共查询到20条相似文献,搜索用时 15 毫秒
1.
《Biocatalysis and Biotransformation》2013,31(2):190-202
AbstractProduction of artemisinin in genetically modified microorganisms is an attractive option to enable sufficient supply of the effective antimalarial agent. Although a sundry of artemisinin precursors are available from engineered bacteria or yeast, no artemisinin has been manufactured by engineering any microbial platforms due to inaccessibility to unidentified steps. To this end, it is essential to consider how to convert artemisinin precursors to artemisinin, either biochemically or chemically. To establish a novel procedure of artemisinin production, we incubate the mixture of artemisinin precursors from engineered Sacchromyces cerevisiae with the cell-free enzyme extract of Artemisia annua. For the single gene-expressing strain INVScI (pYES-ADS), amorpha-4,11-diene accumulation within 48 h or 14 days led to higher artemisinin content than the control. In the multiple gene-expressing strain YPH501 (pYES-ADS:: pESC-CYP71AV1-DBR2), artemisinin accumulation from the 14-day-induced yeast precursor mixture was nearly equivalent between the single gene-transferred strain and the multiple gene-transferred strain. Alternatively, biotransformation of 48-hour-induced yeast amorpha-4,11-diene mixture by the cold-acclimated A. annua cell-free extract that possesses the abundant enzymes relevant to artemisinin biosynthesis gave rise to considerable elevation of artemisinin content up to 0.647% in maximum, accounting to 15-folds increase as the A. annua cell-free extract without cold-acclimation (0.045%), thereby providing a practical protocol for artemisinin overproduction through the interplay of engineered microbial artemisinin precursors with upregulated plant enzymes. 相似文献
2.
State of the art of the production of the antimalarial compound artemisinin in plants 总被引:6,自引:0,他引:6
Geldre Els Van Vergauwe Annemieke Eeckhout Elfride Van den 《Plant molecular biology》1997,33(2):199-209
For more than three centuries we have relied on the extracts of the bark of Cinchona species to treat malaria. Now, it seems we may be changing to the leaves of a Chinese weed, Artemisia annua, and its active compound artemisinin. Artemisinin-derived drugs have been proved particularly effective treatments for severe malaria, even for multi-drug-resistant malaria. However, this promising antimalarial compound remains expensive and is hardly available on a global scale. Therefore, many research groups have directed their investigations toward the enhancement of artemisinin production in A. annua cell cultures or whole plants in order to overproduce artemisinin or one of its precursors. This article provides a brief review of the state of art of the different aspects in A. annua research. 相似文献
3.
Production of the new antimalarial drug artemisinin in shoot cultures of Artemisia annua L. 总被引:1,自引:0,他引:1
Herman J. Woerdenbag Jos F. J. Lüers Wim van Uden Niesko Pras Theo M. Malingré A. Wilhelm Alfermann 《Plant Cell, Tissue and Organ Culture》1993,32(2):247-257
From aseptically grown Artemisia annua plantlets, shoot cultures were initiated. Using different concentrations of auxine, cytokinine and sucrose, a suitable culture medium was developed, with respect to the growth of the shoots and their artemisinin accumulation. Nitrate concentration and conductivity appeared to be suitable growth parameters. The artemisinin content was measured gas chromatographically. The shoot cultures were maintained in the developed standard medium, consisting of a half concentration of MS-salts with vitamins, 0.2 mg l-1 BAP, 0.05 mg l-1 NAA and 1% sucrose. The growth of the shoots and the artemisinin content remained stable for a longer period. They showed considerable photosynthetic activity and generally contained ca. 0.08% artemisinin on a dry weight basis. The highest artemisinin content found was 0.16% in the above mentioned standard medium, but also on the same medium with 0.5% sucrose. Attempts were made to further improve the artemisinin production by varying the medium composition through addition of gibberellic acid or casein hydroly-state; by omitting plant growth regulators; by precursor feeding, i.e. mevalonic acid; by influencing the biosynthesis routing through inhibition of the sterol synthesis by miconazole, naftifine or terbinafine; by changing gene expression with 5-azacytidine or colchicine; and by elicitation, using cellulase, chitosan, glutathione or nigeran. Enhanced artemisinin production was found with 10 mg l-1 gibberellic acid, 0.5 g l-1 casein hydrolysate, 10 mg l-1 or 20 mg l-1 naftifine. Relative increases of 154%, 169%, 140% and 120% were found, respectively. Other additions caused the growth to cease and the artemisinin contents to drop.Abbreviations BAP
benzylaminopurine
- DW
dry weight
- FW
fresh weight
- GA3
gibberellic acid
- MS
Murashige & Skoog basal medium
- NAA
naphthaleneacetic acid 相似文献
4.
Background
Production of pharmaceuticals in plants provides an alternative for chemical synthesis, fermentation or natural sources. Nicotiana benthamiana is deployed at commercial scale for production of therapeutic proteins. Here the potential of this plant is explored for rapid production of precursors of artemisinin, a sesquiterpenoid compound that is used for malaria treatment.Methodology/Principal Findings
Biosynthetic genes leading to artemisinic acid, a precursor of artemisinin, were combined and expressed in N. benthamiana by agro-infiltration. The first committed precursor of artemisinin, amorpha-4,11-diene, was produced upon infiltration of a construct containing amorpha-4,11-diene synthase, accompanied by 3-hydroxy-3-methylglutaryl-CoA reductase and farnesyl diphosphate synthase. Amorpha-4,11-diene was detected both in extracts and in the headspace of the N. benthamiana leaves. When the amorphadiene oxidase CYP71AV1 was co-infiltrated with the amorphadiene-synthesizing construct, the amorpha-4,11-diene levels strongly decreased, suggesting it was oxidized. Surprisingly, no anticipated oxidation products, such as artemisinic acid, were detected upon GC-MS analysis. However, analysis of leaf extracts with a non-targeted metabolomics approach, using LC-QTOF-MS, revealed the presence of another compound, which was identified as artemisinic acid-12-β-diglucoside. This compound accumulated to 39.5 mg.kg−1 fwt. Apparently the product of the heterologous pathway that was introduced, artemisinic acid, is further metabolized efficiently by glycosyl transferases that are endogenous to N. benthamiana.Conclusion/Significance
This work shows that agroinfiltration of N. bentamiana can be used as a model to study the production of sesquiterpenoid pharmaceutical compounds. The interaction between the ectopically introduced pathway and the endogenous metabolism of the plant is discussed. 相似文献5.
Scaled-up hairy root culture of Artemisia annua L. was established in three-liter Erlenmeyer flask. Both artemisinin and stigmasterol that derive from the common precursors
of isopentenyl diphosphate and farnesyl pyrophosphate were isolated from hairy roots. The production rate of artemisinin isolated
by column chromatography from hairy root cultures was 0.54% (mg.gDW−1). Stigmasterol was identified by mass spectrometry and nuclear magnetic resonance analysis. The production of stigmasterol
isolated by column chromatography from hairy root cultures was 108.3% (mg.gDW−1). In hairy root cultures, the production rate of stigmasterol was estimated to be 201 times greater than that of artemisinin.
Our results suggest that investigation of secondary metabolites may provide a new insight to study artemisinin production
in hairy root cultures.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
6.
目的:为增进对青蒿素作用机制的了解,探讨参与调节线粒体体积的线粒体通透性转移孔在青蒿素抗疟机制中的作用.方法:分离线粒体,采用分光光度法检测青蒿素能否直接作用于离体线粒体导致线粒体体积变化;利用等效应图分析线粒体通透性转移孔抑制剂是否拮抗青蒿素的抗疟作用.结果:青蒿素可以直接导致离体疟原虫线粒体肿胀,而不会影响鼠肝线粒体体积;两种不同的线粒体通透性转移孔抑制剂均可拮抗青蒿素的抑疟效果.结论:青蒿素可以直接作用于离体疟原虫线粒体导致线粒体肿胀,且青蒿素导致线粒体肿胀的物种选择性与细胞毒性的物种选择性一致.此外,利用抑制剂阻断线粒体通透性转移孔的开放可以拮抗青蒿素的抗疟效果,证明线粒体通透性转移孔在青蒿素抗疟过程中起重要作用. 相似文献
7.
8.
Improved growth of Artemisia annua L hairy roots and artemisinin production under red light conditions 总被引:6,自引:0,他引:6
Hairy root cultures of Artemisia annua L were cultivated for 30 days under either white, red, blue, yellow or green light. Red light at 660 nm gave the highest biomass of hairy roots (5.73 g dry wt cells l–1 medium) and artemisinin content (31 mg arteminsinin g–1 dry cells) which were, respectively, 17% and 67% higher than those obtained under white light. 相似文献
9.
10.
Stimulation of artemisinin production in Artemisia annua hairy roots by the elicitor from the endophytic Colletotrichum sp. 总被引:4,自引:0,他引:4
Artemisinin content in hairy roots of Artemisia annua was increased from 0.8 mg g–1 dry wt to 1 mg g–1 dry wt by using elicitor treatment of mycelial extracts from the endophytic fungus Colletotrichum sp. The increase of artemisinin was dependent on the growth stage of hairy roots as well as on the dose of the elicitor applied. When hairy roots of 23-day-old cultures (later growth phase) were exposed to the elicitor at 0.4 mg total sugar ml–1 for 4 days, the maximum production of artemisinin reached to 13 mg l–1, a 44% increase over the control. This is the first report on the stimulation of artemisinin production in hairy roots by the elicitor from an endophytic fungus of A. annua. 相似文献
11.
12.
F. SIMON-PLAS C. RUSTRUCCI M.-L. MILAT C. HUMBERT J.-L. MONTILLET J.-P. BLEIN 《Plant, cell & environment》1997,20(12):1573-1579
We analyse the relationship between active oxygen species (AOS) production and pH changes induced in tobacco cells by cryptogein, a fungal proteinaceous elicitor of defence mechanisms in plants. When tobacco cells were treated with cryptogein, an intracellular acidification, an alkalinization of the extracellular medium and a transient burst of AOS (H2O2) were observed. Treatment of elicited cells with either diphenyleneiodonium (DPI), an inhibitor of the neutrophil NADPH oxidase, or Tiron, which scavenges O2˙? abolished AOS production. These data suggest the involvement of a NADPH oxidase-like enzyme leading to H2O2 production through O2˙? dismutation. Although H2O2 production could be, per se, the origin of the pH changes observed, we showed that it was not the main cause, since DPI and Tiron did not inhibit extracellular alkalinization. On the other hand, cryptogein-induced changes in pH could be abolished using fusicoccin (FC), which is known to stimulate the plasmalemma H+ ATPase. Consequently, the observed changes in pH induced by cryptogein could be mainly due to the inhibition of the plasmalemma H+-ATPase activity. Furthermore, changes in extracellular pH were shown to modulate the intensity of AOS production by elicited cells. The possible regulation of the NAD(P)H oxidase activity of plant cells by changes in pH is further discussed. 相似文献
13.
S. K. Nandi G. J. M. de Klerk C. W. Parker L. M. S. Palni Nandi 《Physiologia plantarum》1990,78(2):197-204
The cytokinin content of stem tissues, primary genetic tumours (excised from 2-month-old plants) and 3-week-old in vitro cultured genetic tumour tissues derived from Nicotiana glauca (Grah.) × langsdorffii (Weinm.) and N. suaveolens (Lehm.) × langsdorffii (Weinm.) hybrids and stem tissues derived from 2-month-old N. suaveolens and N. langsdorffii plants has been analysed by radioimmunoassay. Stem tissues of tumour-prone hybrids contain high cytokinin levels (3–3.7 nmol g−1 ). This increase is caused mainly by increased levels of cytokinin nucleotides, particularly those of zeatin nucleotide (0.5 nmol g−1 ) in stem tissues of parent plants and 2.4 nmol g−1 in stem tissues of hybrids). All other tissues contain lower cytokinin levels (0.7–1.7 nmol g−1 ). Cytokinin bases and ribosides are major compounds in cultured tumour tissues while the nucleotides are dominant cytokinins in all freshly excised tissues from parent plants and their hybrids. In a separate study, the metabolic fate of supplied [3 Hj-zeatin riboside. which is inactivated mainly by sidechain cleavage, has been studied. The results collectively suggest that cytokinins may be involved in tumourigenesis. 相似文献
14.
B. KARAKAS P. OZIAS-AKINS C. STUSHNOFF M. SUEFFERHELD M. RIEGER 《Plant, cell & environment》1997,20(5):609-616
Tobacco plants (Nicotiana tabacum L.) were transformed with a mannitol-1-phosphate dehydrogenase gene resulting in mannitol accumulation. Experiments were conducted to determine whether mannitol provides salt and/or drought stress protection through osmotic adjustment. Non-stressed transgenic plants were 20–25% smaller than non-stressed, non-transformed (wild-type) plants in both salinity and drought experiments. However, salt stress reduced dry weight in wild-type plants by 44%, but did not reduce the dry weight of transgenic plants. Transgenic plants adjusted osmotically by 0.57 MPa, whereas wild-type plants did not adjust osmotically in response to salt stress. Calculations of solute contribution to osmotic adjustment showed that mannitol contributed only 0-003-0-004 MPa to the 0.2 MPa difference in full turgor osmotic potential (πo) between salt-stressed transgenic and wild-type plants. Assuming a cytoplasmic location for mannitol and that the cytoplasm constituted 5% of the total water volume, mannitol accounted for only 30–40% of the change in πo of the cytoplasm. Inositol, a naturally occurring polyol in tobacco, accumulated in response to salt stress in both transgenic and wild-type plants, and was 3-fold more abundant than mannitol in transgenic plants. Drought stress reduced the leaf relative water content, leaf expansion, and dry weight of transgenic and wild-type plants. However, πo was not significantly reduced by drought stress in transgenic or wild-type plants, despite an increase in non-structural carbohydrates and mannitol in droughted plants. We conclude that (1) mannitol was a relatively minor osmolyte in transgenic tobacco, but may have indirectly enhanced osmotic adjustment and salt tolerance; (2) inositol cannot substitute for mannitol in this role; (3) slower growth of the transgenic plants, and not the presence of mannitol per se, may have been the cause of greater salt tolerance, and (4) mannitol accumulation was enhanced by drought stress but did not affect πo or drought tolerance. 相似文献
15.
16.
Studies on stress ethylene and ethane during protoplast isolation from water-stressed and waterlogged donor plants Nicotiana tabacum L. xanthi-nc, show a correlation between ethane, but not ethylene, release and protoplast survival in vitro. Ethane release shows a high negative correlation with protoplast survival potential from donor plants subjected to both stresses. Ethylene showed a high negative correlation with protoplast survival potential in tissues from water-stressed but not from long-term waterlogged plants. The absence of correlation in the latter may be related to decreased ability to produce ethylene in hyperstressed plants.
The results are discussed in relation to the use of stress ethane release as a parameter of the physiological status of the plant. 相似文献
The results are discussed in relation to the use of stress ethane release as a parameter of the physiological status of the plant. 相似文献
17.
Little is known about the effect of sugars in controlling secondary metabolism. In this study, sugars alone or in combination
with their analogs were used to investigate their role in the production of the antimalarial drug, artemisinin, in Artemisia annua L. seedlings. Compared to sucrose, a 200% increase in artemisinin by glucose was observed. Different ratios of fructose to
glucose yielded artemisinin levels directly proportional to increases in relative glucose concentration. When the glucose
analog, 3-O-methylglucose, was added with glucose, artemisinin production was dramatically decreased, but hexokinase activity was significantly
increased compared to glucose alone. In contrast, neither mannose nor mannitol had any significant effect on artemisinin yield.
In comparison with 30 g/l sucrose, artemisinin levels were significantly reduced by 80% in the presence of 27 g/l sucrose + 3 g/l
palatinose, which cannot be transported into cells through the sucrose transporter. Together these results suggest that both
monosaccharide and disaccharide sugars are likely acting not only as carbon sources but also as signals to affect the downstream
production of artemisinin, and that the mechanism of these effects appears to be complex. 相似文献
18.
Effects of sodium chloride on tobacco plants 总被引:7,自引:1,他引:6
Abstract The effect of salinity on the growth and ion concentrations in a number of tobacco cultivars is described. Sodium chloride, at a concentration of 200 mol m?3, hardly affected the fresh weight, but significantly reduced the dry weight. The difference in the response of fresh and dry weights to salt was due to a change in succulence (water per unit leaf area); the latter increased with increasing leaf Na+ and Cl? concentration. Under saline conditions, increasing the external Na+: Ca? ratio by decreasing the Ca2+ concentration increased the accumulation of Na+ and Cl? into the leaf tissue. 相似文献
19.
Fuyuan Jing Ling Zhang Meiya Li Yueli Tang Yuliang Wang Yueyue Wang Quan Wang Qifang Pan Guofeng Wang Kexuan Tang 《Biologia》2009,64(2):319-323
Artemisinin, a sesquiterpene lactone endoperoxide derived from Artemisia annua L., is the most effective antimalarial drug. In an effort to increase the artemisinin production, abscisic acid (ABA) with
different concentrations (1, 10 and 100 μM) was tested by treating A. annua plants. As a result, the artemisinin content in ABA-treated plants was significantly increased. Especially, artemisinin content
in plants treated by 10 μM ABA was 65% higher than that in the control plants, up to an average of 1.84% dry weight. Gene
expression analysis showed that in both the ABA-treated plants and cell suspension cultures, HMGR, FPS, CYP71AV1 and CPR, the important genes in the artemisinin biosynthetic pathway, were significantly induced. While only a slight increase of
ADS expression was observed in ABA-treated plants, no expression of ADS was detected in cell suspension cultures. This study suggests that there is probably a crosstalk between the ABA signaling
pathway and artemisinin biosynthetic pathway and that CYP71AV1, which was induced most significantly, may play a key regulatory role in the artemisinin biosynthetic pathway. 相似文献