首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemokine receptor CCR7 regulates lymphocyte trafficking, and CCR7 deficiency induces infiltration of T and B cells adjacent to vessels in mouse lungs. Perivascular infiltration of T and B cells has also been found in human pulmonary arterial hypertension, and downregulation of the CCR7 receptor in circulating leukocytes of such patients has been observed. To investigate whether changes in the CCR7 system contribute to the pathogenesis of pulmonary hypertension, we utilized mice deficient of the CCR7 receptor. The cardiopulmonary and inflammatory responses of CCR7 depletion were evaluated in CCR7-deficient and wild-type mice. Measurements of cytokines upregulated in the animal model were also performed in patients with pulmonary hypertension and controls and in vascular smooth muscle cells. We found that mice lacking CCR7 had increased right ventricular systolic pressure, reduced pulmonary artery acceleration time, increased right ventricular/tibial length ratio, Rho kinase-mediated pulmonary vasoconstriction, and increased muscularization of distal arteries, indicating pulmonary hypertension. These mice also showed increased perivascular infiltration of leukocytes, consisting mainly of T and B cells, and increased mRNA levels of the inflammatory cytokines interleukin-12 and CX3CL1 within pulmonary tissue. Increased serum levels of interleukin-12 and CX3CL1 were also observed in patients with pulmonary hypertension, particularly in those with pulmonary hypertension associated with connective tissue disorder. In smooth muscle cells, interleukin-12 induced secretion of the angiogenic cytokine interleukin-8. We conclude that these results suggest a role for CCR7 in the development of pulmonary arterial hypertension, at least in some subgroups, possibly via pulmonary infiltration of lymphocytes and secretion of interleukin-12 and CX3CL1.  相似文献   

2.

Background

Hydrogen-rich saline has been reported to have antioxidant and anti-inflammatory effects and effectively protect against organ damage. Oxidative stress and inflammation contribute to the pathogenesis and/or development of pulmonary hypertension. In this study, we investigated the effects of hydrogen-rich saline on the prevention of pulmonary hypertension induced by monocrotaline in a rat model.

Methods

In male Sprague-Dawley rats, pulmonary hypertension was induced by subcutaneous administration of monocrotaline at a concentration of 6 mg/100 g body weight. Hydrogen-rich saline (5 ml/kg) or saline was administred intraperitoneally once daily for 2 or 3 weeks. Severity of pulmonary hypertension was assessed by hemodynamic index and histologic analysis. Malondialdehyde and 8-hydroxy-desoxyguanosine level, and superoxide dismutase activity were measured in the lung tissue and serum. Levels of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6) in serum were determined with enzyme-linked immunosorbent assay.

Results

Hydrogen-rich saline treatment improved hemodynamics and reversed right ventricular hypertrophy. It also decreased malondialdehyde and 8-hydroxy-desoxyguanosine levels, and increased superoxide dismutase activity in the lung tissue and serum, accompanied by a decrease in pro-inflammatory cytokines.

Conclusions

These results suggest that hydrogen-rich saline ameliorates the progression of pulmonary hypertension induced by monocrotaline in rats, which may be associated with its antioxidant and anti-inflammatory effects.  相似文献   

3.
Pulmonary arteries exhibit a marked vasoconstriction when exposed to hypoxic conditions. Although this may be an adaptive response to match lung ventilation with perfusion, the potential consequences of sustained pulmonary vasoconstriction include pulmonary hypertension and right heart failure. Concomitant production of proinflammatory mediators during hypoxia may exacerbate acute increases in pulmonary vascular resistance. We hypothesized that acute hypoxia causes pulmonary arterial contraction and increases the pulmonary artery tissue expression of proinflammatory cytokines via a protein kinase C (PKC)-mediated mechanism. To study this, isometric force displacement was measured in isolated rat pulmonary artery rings during hypoxia in the presence and absence of the PKC inhibitors calphostin C or chelerythrine. In separate experiments, pulmonary artery rings were treated with the PKC activator thymeleatoxin for 60 min. After hypoxia, with or without PKC inhibition, or PKC activation alone, pulmonary artery rings were subjected to mRNA analysis for TNF-alpha and IL-1beta via RT-PCR. Our results showed that, in isolated pulmonary arteries, hypoxia caused a biphasic contraction and increased expression of TNF-alpha and IL-1beta mRNA. Both effects were inhibited by PKC inhibition. PKC activation resulted in pulmonary artery contraction and increased the pulmonary artery expression of TNF-alpha and IL-1beta mRNA. These findings suggest that hypoxia induces the expression of inflammatory cytokines and causes vasoconstriction via a PKC-dependent mechanism. We conclude that PKC may have a central role in modulating hypoxic pulmonary vasoconstriction, and further elucidation of its involvement may lead to therapeutic application.  相似文献   

4.
Tumor necrosis factor (TNF)-α is a key pro-inflammatory cytokine, thought to be important in the pathogenesis of pulmonary emphysema. TNF-α overexpression in the lung leads to the phenotypic features of pulmonary emphysema, pulmonary hypertension, and right ventricular hypertrophy in mice bred in Denver, 5240 feet/1600 m of altitude. This study hypothesized that the altitude could affect the development of pulmonary emphysema as well as pulmonary hypertension. To investigate the effect of the altitude, TNF-α transgenic mice were bred at sea level, Fukuoka, Japan. The pulmonary physiology and histology demonstrated similar development of pulmonary emphysema, compared to the mice bred in Denver. With respect to pulmonary hypertension, right ventricular hypertrophy was attenuated. Interestingly, mortality rate was significant lower in the mice bred at sea level. In contrast with the results in Denver, a significant decrease of vascular endothelial growth factor (VEGF) and its receptors expression was not found. From these data, we consider that the altitude affects development of pulmonary hypertension through the expression of VEGF and its receptors. In contrast, the effect of altitude was not clear regarding the development of pulmonary emphysema.  相似文献   

5.
肺血管平滑肌细胞是肺血管收缩反应的主要执行者,也是肺血管结构重建的重要参与者。本研究观察了内皮素1(ET1),一氧化氮(NO)和缺氧对培养的新生小牛肺动肺平滑肌细胞(PASMC)钙内流以及胶原合成的影响。结果表明ET1和缺氧可促进PASMC的钙内流,NO供应剂硝普钠(SMP)可抑制ETI诱导的钙内流,其作用呈剂量依赖性,SNP还可以剂量依赖地抑制PASMC的胶原合成,而缺氧可促进PASMC的胶原合成。  相似文献   

6.
Hypoxia-induced pulmonary hypertension is a life-threatening disease arising from a progressive increase in pulmonary vascular resistance, irreversible pulmonary vascular remodeling and resulting in right ventricular failure. Recent studies suggested that pulmonary artery smooth muscle cell proliferation and migration played an important role in the pathogenesis of hypoxia-induced pulmonary hypertension. However, the mechanisms of hypoxia-induced pulmonary hypertension are complicated and largely unclear. In this study, we discovered that lncRNA MEG3 was down-regulated in human pulmonary artery smooth muscle cell in hypoxia, and inhibition of MEG3 promoted the cell proliferation and cell migration in both normal and hypoxia condition. Further study demonstrated that MEG3 exerted its function via regulation of miR-21 expression in both normal and hypoxia condition. In addition, we displayed the modulation of PTEN by miR-21 and their role in hypoxia. Ultimately, our study illustrated that MEG3 exerts its role via miR-21/PTEN axis in human pulmonary artery smooth muscle cell under both normal and hypoxia conditions.  相似文献   

7.
Nitric oxide (NO) is an important vascular modulator in the development of pulmonary hypertension. NO exerts its regulatory effect mainly by activating soluble guanylate cyclase (sGC) to synthesize cyclic guanosine monophosphate (cGMP). Exposure to hypoxia causes pulmonary hypertension. But in lung disease, hypoxia is commonly accompanied by hypercapnia. The aim of this study was to examine the changes of sGC enzyme activity and cGMP content in lung tissue, as well as the expression of inducible nitric oxide synthase (iNOS) and sGC in rat pulmonary artery after exposure to hypoxia and hypercapnia, and assess the role of iNOS–sGC–cGMP signal pathway in the development of hypoxic and hypercapnic pulmonary hypertension. Male Sprague–Dawley rats were exposed to hypoxia and hypercapnia for 4 weeks to establish model of chronic pulmonary hypertension. Weight‐matched rats exposed to normoxia served as control. After exposure to hypoxia and hypercapnia, mean pulmonary artery pressure, the ratio of right ventricle/left ventricle + septum, and the ratio of right ventricle/body weight were significantly increased. iNOS mRNA and protein levels were significantly increased, but sGC α1 mRNA and protein levels were significantly decreased in small pulmonary arteries of hypoxic and hypercapnic exposed rat. In addition, basal and stimulated sGC enzyme activity and cGMP content in lung tissue were significantly lower after exposure to hypoxia and hypercapnia. These results demonstrate that hypoxia and hypercapnia lead to the upregulation of iNOS expression, downregulation of sGC expression and activity, which then contribute to the development of pulmonary hypertension. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
章淬  穆心苇  施乾坤  赵谊  肖继来  宋晓春  洪亮 《生物磁学》2011,(24):4868-4869,4898
目的:通过早期判断并治疗心脏移植围术期可逆性肺动脉高压,降低移植手术后右心功能衰竭的发生率。方法:20例接受心脏移植手术的病人,术前放置肺动脉导管,测定肺动脉压、肺循环阻力。对肺动脉高压的病人在肺动脉端泵入硝酸甘油、前列腺素E1以确定可逆性。并在术后早期抗排异治疗的基础上应用增强心肌收缩力、降低肺动脉压力、强化氧疗和呼吸管理等综合措施。结果:20例病人中6例出现急性右心功能衰竭,其中4例经治疗后症状改善、出院,2例死亡。结论:术前早期判断并治疗可逆性肺动脉高压,可以有效预防并减少心脏移植术后右心功能衰竭的发生,提高手术成功率。  相似文献   

9.
Pulmonary hypertension is an “umbrella term” used for a spectrum of entities resulting in an elevation of the pulmonary arterial pressure. Clinical symptoms include dyspnea and fatigue which in the absence of adequate therapeutic intervention may lead to progressive right heart failure and death. The pathogenesis of pulmonary hypertension is characterized by three major processes including vasoconstriction, vascular remodeling and microthrombotic events. In addition accumulating evidence point to a cytokine driven inflammatory process as a major contributor to the development of pulmonary hypertension.This review summarizes the latest clinical and experimental developments in inflammation associated with pulmonary hypertension with special focus on Interleukin-6, and its role in vascular remodeling in pulmonary hypertension.  相似文献   

10.
目的通过观察慢性低氧所致肺动脉高压对大鼠肺血管平滑肌细胞及成纤维细胞中蛋白激酶CBI(PKCβI)的膜转位和蛋白表达量的影响,初步探讨PKCpI在慢性低氧诱导大鼠肺动脉高压的发生、发展过程中所起的作用。方法建立慢性常压低氧肺动脉高压大鼠模型,将雄性SD大鼠随机分为正常对照组、低氧1d、3d、7d、14d和21d组,应用蛋白免疫印迹和免疫组化技术检测肺动脉高压形成过程中大鼠肺血管平滑肌细胞及成纤维细胞中PKCβI的膜转位和蛋白表达水平。结果(1)RVSP和RV/(LV+S)比值较正常对照组明显增加(P〈0.05),低氧后3d、7d、14d和21d后大鼠肺血管明显增厚;(2)大鼠肺血管平滑肌细胞和成纤维细胞均有PKCβI的表达,且低氧14d后PKCβI的蛋白表达量较正常对照组相比降低(P〈0.05)。结论PKCβI蛋白表达量的下调可能参与了慢性低氧诱导的大鼠肺动脉高压肺血管重塑的发生、发展过程。  相似文献   

11.
Pulmonary hypertension associated with human immunodeficiency virus (HIV) infection also involves injury to the lung endothelium. However, the pathogenesis of HIV-induced pulmonary hypertension is not known; we hypothesized that HIV or secreted viral proteins could play a role in vascular injury and the increased frequency of pulmonary hypertension observed in HIV-infected patients. Here, we report that exposure of HIV-1 gp120 proteins to primary human lung microvascular endothelial cells causes apoptosis, as assessed by TUNEL assay, Annexin-V staining, and DNA laddering. Using ribonuclease protection assay and Western blotting we find that gp120-induced apoptosis of lung endothelial cells involves a down-regulation in Bcl-xl mRNA and proteins. In addition, gp120 significantly increases secretion of the potent vasoconstrictor endothelin-1 by human lung endothelial cells. These data suggest that secreted HIV gp120 proteins induce lung endothelial cell injury and could contribute to the development of HIV-associated pulmonary hypertension.  相似文献   

12.
The pathogenesis of pulmonary hypertension in patients with chronic obstructive pulmonary disease is not understood. We have previously shown increased levels of mediators that control vasoconstriction (endothelin-1), vascular cell proliferation (endothelin-1 and vascular endothelial growth factor), and vasodilation (endothelial nitric oxide synthase) in the intrapulmonary arteries of animals exposed to cigarette smoke. To determine whether these mediators could be implicated in the structural remodeling of the arterial vasculature and increased pulmonary arterial pressure caused by chronic cigarette smoke exposure, guinea pigs were exposed to daily cigarette smoke for 6 mo. Pulmonary arterial pressures were measured. Intrapulmonary artery structure was analyzed by morphometry, artery mediator protein expression by immunohistochemistry, and artery mediator gene expression by laser capture microdissection and real-time RT-PCR. We found that the smoke-exposed animals developed increases in pulmonary arterial pressure and increased muscularization of the small pulmonary arteries. Gene expression and protein levels of all three mediators were increased, and pulmonary arterial pressure correlated both with the levels of mediator production and with the degree of arterial muscularization. We conclude that chronic smoke exposure produces increased vasoactive mediator expression in the small intrapulmonary arteries and that these mediators are associated with vascular remodeling as well as increased pulmonary arterial pressure. These findings support the idea that hypertension in chronic obstructive pulmonary disease is a result of direct cigarette smoke-mediated effects on the vasculature and suggest that interference with endothelin and VEGF production and activity or augmentation of nitric oxide levels may be beneficial.  相似文献   

13.
Pulmonary hypertension is a potentially lethal condition, which affects adults and children alike. Genetic factors are implicated in the causation of primary pulmonary hypertension. We investigate the role of polymorphism in the 5HTT gene in the etiology of pulmonary hypertension in children aged 1-18.8 years. We have tested the hypothesis that the 5HTT gene does contribute to the pathogenesis of this disease in children by comparing the allelic frequencies of both the long and short variants between children with idiopathic pulmonary hypertension and pulmonary hypertension secondary to underlying pulmonary disease. We found that homozygosity for the long variant of 5HTT was highly associated with idiopathic pulmonary hypertension in children, suggesting perhaps a more important role for 5HTT gene function in the pathogenesis of early onset disease.  相似文献   

14.
Hypoxia-inducible factor (HIF)-α subunits (HIF-1α,HIF-2α and HIF-3α),which play a pivotalrole during the development of hypoxia-induced pulmonary hypertension (HPH),are regulated through post-U'anslational hydroxylation by their three prolyl hydroxylase domain-containing proteins (PHD 1,PHD2 and PHD3).PHDs could also be regulated by HIF.But differential and reciprocal regulation between HIF-α and PHDs duringthe development of HPH remains unclear.To investigate this problem,a rat HPH model was established.Meanpulmonary arterial pressure increased significantly after 7 d of hypoxia.Pulmonary artery remodeling indexand right ventricular hypertrophy became evident after 14 d of hypoxia.HIF-1α and HIF-2α mRNA increasedslightly after 7 d of hypoxia,but HIF-3α increased significantly after 3 d of hypoxia.The protein expressionlevels of all three HIF-α were markedly upregulated after exposure to hypoxia.PHD2 mRNA and proteinexpression levels were upregulated after 3 d of hypoxia;PHD 1 protein declined after 14 d of hypoxia withoutsignificant mRNA changes.PHD3 mRNA and protein were markedly upregulated after 3 d of hypoxia,then themRNA remained at a high level,but the protein declined after 14 d of hypoxia.In hypoxic animals,HIF-lotproteins negatively correlated with PHD2 proteins,whereas HIF-2α and HIF-3α proteins showed negativecorrelations with PHD3 and PHD 1 proteins,respectively.All three HIF-α proteins were positively correlatedwith PHD2 and PHD3 mRNA.In the present study,HIF-α subunits and PHDs showed differential andreciprocal regulation,and this might play a key pathogenesis role in hypoxia-induced pulmonary hypertension.  相似文献   

15.
16.
The pulmonary vasoconstrictor, thromboxane, may contribute to the development of pulmonary hypertension. Our objective was to determine whether a combined thromboxane synthase inhibitor-receptor antagonist, terbogrel, prevents pulmonary hypertension and the development of aberrant pulmonary arterial responses in newborn piglets exposed to 3 days of hypoxia. Piglets were maintained in room air (control) or 11% O(2) (hypoxic) for 3 days. Some hypoxic piglets received terbogrel (10 mg/kg po bid). Pulmonary arterial pressure, pulmonary wedge pressure, and cardiac output were measured in anesthetized animals. A cannulated artery technique was used to measure responses to acetylcholine. Pulmonary vascular resistance for terbogrel-treated hypoxic piglets was almost one-half the value of untreated hypoxic piglets but remained greater than values for control piglets. Dilation to acetylcholine in preconstricted pulmonary arteries was greater for terbogrel-treated hypoxic than for untreated hypoxic piglets, but it was less for pulmonary arteries from both groups of hypoxic piglets than for control piglets. Terbogrel may ameliorate pulmonary artery dysfunction and attenuate the development of chronic hypoxia-induced pulmonary hypertension in newborns.  相似文献   

17.

Background

CXCR4 is the receptor for chemokine CXCL12 and reportedly plays an important role in systemic vascular repair and remodeling, but the role of CXCR4 in development of pulmonary hypertension and vascular remodeling has not been fully understood.

Methods

In this study we investigated the role of CXCR4 in the development of pulmonary hypertension and vascular remodeling by using a CXCR4 inhibitor AMD3100 and by electroporation of CXCR4 shRNA into bone marrow cells and then transplantation of the bone marrow cells into rats.

Results

We found that the CXCR4 inhibitor significantly decreased chronic hypoxia-induced pulmonary hypertension and vascular remodeling in rats and, most importantly, we found that the rats that were transplanted with the bone marrow cells electroporated with CXCR4 shRNA had significantly lower mean pulmonary pressure (mPAP), ratio of right ventricular weight to left ventricular plus septal weight (RV/(LV+S)) and wall thickness of pulmonary artery induced by chronic hypoxia as compared with control rats.

Conclusions

The hypothesis that CXCR4 is critical in hypoxic pulmonary hypertension in rats has been demonstrated. The present study not only has shown an inhibitory effect caused by systemic inhibition of CXCR4 activity on pulmonary hypertension, but more importantly also has revealed that specific inhibition of the CXCR4 in bone marrow cells can reduce pulmonary hypertension and vascular remodeling via decreasing bone marrow derived cell recruitment to the lung in hypoxia. This study suggests a novel therapeutic approach for pulmonary hypertension by inhibiting bone marrow derived cell recruitment.  相似文献   

18.

Background

The association between systemic sclerosis and pulmonary arterial hypertension (PAH) is well recognized. Vascular endothelial growth factor (VEGF) has been reported to play an important role in pulmonary hypertension. The aim of the present study was to examine the relationship between systolic pulmonary artery pressure, clinical and functional manifestations of the disease and serum VEGF levels in systemic sclerosis.

Methods

Serum VEGF levels were measured in 40 patients with systemic sclerosis and 13 control subjects. All patients underwent clinical examination, pulmonary function tests and echocardiography.

Results

Serum VEGF levels were higher in systemic sclerosis patients with sPAP ≥ 35 mmHg than in those with sPAP < 35 mmHg (352 (266, 462 pg/ml)) vs (240 (201, 275 pg/ml)) (p < 0.01), while they did not differ between systemic sclerosis patients with sPAP < 35 mmHg and controls. Serum VEGF levels correlated to systolic pulmonary artery pressure, to diffusing capacity for carbon monoxide and to MRC dyspnea score. In multiple linear regression analysis, serum VEGF levels, MRC dyspnea score, and DLCO were independent predictors of systolic pulmonary artery pressure.

Conclusion

Serum VEGF levels are increased in systemic sclerosis patients with sPAP ≥ 35 mmHg. The correlation between VEGF levels and systolic pulmonary artery pressure may suggest a possible role of VEGF in the pathogenesis of PAH in systemic sclerosis.  相似文献   

19.
Nitric oxide (NO) is an important vascular modulator in the development of pulmonary hypertension. NO exerts its regulatory effect mainly by activating soluble guanylate cyclase (sGC) to synthesize cyclic guanosine monophosphate (cGMP). Exposure to hypoxia causes pulmonary hypertension. But in lung disease, hypoxia is commonly accompanied by hypercapnia. The aim of this study was to examine the changes of sGC enzyme activity and cGMP content in lung tissue, as well as the expression of inducible nitric oxide synthase (iNOS) and sGC in rat pulmonary artery after exposure to hypoxia and hypercapnia, and assess the role of iNOS-sGC-cGMP signal pathway in the development of hypoxic and hypercapnic pulmonary hypertension. Male Sprague-Dawley rats were exposed to hypoxia and hypercapnia for 4 weeks to establish model of chronic pulmonary hypertension. Weight-matched rats exposed to normoxia served as control. After exposure to hypoxia and hypercapnia, mean pulmonary artery pressure, the ratio of right ventricle/left ventricle+septum, and the ratio of right ventricle/body weight were significantly increased. iNOS mRNA and protein levels were significantly increased, but sGC α(1) mRNA and protein levels were significantly decreased in small pulmonary arteries of hypoxic and hypercapnic exposed rat. In addition, basal and stimulated sGC enzyme activity and cGMP content in lung tissue were significantly lower after exposure to hypoxia and hypercapnia. These results demonstrate that hypoxia and hypercapnia lead to the upregulation of iNOS expression, downregulation of sGC expression and activity, which then contribute to the development of pulmonary hypertension.  相似文献   

20.
Cold-inducible RNA-binding protein (CIRP) was a crucial regulator in multiple diseases. However, its role in pulmonary artery hypertension (PAH) is still unknown. Here, we first established monocrotaline (MCT)-induced rat PAH model and discovered that CIRP was down-regulated predominantly in the endothelium of pulmonary artery after MCT injection. We then generated Cirp-knockout (Cirp-KO) rats, which manifested severer PAH with exacerbated endothelium damage in response to MCT. Subsequently, Caveolin1 (Cav1) and Cavin1 were identified as downstream targets of CIRP in MCT-induced PAH, and the decreased expression of these two genes aggravated the injury and apoptosis of pulmonary artery endothelium. Moreover, CIRP deficiency intensified monocrotaline pyrrole (MCTP)-induced rat pulmonary artery endothelial cells (rPAECs) injuries both in vivo and in vitro, which was counteracted by Cav1 or Cavin1 overexpression. In addition, CIRP regulated the proliferative effect of conditioned media from MCTP-treated rPAECs on rat pulmonary artery smooth muscle cells, which partially explained the exceedingly thickened pulmonary artery intimal media in Cirp-KO rats after MCT treatment. These results demonstrated that CIRP acts as a critical protective factor in MCT-induced rat PAH by directly regulating CAV1 and CAVIN1 expression, which may facilitate the development of new therapeutic targets for the intervention of PAH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号