首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Ecological life history and reproductive traits of two threatened aquatic macrophytes, Blyxa aubertii L.C. Richard and B. echinosperma (Clarke) Hooker, were studied in irrigation ponds in south-western Japan. The size of plants varied greatly in both species but reproductive allocation was nearly constant irrespective of plant size at reproductive stage, amounting to 31.8% and 45.9% at maximum in B. aubertii and B. echinosperma, respectively. The number of flowers and total number of seeds produced per individual were associated significantly with plant size. Seeds were produced by self-pollination both in emerged and submerged cleistogamous flowers and seed set rate of the two species was very high. These traits are considered to be adaptive to unstable environments that are liable to water level fluctuations, such as rice-fields and irrigation ponds.  相似文献   

2.
Summary The forest annual, Amphicarpaea bracteata L. can reproduce via aerial chasmogamous, aerial cleistogamous, and subterranean cleistogamous flowers. Both plant size and light intensity influenced the utilization of the three modes of reproduction. chasmogamous and aerial cleistogamous flower number and the ratio of chasmogamous flowers to the total number of aerial flowers increased with plant size. The latter demonstrated a shift to xenogamy and outbreeding in larger plants. Light intensity indirectly influenced reproductive modes through its infuence on plant size. Seed set by both types of aerial flowers was low and unrelated to plant size. Subterranean seed number and the total dry weight of subterranean seeds per plant increased with size. The subterranean seeds of Amphicarpaea bracteata are thirty-four times larger than the aerial seeds (fresh weight). Under field conditions, subterranean seeds had greater germination after one year than acrial seeds. The plants arising from subterranean seeds were significantly larger and more fecund than those from aerial seeds. Seeds produced by aerial cleistogamous, hand selfpollinated chasmogamous, and naturally pollinated chasmogamous flowers had equivalent germination rates and produced plants of equal size and fecundity. This suggests that the outbred progeny from chasmogamous flowers have no advantage over the inbred progeny from aerial cleistogamous flowers.  相似文献   

3.
植物有性繁殖与资源分配的关系研究对于揭示植物生活史特征及繁育系统进化具有重要意义。新疆郁金香(Tulipa sinkiangensis)是新疆天山北坡荒漠带特有的一种多年生早春短命植物。在自然生境中,该物种仅以有性繁殖产生后代,每株能产生1-8朵花,且不同植株上的花数及果实数以及花序不同位置上的花与果实大小明显不同。本文通过对新疆郁金香有性繁殖与营养生长及植株大小的关系以及花序中不同位置花及果实间的资源分配研究,旨在揭示营养生长、个体大小及开花次序对其繁殖分配的影响。结果表明:在开花和果实成熟阶段,新疆郁金香植株分配给营养器官(鳞茎和地上营养器官)与繁殖器官的资源间均存在极显著的负相关关系(P<0.01),说明其植株的营养生长与生殖生长间存在权衡关系。多花是新疆郁金香的一个稳定性状,其植株上花数目、花生物量、果实生物量和种子数量与植株生物量间均呈极显著的正相关关系(P<0.01),说明新疆郁金香植株的繁殖分配存在大小依赖性。在具2-5朵花的新疆郁金香植株中,花序内各花的生物量、花粉数和胚珠数、结实率、果实生物量、结籽数、结籽率及种子百粒重按其开花顺序依次递减,说明花序内各花和果实的资源分配符合资源竞争假说。植株通过减少晚发育的花或果实获得的资源来保障早发育的花或果实获得较多的资源,从而达到繁殖成功。  相似文献   

4.
通过野外采样对青藏高原东部高寒草甸上两个海拔间3种常见毛茛科植物条裂银莲花(Anemone trullifo-liavar.linearis)、粗距翠雀花(Delphinium pachycentrumHemsl.)和钝裂银莲花(Anemone obtusiloba)的繁殖性状和资源分配进行了研究,并对植物在极端环境下采取的繁殖策略及繁殖模式进行了探讨.结果显示:(1)3个物种的株高都随着海拔的升高而降低;同一物种的花大小在不同海拔间均无显著差异;条裂银莲花单个种子重随海拔的升高而增加,但虫食数/株、结籽率和种子数/株均随着海拔的升高而减少;钝裂银莲花的繁殖分配、虫食数/株、种子数/株和单个种子重均随着海拔的升高而减小.(2)不同海拔条裂银莲花的个体大小与单花重、雄蕊重、虫食数/株均呈显著正相关,且回归斜率在海拔间有显著差异.粗距翠雀花花期的雄蕊重与个体大小呈显著正相关,但这种异速关系不受海拔和个体大小的影响;钝裂银莲花的个体大小与花期的所有繁殖特征以及果期的种子重/果实均呈显著正相关,不同海拔间个体大小与种子重/果实的斜率差异显著,且与花期各繁殖性状异速关系的截距差异显著.研究表明海拔对植物的个体大小以及种群间的繁殖对策和繁殖成功率有着重要的影响.  相似文献   

5.
We studied population viability in relation topopulation size and allelic variation in thenarrowly-endemic, monocarpic perennial plantCochlearia bavarica in Bavaria. In 1996,we analysed allelic variation by allozymeelectrophoresis in 24 populations ranging from8–2000 flowering individuals. Fitness-relatedcharacters were investigated in 22 of the 24populations in the field in 1996 (reproductiveand vegetative traits) and 1998 (reproductivetraits only). Differences in allozyme patternwere large between a south-eastern and awestern population group. Genetic diversity,assessed by the Shannon-Wiener diversity index,was low within but high among populations.Small populations had fewer alleles per locus,fewer polymorphic loci, lower observedheterozygosity, and lower genetic diversitythan large populations. Environmentalvariables were not significantly correlatedwith population size or fitness with theexception of light availability, indicatingthat habitat quality was similar for large andsmall populations. Population size showedpositive correlations with number of flowers,fruit set per plant, number of seeds per fruit,and total seed output per plant. Fruit set andnumber of seeds per fruit were positivelycorrelated with the observed heterozygosity andthe proportion of polymorphic loci. We usedpath analyses to study the possible causalrelationships among population size, allelicvariation, and reproductive characters. Thesemodels showed that allelic variation had nodirect influence on reproductive characters,whereas population size did. We conclude thatat present population size reduces viabilityand also reduces allelic variation; but thereduced allelic variation may in the longerterm have negative feed-backs on bothpopulation size and viability.  相似文献   

6.
Seed size and plant strategy across the whole life cycle   总被引:9,自引:0,他引:9  
Angela T.Moles  MarkWestoby 《Oikos》2006,113(1):91-105
We compiled information from the international literature to quantify the relationships between seed mass and survival through each of the hazards plants face between seed production and maturity. We found that small-seeded species were more abundant in the seed rain than large-seeded species. However, this numerical advantage was lost by seedling emergence. The disadvantage of small-seeded species probably results from size-selective post-dispersal seed predation, or the longer time small-seeded species spend in the soil before germination. Seedlings from large-seeded species have higher survival through a given amount of time as seedlings. However, this advantage seems to be countered by the greater time taken for large-seeded species to reach reproductive maturity: our data suggested no relationship, or perhaps a weak negative relationship, between seed size and survival from seedling emergence through to adulthood. A previous compilation showed that the inverse relationship between seed mass and the number of seeds produced per unit canopy area per year is countered by positive relationships between seed mass, plant size and plant longevity. Taken together, these data show that our old understanding of a species' seed mass as the result of a trade–off between producing a few large offspring, each with high survival probability, versus producing many small offspring each with a lower chance of successfully establishing was incomplete. It seems more likely that seed size evolves as part of a spectrum of life history traits, including plant size, plant longevity, juvenile survival rate and time to reproduction.  相似文献   

7.
Summary This study examines the effect of different densities and the removal of all neighbours at different stages of development on all components of reproduction in the inbreeding annual Thlaspi arvense L. A 64-fold increase in density significantly reduced all repooductive components. The number of flower buds per plant was decreased most strongly; the order of decreasing plasticity among the other components was number of capsules per flower, individual seed weight, ovule number per capsule, flowers per flower bud and seeds per ovule. Removing neighbours at all stages of development increased seed yield of plants in comparison to the control without density reduction, but patterns of plasticity depended strongly on time of treatment. The main effect of the removal of neighbours at the vegetative stage was to increase the number of flowers per plant, but the number of ovules per capsule and seed weight increased also, and abortion of capsules decreased. Removing neighbours at the onset of flowering initially failed to affect flower number per plant, instead it resulted in a strong reduction of capsule abortion and an increase in seed weight. However, several weeks after flowering had initially ceased, fresh lateral inflorescences were produced, resulting in a second flush of reproduction. Removing neighbours at the stage of fruit ripening resulted at first only in an increase in seed witht, but later a second reproductive phase occurred. Fresh lateral branches were produced, but the apical meristem was also reactivated. The overall pattern of plasticity among all reproductive components in response to a removal of neighbours was the same as in response to density. The position of a capsule along the inflorescence influenced its number of ovules, the rate of seed abortion and the mean weight of seeds, with the type of effect depending on the developmental stage at which neighbours were removed. Significant negative correlations were found between the mean weight of seeds and the number of seeds in a capsule under all treatments.  相似文献   

8.
The basis for the negative correlation between seed number and seed size was experimentally investigated in a natural population of Clintonia borealis. Clones of this species vary significantly in estimated self-compatibility (ratio of seed set with selfing to that with outcrossing) and this appears to affect the number and size of seeds set in individual flowers of each. Clones estimated to be largely self-compatible set more seeds per flower than incompatible ones under natural pollination. However, naturally pollinated flowers of self-compatible clones set smaller seeds than those of incompatible clones, and the significance of the negative relationship between seed number and size in individual flowers was removed by holding variation due to compatibility constant. Supplementing resources per flower (by reducing the number of fruits competing for resources per stem) significantly increased total seed mass but had no effect on the negative relationship between seed number per flower and seed size. In contrast, supplementing cross pollination did not significantly influence total seed mass per flower but changed the relationship between seed number and size to positive, regardless of resource level. In other words, with plentiful cross pollination maternal genets capable of setting more seeds per flower also produced heavier ones. Thus, evidence is provided that the balance between seed number and seed size in this population is regulated by the interaction of maternal self-compatibility with natural pollination.  相似文献   

9.
Abstract The effect of plant size on reproduction in four species of alpine Ranunculus (R. muelleri, R. dissectifolius, R. graniticola and R. niphophilus) was investigated in two sites over two seasons in the field on a total of 190 plants. The effects of plant size (number of leaves) and number of flowers on the number of anthers, ovules and seed per flower and per plant were determined. There was a positive relationship between several measures of reproduction and plant size in all four species, indicating that reproduction is size-dependent. All the results indicate that the main factor controlling the amount of seed produced by alpine Ranunculus is the size of the plant. Specifically, bigger plants produced more seed by producing more flowers, not by producing more ovules per flower, or higher seed set per flower. Correspondingly, bigger plants produced more anthers by producing more flowers, rather than by producing flowers with more anthers. The total number of seeds produced by a plant was directly proportional to plant size in the four species. Therefore, reproductive effort should not vary with plant size in the four species.  相似文献   

10.
The size-dependent sex allocation model predicts that the relative resource allocation to female function often increases with plant size in animal-pollinated plants. If size effects on reproductive success vary depending on the environmental conditions, however, the size dependency may differ among populations. We tried to detect site-specific variation in size-dependent sex allocation of a monocarpic hermaphrodite with reference to light availability. Multiple flowers and fruits were sampled from the individuals of Cardiocrinum cordatum, a monocarpic understory herb, and pollen, ovule and seed production were measured with reference to the plant size in two populations. Furthermore, frequency and foraging behavior of pollinator visitation was observed. Ovule production per flower increased with plant size in both populations, while pollen production per flower increased with size only in the population under sparse canopy. Therefore, proportional allocation to male function decreased with plant size in the population under closed canopy, but did not change in the population under sparse canopy. Pollinators usually visited only one flower per plant, indicating the negligible geitonogamous pollination in this species. Although seed production under closed canopy was lower than that under sparse canopy, seed-set rate per flower and seed mass per fruit were independent of plant size in either of the populations. Size-dependent sex allocation in this species was site-specific, suggesting that not only resource storage before reproduction (i.e., plant size) but also resource availability of environment throughout the reproductive process (i.e., light availability) affect reproductive performance in this species.  相似文献   

11.
Summary A three year study of Senecio keniodendron (Compositae), a giant rosette species of the alpine zone of Mt. Kenya, demonstrated that individuals which reproduce are more likely to die, and less likely to reproduce in the future if they do survive, than are vegetative individuals of the same size. However, if an individual reproduces, survives and reproduces again, then it produces more seeds during the second reproductive episode than does a plant of the same height reproducing for the first time, because reproduction is followed by production of lateral rosettes, increasing the number of potentially-reproductive rosettes per plant.Slow-growing rosettes are less likely to reproduce than fast-growing rosettes. For rosettes which do reproduce, rosette size and rate of leaf production, measured before reproduction begins, are good predictors of fecundity.  相似文献   

12.
Cut-leaved teasel is an invasive weed in Missouri that reduces the diversification of native species along roadsides and impairs traffic visibility. Teasel is a biennial and grows as a rosette in the first year and flowers the second year. Reproduction is only by seed. Field studies were conducted in 2004 and 2005 at two locations to assess the seed production of cut-leaved teasel. From a natural stand, fifteen plants were tagged at the onset of flowering. Selected plants included those considered growing in a group and those growing alone; a plant was considered alone when no other plant was adjacent for at least 60 cm. Whenever a seedhead completed flowering, it was covered with a cellophane bag and harvested one month later. Linear regression was used to correlate the weight of seeds from a single seedhead and number of seeds to estimate the total seed production per seedhead. The number of seedheads per plant varied from 3 to 56. On average, plants growing alone had 64% more seedheads per plant than plants occurring in a group. Seed numbers in the primary seedhead ranged from 511 to 1,487. Total seed production per plant ranged from 1,309 to 33,527. Seed production was 61% greater for plants growing alone versus those growing in a group and was more prolific in 2005 than in 2004. In addition, seed production per plant varied between locations for plants growing alone, but seed yield per plant was similar for plants growing in groups. Colonization of teasel in new areas is facilitated by higher seedhead numbers per plant and total seed production compared to reproduction of plants in areas of intraspecific competition.  相似文献   

13.
Aim Propagule size and output are critical for the ability of a plant species to colonize new environments. If invasive species have a greater reproductive output than native species (via more and/or larger seeds), then they will have a greater dispersal and establishment ability. Previous comparisons within plant genera, families or environments have conflicted over the differences in reproductive traits between native and invasive species. We went beyond a genus‐, family‐ or habitat‐specific approach and analysed data for plant reproductive traits from the global literature, to investigate whether: (1) seed mass and production differ between the original and introduced ranges of invasive species; (2) seed mass and production differ between invasives and natives; and (3) invasives produce more seeds per unit seed mass than natives. Location Global. Methods We combined an existing data set of native plant reproductive data with a new data compilation for invasive species. We used t‐tests to compare original and introduced range populations, two‐way ANOVAs to compare natives and invasives, and an ANCOVA to examine the relationship between seed mass and production for natives and invasives. The ANCOVA was performed again incorporating phylogenetically independent contrasts to overcome any phylogenetic bias in the data sets. Results Neither seed mass nor seed production of invasive species differed between their introduced and original ranges. We found no significant difference in seed mass between invasives and natives after growth form had been accounted for. Seed production was greater for invasive species overall and within herb and woody growth forms. For a given seed mass, invasive species produced 6.7‐fold (all species), 6.9‐fold (herbs only) and 26.1‐fold (woody species only) more seeds per individual per year than native species. The phylogenetic ANCOVA verified that this trend did not appear to be influenced by phylogenetic bias within either data set. Main conclusions This study provides the first global examination of both seed mass and production traits in native and invasive species. Invasive species express a strategy of greater seed production both overall and per unit seed mass compared with natives. The consequent increased likelihood of establishment from long‐distance seed dispersal may significantly contribute to the invasiveness of many exotic species.  相似文献   

14.
In grain crops, total sink capacity is usually analysed in terms of two components, seed number and individual seed weight. Seed number and potential individual seed weight are established at a similar timing, around the flowering period, and seed weight at maturity is highly correlated with the potential established earlier. It is known that, within a species, available resources during the seed set period are distributed between both yield components, resulting in a trade-off between seed number and seed weight. Here we tested if this concept could apply for interspecific comparisons, where combinations of numbers and size across species could be related to the total available resources being either allocated to more seed or larger potential individual seed weight during the seed set period. Based on this, species differences in seed weight should be related to resource availability per seed around the period when seed number is determined. Resource availability per seed was estimated as the rate of increase in aboveground biomass per seed around the period of seed set. Data from 15 crop species differing in plant growth, seed number, seed weight and seed composition were analysed from available literature. Because species differed in seed composition, seed weight was analysed following an energy requirement approach. There was an interspecific trade-off relationship between seed number per unit of land area and seed weight (r = 0.92; F(1, 13) = 32.9; n = 15; P < 0.001). Seed weight of different species was positively correlated (r = 0.90; F(1, 13) = 52.9; n = 15; P < 0.001) with resource availability per seed around the seed set period. This correlation included contrasting species like quinoa (Chenopodium quinoa; ∼100000 seeds m−2, ∼4 mg equivalent-glucose seed−1) or peanut (Arachis hypogaea; ∼800 seeds m−2, ∼1000 mg equivalent-glucose seed−1). Seed number and individual seed weight combinations across species were related and could be explained considering resource availability when plants are adjusting their seed number to the growth environment and seeds are establishing their storage capacity. Available resources around the seed set period are proportionally allocated to produce either many small seeds or few larger seeds depending on the particular species.  相似文献   

15.
BACKGROUND AND AIMS: Plastic responses to stress in components of reproduction can have important effects on plant fitness and can vary both within and between species. Responses may also depend on when in the life cycle stress occurs. Here, it is predicted that the timing of initiation of a stress, defoliation, would affect the pattern of plastic responses. These differences should occur because some components of reproduction, such as flower number, are determined earlier in a plant's life than others, such as individual seed mass. METHODS: To test this prediction, 50 % artificial defoliation treatments were initiated at four different times for Sesbania macrocarpa and S. vesicaria. Responses were measured in plant size, number of flowers, number of flowers/plant size, fruit set, number of seeds per fruit, individual seed mass and total seed mass per plant. KEY RESULTS: For S. vesicaria, changes in the timing of stress changed the severity, but not the pattern of response. For S. macrocarpa, plastic responses to defoliation varied strikingly between early and late treatments. Late treatments resulted in over-compensation in this species. Sesbania macrocarpa was generally more plastic than S. vesicaria and the species showed opposite responses for most components of reproduction. CONCLUSIONS: While there were effects of timing of defoliation and differences between species, the nature of these effects did not precisely fit our predictions. Our results suggest that differences in the length and flexibility of the life cycles of the two species allowed for unexpected variation in responses. For example, because flower production continued after the last treatment in S. vesicaria, responses were not constrained to reductions in individual seed mass.  相似文献   

16.
Sercu  Bram K.  Moeneclaey  Iris  Goeminne  Birgit  Bonte  Dries  Baeten  Lander 《Plant Ecology》2021,222(6):749-760

Temperate forest understorey plants are subjected to a strong seasonality in their optimal growing conditions. In winter and early spring, low temperatures are suboptimal for plant growth while light becomes limited later in spring season. We can thus expect that differences in plant phenology in relation to spatiotemporal environmental variation will lead to differences in reproductive output, and hence selection. We specifically studied whether early flowering, a paradoxical pattern that is observed in many plant species, is an adaptive strategy, and whether selection for early flowering was confounded with selection for flower duration or was attributable to environmental variables. We used Geum urbanum as a study species to investigate the effect of relevant environmental factors on the species’ flowering phenology and the consequences for plant reproductive output. We monitored the phenology of four to six plants in each of ten locations in a temperate deciduous forest (Belgium). We first quantified variation in flowering time within individuals and related this temporal variation to individual flower reproductive output. Then, we studied inter-individual variation here-in and linked this to reproduction at the plant level, hence studying the selection differential. We found that flowering within individual plants of Geum urbanum was spread over a long period from June to October. Reproductive output of individual flowers, measured as total seed mass per flower, declined during the season. We found no indication for selection for early flowering but rather for longer flower duration. Larger plants had an earlier flowering onset and a higher seed mass, which suggests that these factors covary and are condition dependent. None of the studied environmental variables could explain plant size, although soil pH and to a lesser extent light availability had a positive direct effect on seed mass per plant. Finally, we suggest that the high intra-individual variation in flowering time, which might be a risk spreading strategy of the plant in the presence of seed predation, limits the potential for selection on flowering phenology.

  相似文献   

17.
Plant mating systems are driven by several pre‐pollination factors, including pollinator availability, mate availability and reproductive traits. We investigated the relative contributions of these factors to pollination and to realized outcrossing rates in the patchily distributed mass‐flowering shrub Rhododendron ferrugineum. We jointly monitored pollen limitation (comparing seed set from intact and pollen‐supplemented flowers), reproductive traits (herkogamy, flower size and autofertility) and mating patterns (progeny array analysis) in 28 natural patches varying in the level of pollinator availability (flower visitation rates) and of mate availability (patch floral display estimated as the total number of inflorescences per patch). Our results showed that patch floral display was the strongest determinant of pollination and of the realized outcrossing rates in this mass‐flowering species. We found an increase in pollen limitation and in outcrossing rates with increasing patch floral display. Reproductive traits were not significantly related to patch floral display, while autofertility was negatively correlated to outcrossing rates. These findings suggest that mate limitation, arising from high flower visitation rates in small plant patches, resulted in low pollen limitation and high selfing rates, while pollinator limitation, arising from low flower visitation rates in large plant patches, resulted in higher pollen limitation and outcrossing rates. Pollinator‐mediated selfing and geitonogamy likely alleviates pollen limitation in the case of reduced mate availability, while reduced pollinator availability (intraspecific competition for pollinator services) may result in the maintenance of high outcrossing rates despite reduced seed production.  相似文献   

18.
Fruit and seed features are the result of reproductive allocation decisions which ultimately depend on both plant availability of resources and total number of developing fruits. In this study, we manipulated fruit load in Cistus ladanifer plants by removing 0, 25 or 75% of developing fruits. Fruit features (total fruit weight, fruit-wall weight, total seed weight per fruit and seed number per fruit) were unaffected by fruit thinning, nevertheless mean seed weight increased in treated plants independently of thinning intensity. This reduced compensation was unrelated to plant size and had no consequences on fruit predation by insects. From these results it could be suggested that not only availability of resources but also morphological constraints could affect seed size in Cistus ladanifer. On the other hand, this change in seed weight could have important consequences since in this species heavy seeds perform better after fire events but light ones are advantageous in between fire recruitments.  相似文献   

19.
植物有性生殖对大气CO2浓度变化响应的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
 比较详细地概述了过去数十年关于在大气CO2浓度升高条件下,植物有性生殖特性发生变化的主要研究成果。随着植物相对生长速率加快,植株达到有性生殖所需形体大小的时间变短,开花期提前,生殖器官的生物量也相应提高,其主要表现为开花数量、花粉和花蜜产量、果实数量与大小、种子大小与产量等均有不同程度的增加。对大多数农作物而言,种子产量的增加主要通过种子数量的增加,而与种子大小变化关系不大。通常,高浓度CO2对豆科植物种子含氮量影响比较小, 却能显著地降低非豆科植物种子含氮量。不同类型植物的生殖生物量增加趋势存在一定的规律性,如不定型植物>定型植物,豆科植物>C3非豆科植物>C4植物,栽培植物>野生植物。针对国内外对CO2浓度升高影响植物有性生殖特性的研究中存在的不足,该文提出了今后研究应该注意的问题。  相似文献   

20.
Many factors may affect reproduction of animal-pollinated species. In this study, the effects of pollen limitation, attractive traits (flower number, plant height and flower width) and flowering phenological traits (flowering onset, duration and synchrony) on female reproduction, as well as the patterns of variation in fruit and seed production within plants, were investigated in Paeonia ostii “Feng Dan” over two flowering seasons (2018 and 2019). Fruit set was very high (90%), and pollen supplementation did not increase fruit and seed production in either year, indicating no pollen limitation. Fruit set, ovule number per fruit and mean individual seed weight per fruit were not affected by any of the six attractive and phenological traits in either year, whereas seed number per fruit was related to the three attractive traits in one or both years. Seed number per plant was positively affected by the three attractive traits and best explained by flower number in both years, but the effect of each of the three phenological traits on seed number per plant differed between years. Within plants, the fruit set, ovule number, seed set and seed number per fruit declined from early- to late-opening flowers, presumably because of resource preemption, but the mean individual seed weight did not vary across the flowering sequence. Our study shows that attractive traits of Paeonia ostii “Feng Dan” are more important than flowering phenological traits in the prediction of total seed production per plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号