首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Most terrestrial animals live in natural atmospheric conditions, but some are also adapted to low oxygen (hypoxic) or high-carbon dioxide (hypercapnic) conditions, such as in social insect nests, soil, caves, wood, and decaying material. Although it is possible that individuals adapt their behaviour to the environmental condition of their habitats, mating behaviour under ecologically possible ranges of CO2 has not been well studied. We compared walking activity, duration of mating behaviour, and sperm transfer ability in the West Indian sweet potato weevil, Euscepes postfasciatus Fairmaire (Coleoptera: Curculionidae), in high CO2 (10 000 p.p.m.) vs. normal atmospheric conditions (laboratory air, ca. 800 p.p.m.). We found that high CO2 enhanced walking activity and mounting frequency. Under such circumstances, we predicted that enhanced activities under a high-CO2 environment would increase the risk of sperm competition, which induces an extended copulation period and an increase in sperm transfer. However, weevils shortened the mating period and did not alter their sperm transfer ability under high CO2. These findings are, as far as we are aware, the first report of the effect of ecologically relevant high CO2 on insect mating behaviour under mass-rearing conditions. The effect of ambient conditions on mating behaviour and sperm transfer is discussed in relation to the intensity of female refusal behaviour directed against males.  相似文献   

2.
The sterile insect technique (SIT) is based on population and behavioral ecology and is widely used to suppress or eradicate target pest insect populations. The effectiveness of SIT depends on the ability of the released sterile males to mate with and inseminate wild females. The use of gamma‐radiation to induce sterility is, however, associated with negative impacts not only on reproductive cells but also on somatic cells. Consequently, irradiation for sterilization diminishes mating performance over time. In this study, we evaluated the balance between the irradiation dose and both fertility and mating propensity in Euscepes postfasciatus (Fairmaire) (Coleoptera: Curculionidae) for 22 days following irradiation. The mating propensity of males irradiated with a 150‐Gy dose, as currently used to induce complete sterility of E. postfasciatus in the SIT program in Okinawa Prefecture, was equal to that of non‐irradiated weevils for up to 6 days, and the mating propensity of males irradiated with a dose of 125 Gy was equal to that of non‐irradiated weevils for twice this period (12 days). The fertilization ability of weevils irradiated with a dose of 125 Gy was reduced by 4.6% in males and 0.6% in females, compared to the potential fertilization ability. We also discuss the possibility of the application of partially sterilized insects in eradication programs.  相似文献   

3.
The sterile insect technique (SIT) is widely used for suppressing or eradicating target pest insect populations. The effectiveness of SIT depends on the ability of released sterile males to mate with and inseminate wild females. Irradiation not only damages the reproductive cells but the somatic cells as well. The mating behavior of irradiated males may be altered over time due to the depressed metabolic activity brought about by sterilization. In this study, we evaluated the mating behavior (copulation behavior, mating performance, and ability of sperm transfer) of irradiated males in Euscepes postfasciatus (Fairmaire) (Coleoptera: Curculionidae) for 16 days after irradiation in the laboratory. The mating performance of males irradiated with a 150 Gy dose, as currently used in the SIT program in Okinawa prefecture for E. postfasciatus, decreased compared to that of control after day 7. As a result, we considered that irradiation had no major effect on male mating behavior for approximately 1 week after irradiation.  相似文献   

4.
The sterile insect technique (SIT), based on the principles of population and behavioral ecology, is widely used to suppress or eradicate target pest insect populations. The effectiveness of SIT depends on the ability of released sterile males to mate with and inseminate wild females; however, the use of gamma radiation to induce sterility negatively affects both somatic cells as well as reproductive cells. Consequently, sterilization by irradiation drastically diminishes mating performance over time. It is well known that fractionated‐dose irradiation, in which a sterilizing dose is delivered via a series of smaller irradiations, reduces radiation damage. In the present study, we evaluated the effect of fractionated‐dose irradiation on fertility, longevity, and mating propensity in Cylas formicarius (Summers) (Coleoptera: Brentidae) for 16 days after irradiation. Fractionated‐dose irradiation with 200 Gy induced full sterility regardless of the number of radiation doses. Although the mating propensity of males sterilized by a single 200 Gy dose (the current standard of the Okinawa Prefecture SIT program) was equal to that of non‐irradiated weevils for the first 6 days, the mating propensity of males sterilized by a series of three doses was maintained for at least the first 12 days. These results demonstrated that fractionated‐dose irradiation can be highly advantageous in C. formicarius eradication programs.  相似文献   

5.
Because multiple mating by females encourages sperm competition, the assessment of female mating status before insemination is important for males in order to avoid the risk of sperm competition or to intensify sperm competition. When interacting with females before sperm transfer, males can alter their mating tactics according to the risk or intensity of sperm competition. Information on how mating systems are associated with sperm competition is essential for sterile insect technique eradication programs, which depend on successful mating of released sterile males with wild females. We tested whether males of the West Indian sweetpotato weevil, Euscepes postfasciatus (Fairmaire) (Coleoptera: Curculionidae), adjusted their mating behavior in response to female mating experience and/or age. As virgin/young female weevils accepted males more easily than non-virgin/old females, assessing females before insemination can be adaptive for male weevils. We found that E. postfasciatus males were unable to adjust their mating tactics in response to female mating status. Although this mating strategy would be costly for individual male weevils, the ability in males to discriminate female mating status can prevent the chance of mating with already-mated females containing the sperm of wild male(s). Therefore, the mating tactics of male E. postfasciatus are advantageous for sterile insect technique eradication programs.  相似文献   

6.
7.
Selection for genetic adaptation might occur whenever an animal colony is maintained in the laboratory. The laboratory adaptation of behavior such as foraging, dispersal ability, and mating competitiveness often causes difficulties in the maintenance of biological control agents and other beneficial organisms used in procedures such as the sterile insect technique (SIT). Sweet potato weevil, Cylas formicarius (Summers) (Coleoptera: Brentidae), is an important pest in sub‐tropical and tropical regions. An eradication program targeting C. formicarius using SIT was initiated in Japan with weevils being mass‐reared for 95 generations to obtain sufficient sterile males. The mass‐reared strain of C. formicarius exhibits weaker female resistance to male mating attempts compared with the wild strain. This could affect the success of SIT programs because mating persistence of mass‐reared males might be expected to decrease in response to weak female resistance. We show that high success of sperm transfer to mass‐reared females was due to weak female resistance to male mating attempts. However, the mating behavior of mass‐reared males did not change. In C. formicarius, the trait of male persistence to mate was not correlated with the female resistance traits. Our results suggest that mass‐rearing conditions do not have negative effects on the mating ability of the sterile males of this species, and thus that the current mass‐rearing procedures are suitable for production of sterile males for the weevil eradication program.  相似文献   

8.
Issues of male fertility must be addressed to support the development of a sterile insect technique (SIT) programme for the control of Aedes albopictus Skuse (Diptera: Culicidae) populations on Reunion Island in the Indian Ocean. The mating ability of a local strain of Ae. albopictus was tested using several batches of females and different cage sizes under laboratory conditions. Individual males were able to inseminate up to 14 females at an average of 9.5 females per male when exposed to 20 females over 7 days. Males filled between three and 27 spermathecal capsules at an average of 15.5 capsules per male. The average number of females inseminated per male was 5.3 when two virgin females were introduced to one male and replaced every day for 12 days, and 8.6 when 10 virgin females were introduced to one male and replaced every day for 14 days. A continuous decrease in the number of both inseminated females and filled spermathecal capsules was observed over time, until no mating occurred after 14 days. The high number of females inseminated by one male and the duration of male activity may have strong implications for SIT control of mosquitoes.  相似文献   

9.
The number of West Indian sweet potato weevils, Euscepes postfasciatus, being mass-reared in a facility for use in sterile insect technique (SIT) eradication programs has undergone a drastic reduction. A neogregarine protozoan pathogen Farinocystis sp. (an undescribed species) was detected in vivo in the mass-reared E. postfasciatus. We investigated the effects of this disease on the longevity and fecundity of host weevils and the incubation time of the disease in the host body under mass-rearing conditions. Our results demonstrated that infection by this Farinocystis sp. decreased both longevity and fecundity in E. postfasciatus. In particular, the pathogen severely limited the production of progeny by infected females compared to healthy females. Therefore, we consider this protozoan infection to be the major cause of the decreased E. postfasciatus production in the mass-rearing facility.  相似文献   

10.
The effect of irradiation on the dispersal ability of males and females of the flightless West Indian sweetpotato weevil, Euscepes postfasciatus (Fairmaire) (Coleoptera: Curculionidae), a major sweet potato pest, was examined in the field using mark–release–recapture techniques. To evaluate the dispersal ability of the weevil, we released 7 619 weevils in two replicates (July and August 2007). Each replicate lasted 5 days from release to sampling and consisted of one weevil release and two weevil samplings. Thirty-two traps were placed in lines corresponding to eight compass directions and in four distance classes (8, 12, 16, and 20 m) in each replicate. We captured 709 (9.3%) weevils in the two replicates. Weevils dispersed at least 20 m from the release point in 2 days, regardless of sex or irradiation. Dispersal was strongly affected by wind direction, and in both replicates most weevils were recaptured in upwind directions. The mean dispersal distance for non-irradiated weevils was about 11 m per 2 days. Although there were some differences between sexes in recapture rate and dispersal distance, there was no consistent difference between irradiated and non-irradiated weevils in dispersal distance. We conclude that irradiation does not affect the dispersal ability of flightless E. postfasciatus in the field.  相似文献   

11.
12.
The influence of gamma radiation on the mating behaviour of the red date palm weevil (RDPW), Rhynchophorus ferrugineus (Olivier), and the efficacy of sterile insect technique (SIT) under different levels of relative humidity (RH) were studied. No adverse effects of gamma radiation were observed on the mating behaviour parameters of the RDPW, such as mate recognition time, mating duration, mating frequency within a 30‐min period and duration between consecutive matings. However, the weevils were sexually stimulated during aggregation. RH significantly affected egg laying as well as egg hatching. Significantly lower egg laying and hatching were recorded at 25% RH than at higher humidity levels, suggesting that low humidity conditions are better for successful SIT manipulations in the field. Lifespan of irradiated RDPW males was significantly shorter than that of un‐irradiated controls, irrespective of RH level.  相似文献   

13.
The West Indian sweetpotato weevil Euscepes postfasciatus (Fairmaire) is a major pest of the sweet potato Ipomoea batatas (L.) Lam. and this weevil is a target of an eradication program using the Sterile Insect Technique in Okinawa Prefecture, Japan. Understanding the population ecology is essential in the planning of an eradication program; hence, a host‐plant infestation survey and light trap survey have been conducted to monitor the population dynamics of the weevil on Kume Island (Okinawa Prefecture), which is the target area of the trial weevil eradication project. Seasonal tendencies of weevil density were found in these field surveys, but the tendency found in the host‐plant infestation survey was not seen every year, and the effectiveness of the light trap is somewhat suspect. To confirm the reliability of the tendency observed in these field surveys, the present study attempted to explain the tendency by a seasonal temperature change using a temperature‐based model of weevil population dynamics. The seasonal changes of weevil density differed according to host plants and host‐plant fields. The seasonal changes of weevil density inside the host plant Ipomoea indica and outside the host plants in I. indica fields were consistent with those predicted by the model. However, those inside the host plant Ipomoea pes‐caprae in the host‐plant infestation survey were contrary to the predicted ones, and those observed outside host plants in I. pes‐caprae fields by the light trap survey were not in good agreement with the predicted ones. It was concluded that the seasonal change of the weevil density observed in I. indica and I. indica fields can be explained by a seasonal temperature change, but factors other than seasonal temperature change are needed to explain those in I. pes‐caprae and I. pes‐caprae fields.  相似文献   

14.
Methoprene (a mimic of juvenile hormone) treatment can reduce the time required for sexual maturation in Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae) males under laboratory conditions, supporting its use as a treatment for sterile males within the context of the sterile insect technique (SIT). We evaluated sexual behaviour, mating competitiveness of methoprene-treated males, and female readiness to mate after methoprene-treatment in field cages. The study involved two strains of A. fraterculus from Argentina and Peru, which show several polymorphisms in relation to their sexual behaviour. We also analyzed whether methoprene treatment affected male and/or female behaviour in the same way in these two strains. Methoprene-treated males were equally competitive with untreated mature males, and became sexually competitive 6 days after emergence (3–4 days earlier than untreated males). In contrast, methoprene did not induce sexual maturation in females or, at least, it did not induce a higher rate of mating in 7-day-old females. These results were observed both for the Argentina and the Peru strains. Altogether, our results indicate that methoprene treatment produces sexually competitive males in field cages. In the absence of a genetic sexing system, and when sterile males and females of A. fraterculus are released simultaneously, the fact that females do not respond as do males to the methoprene treatment acts as a physiological sexing effect. Therefore, in the presence of mainly sexually immature sterile females, released sexually mature sterile males would have to disperse in search of wild fertile females, thereby greatly reducing matings among the released sterile insects and thus enhancing sterile insect technique efficiency.  相似文献   

15.
The aim of our study was to examine the effect of mass‐rearing, in which there is no exposure to predators, on antipredator traits of insects for improving sterile insect technique programs. The duration of death‐feigning (antipredator behaviour) in sweet potato weevil Cylas formicarius (Summers) (Coleoptera: Brentidae) after mass‐rearing for 71 generations were compared with those in wild strain. There was no significant difference in the duration of death‐feigning between wild and mass‐reared strains. This indicated that the death‐feigning behaviour of mass‐reared strain was maintained for 71 generations even in the absence of predators. We discuss the reasons why death‐feigning behaviour is maintained after mass‐rearing.  相似文献   

16.
Modelling studies are presented which describe the effect of lek mating on the control of a wild population by sterile male release. The mixed leks are assumed to follow a Poisson-binomial distribution and the system includes three parts: territory defense, matings inside a lek and matings outside a lek. The effects of parameters on the hatchability are discussed. Among the parameters, sterile type effect (Ws), female choice (fs) and mating competitiveness (Cm) are the most important. The application to determining the effects of sterile male release and on the proportion of sterile males required for eradication are also discussed.  相似文献   

17.
The effect of access to dietary protein (P) (hydrolyzed yeast) and/or treatment with a juvenile hormone analogue, methoprene (M), (in addition to sugar and water) on male aggregation (lekking) behaviour and mating success was studied in a laboratory strain of the melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Six‐day‐old males were treated with (1) protein and methoprene (M+P+), (2) only protein (M?P+), or (3) only methoprene (M+P?), and compared with 14‐day‐old sexually mature untreated males (M?P?). The lekking behaviour of the four groups of males when competing for virgin sexually mature females (14 –16 days old) was observed in field cages. The following parameters were measured at male aggregations: lek initiation, lek participation, males calling, male–male interaction, female acceptance index, and mating success. For all these parameters, the M+P+ males significantly outperformed the other males. Moreover, for all parameters, there was a similar trend with M+P+ > M?P+ > M?P? > M+P?. More M+P+ males called and initiated and participated in lek activities than all other types of male, which resulted in higher mating success. They had also fewer unsuccessful copulation attempts than their counterparts. Whereas treatment with methoprene alone had a negative effect in young males with only access to sugar, access to dietary protein alone significantly improved young male sexual performance; moreover, the provision of methoprene together with protein had a synergistic effect, improving further male performance at leks. The results are of great relevance for enhancing the application of the sterile insect technique (SIT) against this pest species. The fact that access to dietary protein and treatment of sterile males with methoprene improves mating success means that SIT cost‐effectiveness is increased, as more released males survive to sexual maturity.  相似文献   

18.
1 Laboratory-reared normal, and wild female Mediterranean fruit flies, Ceratitis capitata (Wiedemann), were assayed in outdoor field cages to assess the impact of a mating-induced behavioural switch on mating and subsequent oviposition activity. 2 Virgin females preferred interactions with males leading to mating over attraction to, and oviposition in, artificial yellow spheres containing guava odour or green apples hung in a guava tree. Laboratory-reared females previously mated with either laboratory-reared normal males or laboratory-reared irradiated (sterile) males showed little interest in remating with males and instead, were much more likely to be found arrested on artificial and real fruit and ovipositing. Oviposition on artificial fruit was five times greater by females that had mated with either normal or irradiated males than by virgin females. Wild females showed similar qualitative changes in the mating-induced behavioural switch; however, oviposition activity was significantly less than for laboratory-reared females. 3 These results confirm that mating has a profound effect on the behaviour of female Mediterranean fruit flies and that irradiated males are functionally equal with normal males (lab-reared or wild) in their ability to alter female behaviour. These results are discussed in the context of the sterile insect technique for control of Mediterranean fruit flies in the field.  相似文献   

19.
Behaviour during copulation can alter the fate of sperm of the mating males. This behaviour may exert selective pressure, resulting in the evolution of diverse reproductive behaviour, morphology, and physiology. This study examined the role of female copulatory behaviour on sperm fate in the sweet potato weevil, Cylas formicarius (Fabricius) (Coleoptera: Brentidae). In this species, males mount the female during copulation. The female frequently walks during copulation, carrying the male on her back. Here, we describe and quantify the copulatory behaviour of mating pairs and examine the sperm fate. Insemination success, as determined by the presence of sperm in the spermatheca, was lower when females walked for longer periods during copulation. This result emphasizes the value of studying variation in female copulatory behaviour in order to understand the factors that influence sperm fate. We discuss the implications of these results on sexual selection and utility in programs applying sterile insect techniques.  相似文献   

20.
Abstract  Dispersal of immature male and female Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), was assessed over a period of 1 week from a single release point on three separate occasions using an array of Lynfield traps baited with cue-lure and odouriferous yellow or black sticky spheres baited with food lure (protein autolysate). Lynfield traps recaptured males; yellow or black spheres recaptured both sexes in approximately equal proportions, although at a much lower rate. As a percentage of the recapture rate for males by Lynfield traps, the mean recapture rate for yellow spheres ranged from 1.0% to 7.5% for males and 0.7% to 4.0% for females, whereas the recapture rates for black spheres ranged from 0.4% to 3.6% and 0.6% to 1.8%, respectively. The rate of recapture of sterile male flies was greater than that of unsterilised flies; this may have been due to a faster maturation rate in sterile males or because a greater proportion of them remained within the trap array rather than dispersing. There was no significant trend in recapture rate with distance from the release point to the edge of the array (88 m), except in the case of females on sticky traps where no trend was detected between 19 and 88 m. These results lend support to assumptions made about the distribution of males and females with respect to the minimum breeding density of fruit fly propagules invading a fly-free zone, and the method chosen to distribute sterile B. tryoni for the sterile insect technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号