首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enchytraeid genus Lumbricillus comprises about 80 described species of clitellate worms, which are up to a few centimetres long, and they mostly inhabit the littoral zone of non‐tropical marine and brackish waters world‐wide. The phylogeny of this genus is poorly studied, but previous work has suggested that Lumbricillus is a non‐monophyletic group. In this study, species boundaries and the phylogeny of this genus is re‐assessed using more than 300 DNA‐barcoded specimens (using COI mtDNA), part of which was also sequenced for two additional mitochondrial and four nuclear molecular markers. Statistical and coalescent based applications were used for the delimitation of a total of 24 species, of which 20 were identified as belonging to 17 described morphospecies; one morphospecies was found to be a complex of four delimited species, and another four delimited species could not be matched with any described species. Furthermore, gene trees, concatenation and multispecies coalescent based species trees were estimated using Bayesian inference. The estimated phylogenies confirm a non‐monophyletic Lumbricillus as L. semifuscus is clearly excluded from the genus. Furthermore, the placement of a monophyletic clade consisting of L. arenarius, L. dubius, and an unidentified species varies between analyses; they are either found as the sister‐group to the genus Grania or as sister‐group to the remaining Lumbricillus, where the latter relationship is supported by the multispecies coalescent, which we consider as the most reliable method.  相似文献   

2.
Triloculotrema japanicae n. g., n. sp. (Monogenea: Monocotylidae: Merizocotylinae) is described. The parasite inhabits the olfactory sacs of the Japanese topeshark Hemitriakis japanica (Carcharhiniformes: Triakidae), and possesses a distinctive haptor with only three loculi. Some comments are made on the evolution of monocotylid monogeneans.  相似文献   

3.
Gomes, S. R., Britto da Silva, F., Mendes, I. L. V., Thomé, J. W. & Bonatto, S. L. (2009). Molecular phylogeny of the South American land slug Phyllocaulis (Mollusca, Soleolifera, Veronicellidae). —Zoologica Scripta, 39, 177–186. Our main objectives were investigate the phylogenetic relationships between the species of the land slug Phyllocaulis and the monophyly of the genus based on mitochondrial (16S and COI) and nuclear (ITS2) DNA sequences from multiple individuals from each species. Evolutionary trees were constructed using Bayesian inference, maximum likelihood, maximum parsimony and neighbor‐joining methods. All species accepted in the current taxonomy based on penial characteristics and radular measurements were reciprocally monophyletic. Five species out of six formed a clade with the following highly supported relationship: Phyllocaulis gayi, Phyllocaulis soleiformis, Phyllocaulis renschi, Phyllocaulis variegatus, Phyllocaulis boraceiensis. The position of Vaginulus taunaisii changed according to the analysis, appearing as sister‐group of Phyllocaulis or as sister‐group of Phyllocaulis tuberculosus. Divergence times estimated from the 16S tree indicated that the extant species of Phyllocaulis shared a common ancestor around 1.3 Ma and that most species originated between 0.8 and 0.6 Ma.  相似文献   

4.
Jørgensen, A., Madsen, H., Nalugwa, A., Nyakaana, S., Rollinson, D., Stothard, J. R. & Kristensen, T. K. A molecular phylogenetic analysis of Bulinus (Gastropoda: Planorbidae) with conserved nuclear genes. —Zoologica Scripta, 40, 126–136. Mutational saturation of inspected DNA loci and topological incongruence in the phylogenetic inferences have previously confounded attempts to resolve the evolutionary relationships within the freshwater snail genus Bulinus. Traditionally, the 37 species of Bulinus are placed within the four species groups and the evolutionary divergence between groups is substantial. With an intention to shed new light on species group relationships, the present study was designed to investigate the basal divergences in the phylogeny of Bulinus using highly conserved nuclear genes. The resolved phylogeny inferred that the four species groups of Bulinus were monophyletic and Shimodaira‐Hasegawa topology tests found them to be significantly supported. The Bulinus truncatus/tropicus species complex and Bulinus wrighti (Bulinus reticulatus group) formed a well‐supported sister‐group relationship. The Bulinus africanus species group was the sister‐group to the clade (Bulinus truncatus/tropicus + B. wrighti) with the Bulinus forskalii species group as the sister‐group to these taxa. The sister‐group relationship between Indoplanorbis and Bulinus was non‐significant and the basal clade support of Bulinus improved upon exclusion of Indoplanorbis. The finding of basal long branches of Bulinus species originating from Madagascar strongly suggests the presence of additional cryptic species and an evolutionary scenario influenced by this island’s geological vicariance from the African mainland. Speciation by polyploidy was inferred to have evolved within a clade in the Bulinus truncatus/tropicus species complex. Although the monophyletic status of each species group was firmly supported, it was difficult to establish species group concepts equally across the variations and place this precisely in a specific temporal framework.  相似文献   

5.
The louse genus Carduiceps Clay & Meinertzhagen, 1939 is widely distributed on sandpipers and stints (Calidrinae). The current taxonomy includes three species on the Calidrinae (Carduiceps meinertzhageni, Carduiceps scalaris, Carduiceps zonarius) and four species on noncalidrine hosts. We estimated a phylogeny of four of the seven species of Carduiceps (the three mentioned above and Carduiceps fulvofasciatus) from 13 of the 29 hosts based on three mitochondrial loci, and evaluated the relative importance of flyway differentiation (same host species has different lice along different flyways) and flyway homogenization (different host species have the same lice along the same flyway). We found no evidence for either process. Instead, the present, morphology‐based, taxonomy of the genus corresponds exactly to the gene‐based phylogeny, with all four included species monophyletic. Carduiceps zonarius is found both to inhabit a wider range of hosts than wing lice of the genus Lunaceps occurring on the same group of birds, and to occur on Calidris sandpipers of all sizes, both of which are unexpected for a body louse. The previously proposed family Esthiopteridae is found to be monophyletic with good support. The concatenated dataset suggests that the pigeon louse genus Columbicola may be closely related to the auk and diver louse genus Craspedonirmus. These two genera share some morphological characters with Carduiceps, but no support was obtained for grouping these three genera together. Based on mitochondrial data alone, the relationships among genera within this proposed family cannot be properly assessed, but some previously suggested relationships within this proposed family are confirmed.  相似文献   

6.
We used a mitochondrial and nuclear DNA phylogeny to evaluate the relationships among all noddies (Anous and Procelsterna, Laridae) and to clarify their classification. The Lesser Noddy Anous tenuirostris and Black Noddy Anous minutus form a pair of closely related sister‐species, as do the Blue Noddy Procelsterna albivitta and Grey Noddy Procelsterna cerulea. Blue and Grey Noddies are embedded within the dark noddies and are the sister‐clade to the Lesser and Black Noddies, indicating that the genus Anous in its current definition is not monophyletic. Thus, we propose to merge all noddies into the genus Anous Stephens 1826 , and to consider Procelsterna Lafresnaye 1842 as a junior synonym.  相似文献   

7.
The morphology of the acrophallus, the distal portion of the male phallus carrying the phallotreme, was studied in 72 exemplar species representing 56 genera and subgenera of the flesh fly subfamily Sarcophaginae. For 42 of those species, scanning electron microscopy was used to clarify the phallic morphology. Terms used to describe the male genitalia were updated based on new interpretations of homology. Male genitalic characters, combined with other morphological characters of adult males and females and of larvae, were used to construct a phylogeny. The monophyly of the subfamily was supported, and some generic‐level sister‐group relationships proposed in the literature, but without previous cladistic analyses, were also supported. The genus Blaesoxipha Loew, as currently recognized, was not monophyletic in our analysis. The genus Helicobia Coquillett is synonymized with Sarcophaga Meigen syn. nov. and treated as a subgenus of the latter. The Sarcophaga subgenera Neobellieria Blanchard and Mehria Enderlein were not monophyletic. Many of the clades in the analysis were supported primarily or exclusively by male genitalic character states, highlighting the importance of the male genitalia as a source of morphological characters for sarcophagine phylogeny. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 740–778.  相似文献   

8.
Balaenidae (right whales) are large, critically endangered baleen whales represented by four living species. The evolutionary relationships of balaenids are poorly known, with the number of genera, relationships to fossil taxa, and position within Mysticeti in contention. This study employs a comprehensive set of morphological characters to address aspects of balaenid phylogeny. A sister‐group relationship between neobalaenids and balaenids is strongly supported, although this conflicts with molecular evidence, which may be an artifact of long‐branch attraction (LBA). Monophyly of Balaenidae is supported, and three major clades are recognized: (1) extinct genus Balaenula, (2) extant and extinct species of the genus Eubalaena, and (3) extant and extinct species of the genus Balaena plus the extinct taxon, Balaenella. The relationships of these clades to one another, as well as to the early Miocene stem balaenid, Morenocetus parvus, remain unresolved. Pliocene taxa, Balaenula astensis and Balaenula balaenopsis, form a clade that is the sister group to the Japanese Pliocene Balaenula sp. Eubalaena glacialis and Pliocene Eubalaena belgica, are in an unresolved polytomy with a clade including E. japonica and E. australis. Extant and fossil species of Balaena form a monophyletic group that is sister group to the Dutch Pliocene Balaenella, although phylogenetic relationships within Balaena remain unresolved.  相似文献   

9.
The neotropical butterfly genus Hamadryas Hübner comprises 20 species that exhibit an intriguing variation in their natural history traits. Although revised in 1983, no phylogenetic hypothesis was presented: the first phylogenetic hypothesis is estimated here based on 93 characters and including species from the three other genera in the tribe Ageroniini. The phylogeny is used to test the monophyly of the genus, establish the sister group of Hamadryas and identify its apomorphies. The tree allows the inference of patterns of character change in sound production and sexual dimorphism. Implied weights show that Hamadryas is monophyletic and corroborate Ectima Doubleday as a sister genus. Previously suggested subgenera for Hamadryas were non‐monophyletic, with the exception of the laodamia clade, supported by the presence of a complete sterigma. Sound production is inferred to be a derived condition in Hamadryas that has been lost in the laodamia clade. This, plus the presence of androconial organs and sexual dimorphism in the laodamia clade, suggests a shift in sexual recognition signalling. Furthermore, the phylogeny indicates that the colour pattern of males in the laodamia clade is novel, supporting a Darwinian origin of sexual dimorphism.  相似文献   

10.
Fungus‐farming ants (Hymenoptera: Formicidae) have become model systems for exploring questions regarding the evolution of symbiosis. However, robust phylogenetic studies of both the ant agriculturalists and their fungal cultivars are necessary for addressing whether or not observed ant–fungus associations are the result of coevolution and, if so, whether that coevolution has been strict or diffuse. Here we focus on the evolutionary relationships of the species within the ant genus Myrmicocrypta and of their fungal cultivars. The fungus‐farming ant genus Myrmicocrypta was created by Fr. Smith in 1860 based on a single alate queen. Since then, 31 species and subspecies have been described. Until now, the genus has not received any taxonomic treatment and the relationships of the species within the genus have not been tested. Our molecular analyses, using ~40 putative species and six protein‐coding (nuclear and mitochondrial) gene fragments, recover Myrmicocrypta as monophyletic and as the sister group of the genus Mycocepurus Forel. The species M. tuberculata Weber is recovered as the sister to the rest of Myrmicocrypta. The time‐calibrated phylogeny recovers the age of stem group Myrmicocrypta plus its sister group as 45 Ma, whereas the inferred age for the crown group Myrmicocrypta is recovered as 27 Ma. Ancestral character‐state analyses suggest that the ancestor of Myrmicocrypta had scale‐like or squamate hairs and that, although such hairs were once considered diagnostic for the genus, the alternative state of erect simple hairs has evolved at least seven independent times. Ancestral‐state analyses of observed fungal cultivar associations suggest that the most recent common ancestor of Myrmicocrypta cultivated clade 2 fungal species and that switches to clade 1 fungi have occurred at least five times. It is our hope that these results will encourage additional species‐level phylogenies of fungus‐farming ants and their fungal cultivars, which are necessary for understanding the evolutionary processes that gave rise to agriculture in ants and that produced the current diversity of mutualistic ant–fungus interactions.  相似文献   

11.
A high diversity of pleurostomatid ciliates has been discovered in the last decade, and their systematics needs to be improved in the light of new findings concerning their morphology and molecular phylogeny. In this work, a new genus, Protolitonotus gen. n., and two new species, Protolitonotus magnus sp. n. and Protolitonotus longus sp. n., were studied. Furthermore, 19 novel nucleotide sequences of SSU rDNA, LSU rDNA and ITS1‐5.8S‐ITS2 were collected to determine the phylogenetic relationships and systematic positions of the pleurostomatid ciliates in this study. Based on both molecular and morphological data, the results demonstrated that: (i) as disclosed by the sequence analysis of SSU rDNA, LSU rDNA and ITS1‐5.8S‐ITS2, Protolitonotus gen. n. is sister to all other pleurostomatids and thus represents an independent lineage and a separate family, Protolitonotidae fam. n., which is defined by the presence of a semi‐suture formed by the right somatic kineties near the dorsal margin of the body; (ii) the families Litonotidae and Kentrophyllidae are both monophyletic based on both SSU rDNA and LSU rDNA sequences, whereas Amphileptidae are non‐monophyletic in trees inferred from SSU rDNA sequences; and (iii) the genera Loxophyllum and Kentrophyllum are both monophyletic, whereas Litonotus is non‐monophyletic based on SSU rDNA analyses. ITS1‐5.8S‐ITS2 sequence data were used for the phylogenetic analyses of pleurostomatids for the first time; however, species relationships were less well resolved than in the SSU rDNA and LSU rDNA trees. In addition, a major revision to the classification of the order Pleurostomatida is suggested and a key to its families and genera is provided.  相似文献   

12.
Sialidae (alderflies) is a family of the holometabolous insect order Megaloptera, with ca. 75 extant species in eight genera distributed worldwide. Alderflies are a group of “living fossils” with a long evolutionary history. The oldest fossil attributed to Sialidae dates back to the Early Jurassic period. Further, the global distribution of modern‐day species shows a remarkably disjunctive pattern. However, due to the rareness of most species and scarcity of comprehensive taxonomic revisions, the phylogeny of Sialidae remains largely unexplored, and the present classification system is in great need of renewal. Here we reconstruct the first phylogeny for Sialidae worldwide based on the most comprehensive sampling and broadest morphological data ever presented for this group of insects. All Cenozoic alderflies belong to a monophyletic clade, which may also include the Early Jurassic genus ?Dobbertinia, and the Late Jurassic genus ?Sharasialis is their putative sister taxon. Two subfamilies of Sialidae are proposed, namely ?Sharasialinae subfam. nov. and Sialidinae. Austrosialis is the sister of all other extant genera, an assemblage which comprises three monophyletic lineages: the Stenosialis lineage, the Ilyobius lineage, and the Sialis lineage. The revised classification of Sialidae is composed of 12 valid genera and 87 valid species. Ilyobius and Protosialis are recognized as valid generic names, while Nipponosialis is treated as a synonym of Sialis. Reconstruction of the ancestral area proposes a global distribution of alderflies in Pangaea before their diversification. The generic diversification of alderflies might have occurred before the breakup of Pangaea, but the divergence of some lineages or genera was probably promoted by the splitting of this supercontinent.  相似文献   

13.
Freshwater fish belonging to the genus Schizopygopsis are widespread in drainages throughout the Qinghai‐Tibetan Plateau and, thus, a model group with which to investigate how paleo‐drainage changes linked to historical uplifting within the Qinghai‐Tibetan Plateau influence speciation. To date, the phylogenetic and taxonomic relationships within Schizopygopsis remain controversial. In this study, we constructed a comprehensive molecular phylogeny of Schizopygopsis based on six mitochondrial gene sequences. We compared the taxonomic relationships revealed by this phylogeny with those obtained from morphological data. We also used this phylogeny to assess the extent to which the evolution of Schizopygopsis has been driven by paleo‐drainage changes linked to uplifting of the Qinghai‐Tibetan Plateau. Results indicated that all Schizopygopsis taxa formed a monophyletic group comprising five major clades, which were inconsistent with the taxonomic relationships based on morphology for this group. Our results also strongly supported the validity of S. anteroventris and S. microcephalus as distinct species within Schizopygopsis. Molecular calibrations showed that species within the middle Yangtze species diverged earlier (~4.5 Mya) than species within the Indus River (~3.0 Mya), the Mekong River (~2.8 Mya) and the Tsangpo + Salween rivers (~2.5 Mya). The most recent evolutionary splits occurred among species from the upper and lower Yangtze River, the Yellow River and the Qiadam Basin at about 1.8 to 0.3 Mya. Our molecular evidence and use of the molecular clock calibration have allowed us to associate speciation events within the genus Schizopygopsis to the formation and separation of paleo‐drainage connections caused by tectonic events during the uplifting of the Qinghai‐Tibetan Plateau (~4.5 Mya). This work underlines the dominant role of vicariance in shaping the evolutionary history of the genus Schizopygopsis. Further research using multiple loci and more extensive sampling will reveal a more complete picture of the phylogenetic relationships and biogeography of Schizopygopsis fishes.  相似文献   

14.
The genus Glauconycteris Dobson, 1875 currently contains 12 species of butterfly bats, all endemic to sub‐Saharan Africa. Most species are rarely recorded, with half of the species known from less than six geographic localities. The taxonomic status of several species remains problematic. Here, we studied the systematics of butterfly bats using both morphological and molecular approaches. We examined 45 adult specimens for external anatomy and skull morphology, and investigated the phylogeny of Glauconycteris using DNA sequences from three mitochondrial genes and 116 individuals, which in addition to outgroup taxa, included nine of the twelve butterfly bat species currently recognized. Four additional nuclear genes were sequenced on a reduced sample of 69 individuals, covering the outgroup and Glauconycteris species. Our molecular results show that the genus Glauconycteris is monophyletic, and that it is the sister‐group of the Asian genus Hesperoptenus. Molecular dating estimates based on either Cytb or RAG2 data sets suggest that the ancestor of Glauconycteris migrated into Africa from Asia during the Tortonian age of the Late Miocene (11.6–7.2 Mya), while the basal diversification of the crown group occurred in Africa at around 6 ± 2 Mya. The species G. superba is found to be the sister‐group of G. variegata, questioning its placement in the recently described genus Niumbaha. The small species living in tropical rainforests constitute a robust clade, which contains three divergent lineages: (i) the “poensis” group, which is composed of G. poensis, G. alboguttata, G. argentata, and G. egeria; (ii) the “beatrix” group, which contains G. beatrix and G. curryae; and (iii) the “humeralis” group, which includes G. humeralis and a new species described herein. In the “poensis” group, G. egeria is found to be monophyletic in the nuclear tree, but polyphyletic in the mitochondrial tree. The reasons for this mito‐nuclear discordance are discussed.  相似文献   

15.
The current classification of the Monocotylidae (Monogenea) is based on a phylogeny generated from morphological characters. The present study tests the morphological phylogenetic hypothesis using molecular methods. Sequences from domains C2 and D1 and the partial domains C1 and D2 from the 28S rDNA gene for 26 species of monocotylids from six of the seven subfamilies were used. Trees were generated using maximum parsimony, neighbour joining and maximum likelihood algorithms. The maximum parsimony tree, with branches showing less than 70% bootstrap support collapsed, had a topology identical to that obtained using the maximum likelihood analysis. The neighbour joining tree, with branches showing less than 70% support collapsed, differed only in its placement of Heterocotyle capricornensis as the sister group to the Decacotylinae clade. The molecular tree largely supports the subfamilies established using morphological characters. Differences are primarily how the subfamilies are related to each other. The monophyly of the Calicotylinae and Merizocotylinae and their sister group relationship is supported by high bootstrap values in all three methods, but relationships within the Merizocotylinae are unclear. Merizocotyle is paraphyletic and our data suggest that Mycteronastes and Thaumatocotyle, which were synonymized with Merizocotyle after the morphological cladistic analysis, should perhaps be resurrected as valid genera. The monophyly of the Monocotylinae and Decacotylinae is also supported by high bootstrap values. The Decacotylinae, which was considered previously to be the sister group to the Calicotylinae plus Merizocotylinae, is grouped in an unresolved polychotomy with the Monocotylinae and members of the Heterocotylinae. According to our molecular data, the Heterocotylinae is paraphyletic. Molecular data support a sister group relationship between Troglocephalus rhinobatidis and Neoheterocotyle rhinobatidis to the exclusion of the other species of Neoheterocotyle and recognition of Troglocephalus renders Neoheterocotyle paraphyletic. We propose Troglocephalus incertae sedis. An updated classification and full species list of the Monocotylidae is provided.  相似文献   

16.
We present a near comprehensive, densely sampled, multilocus phylogenetic estimate of species relationships within the anuran family Ceratobatrachidae, a morphologically and ecologically diverse group of frogs from the island archipelagos of Southeast Asia and the South‐West Pacific. Ceratobatrachid frogs consist of three clades: a small clade of enigmatic, primarily high‐elevation, semi‐aquatic Sundaland species currently assigned to Ingerana (for which we erect a new genus), which is the sister taxon of two large, monophyletic radiations, each situated on islands on either side of Wallace's Line. One radiation is composed of Philippine species of Platymantis and the other contains all taxa from the eastern Indonesian, New Guinean, Solomon, Bismarck, and Fijian archipelagos. Several additional genera (Batrachylodes, Discodeles, Ceratobatrachus, and Palmatorappia) are nested within Platymantis, and of these Batrachylodes and Discodeles are nonmonophyletic. To address the widespread paraphyly of the genus Platymantis and several additional nomenclatural issues, we undertook a wholesale nomenclatural reorganization of the family. Given our partially unresolved phylogeny, and in order to impart a conservative, stable taxonomy, involving a minimal number of genus‐species couplet changes, we propose a conservative classification representing a few compromises. These changes are designed to preserve maximally the presumed original intent of taxonomy (widely used group names associated with morphological and ecological diversity of particular species or groups of species) while implementing a hierarchical system that is consistent with the estimate of phylogeny based on new molecular data. © 2015 The Linnean Society of London  相似文献   

17.

Premise

The Amazonian hyperdominant genus Eperua (Fabaceae) currently holds 20 described species and has two strongly different inflorescence and flower types, with corresponding different pollination syndrome. The evolution of these vastly different inflorescence types within this genus was unknown and the main topic in this study.

Methods

We constructed a molecular phylogeny, based on the full nuclear ribosomal DNA and partial plastome, using Bayesian inference and maximum likelihood methods, to test whether the genus is monophyletic, whether all species are monophyletic and if the shift from bat to bee pollination (or vice versa) occurred once in this genus.

Results

All but two species are well supported by the nuclear ribosomal phylogeny. The plastome phylogeny, however, shows a strong geographic signal suggesting strong local hybridization or chloroplast capture, rendering chloroplast barcodes meaningless in this genus.

Conclusions

With our data, we cannot fully resolve the backbone of the tree to clarify sister genera relationships and confirm monophyly of the genus Eperua. Within the genus, the shift from bat to bee and bee to bat pollination has occurred several times but, with the bee to bat not always leading to a pendant inflorescence.
  相似文献   

18.
The first comprehensive analysis of higher‐level phylogeny of the order Hymenoptera is presented. The analysis includes representatives of all extant superfamilies, scored for 392 morphological characters, and sequence data for four loci (18S, 28S, COI and EF‐1α). Including three outgroup taxa, 111 terminals were analyzed. Relationships within symphytans (sawflies) and Apocrita are mostly resolved. Well supported relationships include: Xyeloidea is monophyletic, Cephoidea is the sister group of Siricoidea + [Xiphydrioidea + (Orussoidea + Apocrita)]; Anaxyelidae is included in the Siricoidea, and together they are the sister group of Xiphydrioidea + (Orussoidea + Apocrita); Orussoidea is the sister group of Apocrita, Apocrita is monophyletic; Evanioidea is monophyletic; Aculeata is the sister group of Evanioidea; Proctotrupomorpha is monophyletic; Ichneumonoidea is the sister group of Proctotrupomorpha; Platygastroidea is sister group to Cynipoidea, and together they are sister group to the remaining Proctotrupomorpha; Proctotrupoidea s. str. is monophyletic; Mymarommatoidea is the sister group of Chalcidoidea; Mymarommatoidea + Chalcidoidea + Diaprioidea is monophyletic. Weakly supported relationships include: Stephanoidea is the sister group of the remaining Apocrita; Diaprioidea is monophyletic; Ceraphronoidea is the sister group of Megalyroidea, which together form the sister group of [Trigonaloidea (Aculeata + Evanioidea)]. Aside from paraphyly of Vespoidea within Aculeata, all currently recognized superfamilies are supported as monophyletic. The diapriid subfamily Ismarinae is raised to family status, Ismaridae stat. nov. © The Will Henning Society 2011.  相似文献   

19.
The genus Dacus Fabricius includes economically important pest fruit flies distributed in the Afrotropical and Indo-Australian regions. Two recent revisions based on morphological characters proposed new and partially discordant classifications synonymizing/revalidating several subgeneric names and forming species groups. Regardless these efforts, the phylogenetic relationships among Dacus species remained largely unresolved mainly because of the difficulties in assigning homologous character states. Therefore we investigated the phylogeny of African Dacus by sequencing 71 representatives of 32 species at two mitochondrial (COI, 16S) and one nuclear (period) gene fragments. Phylogenetic relationships were inferred through Bayesian and Maximum Parsimony methods and hypotheses about the monophyly of Dacus subgenera were tested by Shimodaira–Hasegawa tests. The congruence tests and the analyses of the single gene fragments revealed that the nuclear gene supports similar conclusions as the two mitochondrial genes. Levels of intra- and inter-specific differentiation of Dacus species were highly variable and, in some cases, largely overlapping. The analyses of the concatenated dataset resolved two major bootstrap-supported groups as well as a number of well-supported clades and subclades that often comprised representatives of different subgenera. Additionally, specimens of Dacus humeralis from Eastern and Western African localities formed separate clades, suggesting cryptic differentiation within this taxon. The comparisons between the molecular phylogeny and the morphological classification revealed a number of discrepancies and, in the vast majority of cases, the molecular data were not compatible with the monophyly of the currently recognised subgenera. Conversely, the molecular data showed that Apocynaceae feeders are a monophyletic sister group of species feeding on both Cucurbitaceae and Passifloraceae (these latter being also monophyletic). These results show a clear association between the molecular phylogeny of African Dacus and the evolution of host plant choice and provide a basis towards a more congruent taxonomy of this genus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号