankton, and animals). Correlations with several of 19 environmental parameters monitored at each site were found for total vibrios. The presence of ONPG-positive, sucrose-negative vibrios was correlated with hydrocarbon levels in the water and, in the case of plankton samples, with salinity. A total of 279 sucrose-negative, ONPG-positive isolates were subjected to numerical taxonomic analysis, which resulted in three major clusters. Cluster I corresponded to and included 11 reference strains of V. vulnificus. Cluster II contained the largest number (133) of isolates, of which the great majority were bioluminescent. Although having a resemblance to V. harveyi, the isolates were ONPG positive and many were H2S positive. Cluster III consisted of strains similar to the group F vibrios (V. fluvialis). Of all of the isolates, 55% were luminescent, of which over 20% were lethal when injected into mice. Problems involved in detecting lactose fermentation among marine vibrios and the potential pathogenicity of these organisms are discussed.  相似文献   

8.
9.
Eastern oyster (Crassostrea virginica) habitat is increasingly being restored for the ecosystem services it provides rather than solely as a fishery resource. Community‐based projects with the goal of ecological restoration have successfully constructed oyster reefs; however, the habitat benefits of these restoration efforts are usually not assessed or reported. In this study, we examined oyster habitat development at five community‐based oyster restoration sites in South Carolina using oyster population parameters, resident fauna densities, and sedimentation (percent sediment coverage) as assessment metrics. All sites included multiple‐aged reefs (1–3 years old) at the time of the fall 2004 sampling. Resident crabs and mussels were abundant at all five sites and crab assemblages were related to the size structure of the oyster microhabitat. Scorched mussel (Brachidontes exustus) abundances were most frequently correlated with oyster and other resident species abundances. Associations among oysters and resident crabs and mussels were not evident when analyses were conducted with higher level taxonomic groupings (e.g., total number of crabs, mussels, or oysters), indicating that species‐level identifications improve our understanding of interactions among reef inhabitants and oyster populations. Community‐based restoration sites in South Carolina provide habitat for mussels and resident crabs, in some cases in the absence of dense populations of relatively large oysters. Monitoring programs that neglect species‐level identifications and counts of mussels and crabs may underestimate the successful habitat provision that can arise independent of large, dense oyster assemblages.  相似文献   

10.
High densities of introduced herbivores can damage sensitive ecosystems, increase the risk of extinction of native biota, and host and spread disease. An essential step in managing large ‘feral’ animal populations is to quantify how they use habitats so that management interventions, such as culling, can be targeted to reduce densities and to minimize migration into areas from which animals have been removed. An effective method to quantify animal movements is by measuring landscape‐scale genetic population structure. We describe the genetic population structure of one of Australia's more destructive introduced mammals – the Asian swamp buffalo (Bubalus bubalis). We collected 524 skin samples from buffalo across their range in the Northern Territory of Australia. Allelic diversity in the Northern Territory population was low compared to those reported from populations in their native Asian habitats. The Australian population is tentatively made of three subpopulations; Melville Island, Eastern Arnhem and Central‐Western Arnhem populations. The Melville Island population is represented by a single cluster, while the Eastern Arnhem population has three clusters and the Central‐Western Arnhem population seven clusters. We found some support for isolation by distance across all the sampled populations, but little evidence for this relationship when comparing the two well‐mixed mainland meta‐populations. Despite their small founder populations and limited genetic variation, the persistence of buffalo in Australia has likely been aided by release from high predation, parasitism and disease typical of their native habitats.  相似文献   

11.
Recent advances in robotic technologies provide new opportunities to conduct high-resolution sampling of patchily distributed zooplankton and associated environmental variables. We used two robots and molecular probes to assess the temporal and spatial variability of zooplankton in water samples obtained from Monterey Bay, California. The Autonomous Underwater Vehicle (AUV) Dorado is a mobile platform that carries ten, 1.8-L bottles ("Gulpers") capable of rapidly acquiring discrete seawater samples, and an extensive sensor suite for gathering contextual environmental data during day-long expeditions. Molecular assays were conducted ex situ at a shore-based laboratory. In contrast, the Environmental Sample Processor (ESP) was deployed as a stationary (moored) device capable of repeatedly “sipping” water to conduct in situ molecular assays and record environmental data during month-long deployments. Molecular analyses were conducted with the sandwich hybridization assay (SHA), which employed 18S ribosomal RNA oligonucleotide probes designed to detect calanoid and podoplean copepods, and the larvae of barnacles, mussels, polychaete worms, brachyuran crabs, and invasive green crabs (Carcinus maenas). Both the stationary and mobile sampling protocols revealed the greatest zooplankton diversity and abundance in relatively warm waters, higher in chlorophyll and lower in salinity and nitrate. Diversity and abundance were least in recently upwelled waters with the inverse conditions. High-resolution sampling revealed that while calanoid copepods were generally associated with elevated chlorophyll, they were most abundant in upwelling fronts, in some cases. These narrow features appear to provide favorable conditions for the growth and aggregation of certain zooplankton.  相似文献   

12.
Feeding ability and motivation were assessed in the edible crab, Cancer pagurus, to investigate how the fishery practice of de-clawing may affect live crabs returned to the sea. Crabs were either induced to autotomise one claw, or were only handled, before they were offered food. Initially, autotomised and handled crabs were offered mussels, Mytilis edulis, a large part of their natural diet. After 3 days, both autotomised and handled crabs were then offered fish, a more readily handled food source. Autotomy induced crabs consumed significantly fewer mussels and less mussel mass, but ate significantly more mass of fish. This indicates that the effect of autotomy was a reduction of ability to feed on mussels rather than a general reduction of feeding motivation. The discontinuation of claw removal needs to be considered, both for the sustainability of the fishery and animal welfare concerns.  相似文献   

13.
The role of climate‐related disturbances on complex host–affiliate relationships remains understudied, largely because affiliate species vary in host use and are often differentially susceptible to disturbance relative to their hosts. Here we report the first set of host–affiliate species–discharge relationships (SDR) in freshwater and examine how anticipated shifts in water availability (flow) will impact coextirpations. We used SDR for freshwater mussels and fish across 11 regions (over 350 rivers) in the continental United States that we coupled to future water availability (2070) to model mussel and fish coextirpations. We also used river‐specific host–affiliate matrices (presence–absence) to evaluate how host‐specificity (mean number of hosts used by an affiliate) and host‐overlap (extent to which affiliates share hosts) relate to extirpation vulnerability. We found that the strength and predictability of SDR models vary geographically and that mussels were more susceptible to flow alterations than fish. These patterns of extirpations were strongest in the southeast where: (1) flow reductions are expected to be greatest; (2) more species are lost per unit flow; (3) and more mussels are expected to be lost per unit of fish. We also found that overall mussel losses associated with reduction in habitat (water availability) were greater than those associated with loss of fish hosts which we assumed to be a function of host redundancy. These findings highlight the utility of SDR as a tool for conservation efforts but they also demonstrate the potential severity of reductions in mussel and fish richness as consequence of climate change and water use. Mussels provide key ecosystem services but face multiple pronged attacks from reductions in flow, habitat, and fish hosts. These losses in biodiversity and ecosystem functions can translate into major effects on food webs and nutrient recycling.  相似文献   

14.
The microbiome can significantly impact host phenotypes and serve as an additional source of heritable genetic variation. While patterns across eukaryotes are consistent with a role for symbiotic microbes in host macroevolution, few studies have examined symbiont‐driven host evolution or the ecological implications of a dynamic microbiome across temporal, spatial or ecological scales. The pea aphid, Acyrthosiphon pisum, and its eight heritable bacterial endosymbionts have served as a model for studies on symbiosis and its potential contributions to host ecology and evolution. But we know little about the natural dynamics or ecological impacts of the heritable microbiome of this cosmopolitan insect pest. Here we report seasonal shifts in the frequencies of heritable defensive bacteria from natural pea aphid populations across two host races and geographic regions. Microbiome dynamics were consistent with symbiont responses to host‐level selection and findings from one population suggested symbiont‐driven adaptation to seasonally changing parasitoid pressures. Conversely, symbiont levels were negatively correlated with enemy‐driven mortality when measured across host races, suggesting important ecological impacts of host race microbiome divergence. Rapid drops in symbiont frequencies following seasonal peaks suggest microbiome instability in several populations, with potentially large costs of ‘superinfection’ under certain environmental conditions. In summary, the realization of several laboratory‐derived, a priori expectations suggests important natural impacts of defensive symbionts in host‐enemy eco‐evolutionary feedbacks. Yet negative findings and unanticipated correlations suggest complexities within this system may limit or obscure symbiont‐driven contemporary evolution, a finding of broad significance given the widespread nature of defensive microbes across plants and animals.  相似文献   

15.
Research on animal microbiomes is increasingly aimed at determining the evolutionary and ecological factors that govern host–microbiome dynamics, which are invariably intertwined and potentially synergistic. We present three empirical studies related to this topic, each of which relies on the diversity of Malagasy lemurs (representing a total of 19 species) and the comparative approach applied across scales of analysis. In Study 1, we compare gut microbial membership across 14 species in the wild to test the relative importance of host phylogeny and feeding strategy in mediating microbiome structure. Whereas host phylogeny strongly predicted community composition, the same feeding strategies shared by distant relatives did not produce convergent microbial consortia, but rather shaped microbiomes in host lineage‐specific ways, particularly in folivores. In Study 2, we compare 14 species of wild and captive folivores, frugivores, and omnivores, to highlight the importance of captive populations for advancing gut microbiome research. We show that the perturbational effect of captivity is mediated by host feeding strategy and can be mitigated, in part, by modified animal management. In Study 3, we examine various scent‐gland microbiomes across three species in the wild or captivity and show them to vary by host species, sex, body site, and a proxy of social status. These rare data provide support for the bacterial fermentation hypothesis in olfactory signal production and implicate steroid hormones as mediators of microbial community structure. We conclude by discussing the role of scale in comparative microbial studies, the links between feeding strategy and host–microbiome coadaptation, the underappreciated benefits of captive populations for advancing conservation research, and the need to consider the entirety of an animal's microbiota. Ultimately, these studies will help move the field from exploratory to hypothesis‐driven research.  相似文献   

16.
Feeding by host hermit crabs Dardanus pedunculatus on their symbiotic sea anemones Calliactis polypus was investigated using animals collected at Shirahama, Wakayama Prefecture, Japan. In the first experiment, changes in the number of sea anemones on hermit crab shells were recorded in single‐and double‐crab trials without food and single‐crab trials with food. The number of sea anemones significantly decreased under starved conditions. The extent of this decrease per single hermit crab was higher in the double‐crab trials than in the single‐crab trials. Direct observations and video recordings showed that hermit crabs occasionally removed sea anemones from their own shells, and also from partners’ shells in the double‐crab trials, and consumed them. In the second experiment, fed and unfed hermit crabs with or without sea anemones were examined for body weight changes. Fed hermit crabs gained weight whereas unfed hermit crabs lost it. The degree of weight loss in unfed hermit crabs was significantly higher in those without sea anemones, which indicates some value of the latter as food. We offer some speculations on the course of development of this symbiosis, with predation on sea anemones having played an important initial role.  相似文献   

17.
Ecology of Vibrio parahaemolyticus in Chesapeake Bay   总被引:49,自引:4,他引:49  
A study of the ecology of Vibrio parahaemolyticus and related vibrios in the Rhode River area of Chesapeake Bay was carried out over the period December 1970 through August 1971. The incidence of V. parahaemolyticus and related vibrios was found to be correlated with water temperature. The vibrios could not be detected in the water column during the winter months, although they were present in sediment. From late spring to early summer, when water temperatures were 14 +/- 1 C, vibrios over-wintering in sediment were released from the bottom communities and attached to zooplankton, proliferating as the temperature rose. The number of vibrios in and on plankton was reflected in the water column bacterial population densities at water temperatures of ca. 19 C. Thus, temperature of the water column in the range of 14 to 19 C was found to be critical in the annual cycle of the vibrios. Interaction between sediment, water, and zooplankton was found to be essential in the natural estuarine ecosystem. Bacterial counts of zooplankton were found to be temperature dependent. The bacterial population associated with zooplankton was found to be predominantly on external surfaces and was specific, differing from that of the sediment. Vibrio spp. and related organisms comprised the total bacterial population associated with zooplankton in summer months. The ecological role of Vibrio spp., including V. parahaemolyticus, was found to be significant, with respect to their property of chitin digestion and in relation to the population dynamics of zooplankton in Chesapeake Bay.  相似文献   

18.
The composition and diversity of animal microbiomes is shaped by a variety of factors, many of them interacting, such as host traits, the environment, and biogeography. Hybrid zones, in which the ranges of two host species meet and hybrids are found, provide natural experiments for determining the drivers of microbiome communities, but have not been well studied in marine environments. Here, we analysed the composition of the symbiont community in two deep-sea, Bathymodiolus mussel species along their known distribution range at hydrothermal vents on the Mid-Atlantic Ridge, with a focus on the hybrid zone where they interbreed. In-depth metagenomic analyses of the sulphur-oxidising symbionts of 30 mussels from the hybrid zone, at a resolution of single nucleotide polymorphism analyses of ~2500 orthologous genes, revealed that parental and hybrid mussels (F2–F4 generation) have genetically indistinguishable symbionts. While host genetics does not appear to affect symbiont composition in these mussels, redundancy analyses showed that geographic location of the mussels on the Mid-Atlantic Ridge explained most of the symbiont genetic variability compared to the other factors. We hypothesise that geographic structuring of the free-living symbiont population plays a major role in driving the composition of the microbiome in these deep-sea mussels.Subject terms: Metagenomics, Population genetics, Symbiosis, Microbiome  相似文献   

19.
20.
Many emerging infectious diseases in human populations are associated with zoonotic origins. Attention has often focused on wild animal reservoirs, but most zoonotic pathogens of recent concern to human health either originate in, or are transferred to, human populations from domesticated animals raised for human consumption. Thus, the ecological context of emerging infectious disease comprises two overlapping ecosystems: the natural habitats and populations of wild animals, and the anthropogenically controlled habitats and populations of domesticated species. Intensive food animal production systems and their associated value chains dominate in developed countries and are increasingly important in developing countries. These systems are characterized by large numbers of animals being raised in confinement with high throughput and rapid turnover. Although not typically recognized as such, industrial food animal production generates unique ecosystems—environments that may facilitate the evolution of zoonotic pathogens and their transmission to human populations. It is often assumed that confined food animal production reduces risks of emerging zoonotic diseases. This article provides evidence suggesting that these industrial systems may increase animal and public health risks unless there is recognition of the specific biosecurity and biocontainment challenges of the industrial model. Moreover, the economic drivers and constraints faced by the industry and its participants must be fully understood in order to inform preventative policy. In order to more effectively reduce zoonotic disease risk from industrial food animal production, private incentives for the implementation of biosecurity must align with public health interests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号