首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Urbanization causes major environmental changes globally, which can potentially homogenize biota across cities through the loss and gain of particular types of species. We examine whether urban environments consistently select for plants with particular traits and the implications of such changes on the functional composition of urban floras. We classified plant recorded in 11 cities around the globe as species that have either colonized (arrived and naturalized), persisted or been lost (local extirpation) following urbanization. We analyzed how 10 traits previously linked with plant responses to environmental conditions explained membership of these three groups, by comparing colonisers with persistent and extirpated plants through individual city‐level Bayesian models. Then, we used meta‐analysis to assess consistency of traits across urban areas. Finally, we explored several possible scenarios of functional change using these results. On average, urban colonizers had heavier seeds, unspecialised nutrient requirements, were taller and were annual species more often, especially when compared to locally extirpated plants. Common trends of functional change in urban plant communities include shifts towards taller and heavier‐seeded plants, and an increased prevalence of the short‐lived species, and plants without mutualistic nutritional strategies. Our results suggest that plant traits influence the species that succeed in urban environments worldwide. Different species use different ecological strategies to live in urban environments, as suggested by the importance of several traits that may appear as trait constellations. Plant height and seed mass were the only traits associated with both colonizer and extirpated plant status in urban environments. Based on our data, predicting colonization in urban environments may be easier than identifying extirpation‐prone plants; albeit some regional variation, colonization seems strongly driven by environmental conditions common to most cities (e.g. altered disturbance regimes), whereas extirpation may depend more on processes that vary across cities.  相似文献   

2.
Failure to quantify differences in the shape of inter‐specific trait distributions (e.g., skew, kurtosis) when comparing co‐occurring alien and native plants hinders the integration of biological invasions and plant community ecology. Within a plant community, understanding the circumstances that lead to the shape of the inter‐specific distribution of one or more functional plant traits being unimodal, bimodal, multimodal or skewed has the potential to shed new light on community vulnerability to invasion, subsequent ecosystem impacts and the selection pressures (e.g., stabilizing, directional or disruptive) acting upon native and alien species. Ignoring differences in the shape of inter‐specific trait distributions of alien and native species could miss important insights into plant invasions, including: the existence of unsaturated native plant communities, empty niches, shifting trait optima of species as a result of environmental change and incomplete colonization–extinction processes following invasion. Future comparisons of functional trait differences between native and alien species should include assessment of the shapes of inter‐specific trait distributions since these may differ even when the mean values of traits are similar for native and alien species. The infrequent application of such approaches may explain the limited generalizations regarding the drivers and consequences of plant invasions in plant communities.  相似文献   

3.
Rapid losses and degradation of natural habitats in the tropics are driving catastrophic declines and extinctions of native biotas, including angiosperms. Determining the ecological and life-history correlates of extinction proneness in tropical plant species may help reveal the mechanisms underlying their responses to habitat disturbance, and assist in the pre-emptive identification of species at risk from extinction. We determined the predictors of extinction proneness in 1884 locally extinct ( n  = 454) and extant ( n  = 1430) terrestrial angiosperms (belonging to 43 orders, 133 families, and 689 genera) in the tropical island nation of Singapore (699.4 km2), which has lost 99.6% of its primary lowland evergreen rainforest since 1819. A wide variety of traits such as geographical distribution, pollination system, sexual system, habit, habitat, height, fruit/seed dispersal mechanism, and capacity for vegetative re-sprouting were used in the analysis. Despite controlling for phylogeny (as approximated by family level classification), we found that only a small percentage of the variation in the extinction probability could be explained by these factors. Epiphytic, monoecious, and hermaphroditic species and those restricted to inland forests have higher probabilities of extinction. Species dependent on mammal pollinators also probably have higher extinction probabilities. More comparative studies that use species traits to identify extinction-prone plant species are needed to guide the enormous, but essential task of identifying species most in need of conservation action.  相似文献   

4.
Much uncertainty remains about traits linked with successful invasion – the establishment and spread of non‐resident species into existing communities. Using a 20‐year experiment, where 50 non‐resident (but mostly native) grassland plant species were sown into savannah plots, we ask how traits linked with invasion depend on invasion stage (establishment, spread), indicator of invasion success (occupancy, relative abundance), time, environmental conditions, propagule rain, and traits of invaders and invaded communities. Trait data for 164 taxa showed that invader occupancy was primarily associated with traits of invaders, traits of recipient communities, and invader‐community interactions. Invader abundance was more strongly associated with community traits (e.g. proportion legume) and trait differences between invaders and the most similar resident species. Annuals and invaders with high‐specific leaf area were only successful early in stand development, whereas invaders with conservative carbon capture strategies persisted long‐term. Our results indicate that invasion is context‐dependent and long‐term experiments are required to comprehensively understand invasions.  相似文献   

5.
In a given area, human activities usually cause the extinction of native species and the establishment of non‐native species. A key conservation issue is whether non‐native establishment tends to outpace native species extinction to produce a net gain in species richness. To determine this, empirical data must be accumulated at various scales. I show that, within the United States, the number of established non‐native plant species per state does tend to outpace the number of extinct and threatened species per state. The net gain in plant species is strongly and positively correlated with human population density. Continuation of this trend predicts substantial gains in net plant species richness for all states in the United States as human population grows. This contrasts with freshwater fishes, where most states show a net loss of species diversity as extinct and threatened species exceed established non‐native species. Changes in fish diversity do not correlate strongly with human population or non‐native species but are largely driven by the decline of native fish species.  相似文献   

6.
Many traits have been linked to extinction risk among modern vertebrates, including mode of life and body size. However, previous work has indicated there is little evidence that body size, or any other trait, was selective during past mass extinctions. Here, we investigate the impact of the Triassic–Jurassic mass extinction on early Archosauromorpha (basal dinosaurs, crocodylomorphs and their relatives) by focusing on body size and other life history traits. We built several new archosauromorph maximum‐likelihood supertrees, incorporating uncertainty in phylogenetic relationships. These supertrees were then employed as a framework to test whether extinction had a phylogenetic signal during the Triassic–Jurassic mass extinction, and whether species with certain traits were more or less likely to go extinct. We find evidence for phylogenetic signal in extinction, in that taxa were more likely to become extinct if a close relative also did. However, there is no correlation between extinction and body size, or any other tested trait. These conclusions add to previous findings that body size, and other traits, were not subject to selection during mass extinctions in closely‐related clades, although the phylogenetic signal in extinction indicates that selection may have acted on traits not investigated here.  相似文献   

7.
To answer the long‐standing question if we can predict plant invader success based on characteristics of the environment (invasibility) or the invasive species (invasiveness), or the combination of both, there is a need for detailed observational studies in which habitat properties, non‐native plant traits, and the resulting invader success are locally measured. In this study, we assess the interaction of gradients in the environmental and trait space on non‐native species fitness, expressed as seed production, for a set of 10 invasive and noninvasive non‐native species along a wide range of invaded sites in Flanders. In our multidimensional approach, most of the single environmental gradients (temperature, light availability, native plant species diversity, and soil fertility) and sets of non‐native plant traits (plant size, photosynthesis, and foliar chemical attributes) related positively with invader seed production. Yet correlation with seed production was much stronger when several environmental gradients were assessed in interaction, and even more so when we combined plant traits and habitat properties. The latter increased explanatory power of the models on average by 25% for invasive and by 7% for noninvasive species. Additionally, we report a 70‐fold higher seed production in invasive than in noninvasive species and fundamentally different correlations of seed production with plant traits and habitat properties in noninvasive versus invasive species. We conclude that locally measured traits and properties deserve much more attention than they currently get in invasion literature and thus encourage further studies combining this level of detail with the generality of a multiregion and multispecies approach across different stages of invasion.  相似文献   

8.
Question: The quantification of functional traits in natural communities can be difficult (e.g. root traits, RGR). Can functional traits measured on pot grown plants be reliably applied to natural communities? Alternatively, can below‐ground plant traits be predicted from above‐ground traits? Location: Southeastern Australia. Methods: We compared 17 shoot, root and whole‐plant morphological traits measured on 14 plant species in a native grassland community to those measured under two different pot conditions: unfertilised and fertilised. Results: The majority of trait values for pot grown plants differed to plants in the field, however, species ranking remained consistent for most leaf traits between the field and the two pot growing conditions. In contrast, species ranking was not consistent for most whole plant traits when comparing field plants to fertilised pot grown plants, providing a caution against the tendency to grow plants in controlled conditions at ‘optimal’ (high) resource levels. Moderate to strong correlations were found between below‐ground and above‐ground plant traits, including between root dry matter content and leaf dry matter content, and between specific root area and specific leaf area. Conclusions: The utility of pot grown plants to quantify traits for field plants is highly dependent on the selection of the growing conditions in the controlled environment. The consistency we observed between above‐ground and below‐ground trait strategies suggests that below‐ground traits may be predictable based on above‐ground traits, reducing the need to quantify root traits on cultured plants.  相似文献   

9.
Documents on historical floras provide unique opportunities to analyze past changes and to show trends in biodiversity. We studied the historical and recent flora of the city of Halle in Central Germany. Our earliest records date back to the year 1687; the youngest were sampled in 2008. More than 20 other floras provide information for time in-between, covering ca. 320 years in total. We checked all historical plant occurrences for plausibility. The species turnover of 22% that took place in the study period should also yield changes in the functional composition of the flora. We identified native species and archaeophytes that went extinct since 1689 and 1856, respectively, and all neophytes that were introduced since 1689 or 1856. This ‘double’ calculation minimized the influence of so-called possible pseudo-absences. Contingency tables assisted to identify trait states which were associated with extinction or introduction. Time-series analysis identified temporal trends in trait state ratio development after testing for temporal autocorrelation. Within the study period, species of bogs, nitrogen-poor habitats or plants with helomorphic leaves got extinct more often than expected by chance. Species dispersed by humans, plants preferring nitrogen-rich or warm habitats, shrubs and trees, and species with mesomorphic leaves were, amongst others, over-represented among introduced neophytes. Land-use changes such as the transformation from agriculture to urban land use or the drainage of bogs are discussed as main drivers of these developments. Additionally, climatic changes, contamination of habitats and gardeners’ preferences for specific plants are presumed to having caused floristic changes. Our study shows the vast influence humans had and still have on biodiversity by intentionally or unintentionally selecting specific functional plant types and thus changing the composition of the flora.  相似文献   

10.
The Permo‐Triassic mass extinction devastated life on land and in the sea, but it is not clear why some species survived and others went extinct. One explanation is that lineage loss during mass extinctions is a random process in which luck determines which species survive. Alternatively, a phylogenetic signal in extinction may indicate a selection process operating on phenotypic traits. Large body size has often emerged as an extinction risk factor in studies of modern extinction risk, but this is not so commonly the case for mass extinctions in deep time. Here, we explore the evolution of non‐teleostean Actinopterygii (bony fishes) from the Devonian to the present day, and we concentrate on the Permo‐Triassic mass extinction. We apply a variety of time‐scaling metrics to date the phylogeny, and show that diversity peaked in the latest Permian and declined severely during the Early Triassic. In line with previous evidence, we find the phylogenetic signal of extinction increases across the mass extinction boundary: extinction of species in the earliest Triassic is more clustered across phylogeny compared to the more randomly distributed extinction signal in the late Permian. However, body length plays no role in differential survival or extinction of taxa across the boundary. In the case of fishes, size did not determine which species survived and which went extinct, but phylogenetic signal indicates that the mass extinction was not a random field of bullets.  相似文献   

11.

Questions

Predicting which newly arrived species will establish and become invasive is a problem that has long vexed researchers. In a study of cold temperate oak forest stands, we examined two contrasting hypotheses regarding plant functional traits to explain the success of certain non‐native species. Under the “join the locals” hypothesis, successful invaders are expected to share traits with resident species because they employ successful growth strategies under light‐limited understorey conditions. Instead, under the “try harder” hypothesis, successful invaders are expected to have traits different from native species in order to take advantage of unused niche space.

Location

Minnesota, USA.

Methods

We examined these two theories using 109 native and 11 non‐native plants in 68 oak forest stands. We focused on traits related to plant establishment and growth, including specific leaf area (SLA), leaf carbon‐to‐nitrogen ratio (C:N), wood density, plant maximum height, mycorrhizal type, seed mass and growth form. We compared traits of native and non‐native species using ordinations in multidimensional trait space and compared community‐weighted mean (CWM) trait values across sites.

Results

We found few differences between trait spaces occupied by native and non‐native species. Non‐native species occupied smaller areas of trait space than natives, yet were within that of the native species, indicating similar growth strategies. We observed a higher proportion of non‐native species in sites with higher native woody species CWM SLA and lower CWM C:N. Higher woody CWM SLA was observed in sites with higher soil pH, while lower CWM C:N was found in sites with higher light levels.

Conclusions

Non‐native plants in this system have functional traits similar to natives and are therefore “joining the locals.” However, non‐native plants may possess traits toward the acquisitive end of the native plant trait range, as evidenced by higher non‐native plant abundance in high‐resource environments.
  相似文献   

12.
Mari Moora 《植被学杂志》2014,25(5):1126-1132
Plant functional type‐ and trait‐based approaches to understanding vegetation dynamics are gradually gaining popularity. However, plant mycorrhizal traits are rarely considered in plant trait databases and are almost totally neglected in trait‐based plant community studies, despite more than 90% of the land flora being mycorrhizal. In this paper I describe and define the mycorrhizal traits of plant species, notably mycorrhizal type, mycorrhizal status, mycorrhizal flexibility and mycorrhizal dependency, which potentially influence plant distribution and community structure. I propose ways of using these traits for large‐scale synthetic studies for understanding the role of mycorrhizal symbiosis in vegetation dynamics. I suggest considering plant community mycorrhization – community means of mycorrhizal traits weighted by plant species abundances – and suggest an index of mycorrhization to describe the mycorrhizal trait composition of plant communities.  相似文献   

13.
We empirically assessed the long‐term changes in the rare species assemblage of a Mediterranean flora, in terms of species life history traits, niche and biogeographic features, and taxonomic groups. We used a 115‐year historical record of ca. 2100 plant species occurrences in a 6250 km2 region in Mediterranean France. Species were assigned to two classes of regional abundance for the years 1886 and 2001 (rare species, i.e. exhibiting one or two occurrences vs. nonrare species), and to three classes of abundance changes during 1886–2001 (decreasing/extinct, stable, increasing/immigrant). Then, we tested whether species regional abundance and species abundance change were related to their morphological and life‐history traits (life form, perenniality, height, dispersal agent, pollination mode), niche and biogeographic features (habitat specialization, level of endemism, biogeographic origin) and taxonomic group. The regional assemblage of rare species was not biologically random and significantly changed between 1886 and 2001. Species classified as rare in 1886 had a significantly higher rate of extinction in the study region during 1886–2001. The highest rate of regression/extinction was found among hydrophyte and/or water‐dispersed rare species, and among annual rare species. However, herbaceous perennial, tree and wind‐dispersed rare species significantly increased in abundance during 1886–2001. Rare species with Eurosiberian distributions, occurring at the southern margin of their range in the study region, dramatically declined or went extinct in the region during 1886–2001; whereas rare species with Mediterranean affinities remained significantly stable. We also found strong evidence for taxonomic patterns in species abundance and abundance changes from 1886 to 2001. The long‐term biological changes documented here in the rare species assemblage of a Mediterranean flora are consistent with the predicted consequences of climate and land use changes currently occurring in the Mediterranean Basin. With the potential decline or even extinction of entire taxa and the loss of southern ecotypes of widespread Eurosiberian species, both evolutionary history and speciation potential of the Mediterranean Region could be strongly altered in future decades.  相似文献   

14.
Local extinctions are often non‐randomly associated with range size, dispersal ability and habitat specificity, as well as body size, sexual dimorphism and phylogeny. We used a large data set of the Orthoptera species (bush crickets, crickets, grasshoppers) occurring in Germany and compared the number of occupied grid cells before 1980 to those occupied after 1980, corrected for monitoring intensity. The number of grid cells in which a species went extinct was non‐linearly related to the number of occupied grid cells per species. Using generalized linear modelling we analysed extinction in relation to national distribution (the number of occupied grid cells before 1980), dispersal ability (derived from a large body of literature concerning wing development, colonization dynamics and within‐habitat mobility), habitat specificity (moisture specialists versus generalists), potential reproduction (the number of ovarioles), the degree of sexual size dimorphism and phylogeny (twelve clades). Species with a large global range size also had a large national range size. Species with a large range experienced more total extinction events than species with smaller ranges but relatively fewer compared to range size. The latter relationship was largely shaped by the dispersal ability of the species: the interactions of range size×dispersal ability and range size×habitat specificity explained almost one third of the variation in the number of extinction events. Species with high dispersal ability went extinct in a similar number of grid cells irrespective of their range size. By contrast, species with low dispersal ability went extinct in proportion to their range size. Therefore, comparing the speed of extinction across species in the conventional way of extinction rates (that is the percentage of range contraction) might be flawed because it only applies to species with low dispersal ability. Sexual size dimorphism was not a significant predictor of extinction. Extinction was not concentrated on particular clades.  相似文献   

15.

Aim

Extinctions of species and subspecific taxa in hotspots of biodiversity deserve special attention. After more than 40 years of major efforts, estimates of extinct plant taxa in California seem to be somewhat stabilized. The time is ripe for an attempt to critically evaluate our current knowledge of plant extinctions in California and make a comparison with other countries with mediterranean‐type climates.

Location

California.

Methods

Besides species‐specific studies and personal communications, major databases and state floras were consulted.

Results

Compared with all numbers published earlier, the current analysis ended with smaller numbers of globally extinct plant species and taxa (13 and 17, respectively) and larger numbers of species and taxa extinct in California, but still present in at least one other state or country (15 and 15). For each species, life form, habitat, year of the last collection and assumed drivers of extinction are listed.

Main conclusions

Most of the presumed extinct taxa were originally present in one or two counties and often are known from only one or a very few collections. Therefore, the most robust generalization regarding factors contributing to taxon extinctions is a small range size and a low original abundance. Most of the presumed globally extinct taxa were originally present in lowlands where most of the human population and habitat destruction are concentrated. Taxa limited to special habitats, like wetlands, seem to be more predisposed to extinction. Among assumed drivers of plant extinction, agriculture, urbanization and development in general are the most often cited possibilities. Compared with other countries with mediterranean‐type climates, the extinction rate of vascular plants in California is lower than in Israel, comparable with the Cape Province of South Africa, Western Australia and continental Mediterranean European countries, and higher than in Chile.  相似文献   

16.
Each year, two or three species that had been considered to be extinct are rediscovered. Uncertainty about whether or not a species is extinct is common, because rare and highly threatened species are difficult to detect. Biological traits such as body size and range size are expected to be associated with extinction. However, these traits, together with the intensity of search effort, might influence the probability of detection and extinction differently. This makes statistical analysis of extinction and rediscovery challenging. Here, we use a variant of survival analysis known as cure rate modelling to differentiate factors that influence rediscovery from those that influence extinction. We analyse a global data set of 99 mammals that have been categorized as extinct or possibly extinct. We estimate the probability that each of these mammals is still extant and thus estimate the proportion of missing (presumed extinct) mammals that are incorrectly assigned extinction. We find that body mass and population density are predictors of extinction, and body mass and search effort predict rediscovery. In mammals, extinction rate increases with body mass and population density, and these traits act synergistically to greatly elevate extinction rate in large species that also occurred in formerly dense populations. However, when they remain extant, larger‐bodied missing species are rediscovered sooner than smaller species. Greater search effort increases the probability of rediscovery in larger species of missing mammals, but has a minimal effect on small species, which take longer to be rediscovered, if extant. By separating the effects of species characteristics on extinction and detection, and using models with the assumption that a proportion of missing species will never be rediscovered, our new approach provides estimates of extinction probability in species with few observation records and scant ecological information.  相似文献   

17.
Recent studies demonstrate that by focusing on traits linked to fundamental plant life‐history trade‐offs, ecologists can begin to predict plant community structure at global scales. Yet, consumers can strongly affect plant communities, and means for linking consumer effects to key plant traits and community assembly processes are lacking. We conducted a global literature review and meta‐analysis to evaluate whether seed size, a trait representing fundamental life‐history trade‐offs in plant offspring investment, could predict post‐dispersal seed predator effects on seed removal and plant recruitment. Seed size predicted small mammal seed removal rates and their impacts on plant recruitment consistent with optimal foraging theory, with intermediate seed sizes most strongly impacted globally – for both native and exotic plants. However, differences in seed size distributions among ecosystems conditioned seed predation patterns, with relatively large‐seeded species most strongly affected in grasslands (smallest seeds), and relatively small‐seeded species most strongly affected in tropical forests (largest seeds). Such size‐dependent seed predation has profound implications for coexistence among plants because it may enhance or weaken opposing life‐history trade‐offs in an ecosystem‐specific manner. Our results suggest that seed size may serve as a key life‐history trait that can integrate consumer effects to improve understandings of plant coexistence.  相似文献   

18.
Climate change is likely to become an increasingly major obstacle to slowing the rate of species extinctions. Several new assessment approaches have been proposed for identifying climate‐vulnerable species, based on the assumption that established systems such as the IUCN Red List need revising or replacing because they were not developed to explicitly consider climate change. However, no assessment approach has been tested to determine its ability to provide advanced warning time for conservation action for species that might go extinct due to climate change. To test the performance of the Red List system in this capacity, we used linked niche‐demographic models with habitat dynamics driven by a ‘business‐as‐usual’ climate change scenario. We generated replicate 100‐year trajectories for range‐restricted reptiles and amphibians endemic to the United States. For each replicate, we categorized the simulated species according to IUCN Red List criteria at annual, 5‐year, and 10‐year intervals (the latter representing current practice). For replicates that went extinct, we calculated warning time as the number of years the simulated species was continuously listed in a threatened category prior to extinction. To simulate data limitations, we repeated the analysis using a single criterion at a time (disregarding other listing criteria). Results show that when all criteria can be used, the Red List system would provide several decades of warning time (median = 62 years; >20 years for 99% of replicates), but suggest that conservation actions should begin as soon as a species is listed as Vulnerable, because 50% of replicates went extinct within 20 years of becoming uplisted to Critically Endangered. When only one criterion was used, warning times were substantially shorter, but more frequent assessments increased the warning time by about a decade. Overall, we found that the Red List criteria reliably provide a sensitive and precautionary way to assess extinction risk under climate change.  相似文献   

19.
Aim We analysed presence/absence data for understorey bird species in rain forest fragments sampled from 1979 through 2001. Here we consider extinctions between 1992, when most fragments had been isolated for at least 8 years, and 2001. Our objectives were to determine whether high extinction rates documented soon after isolation continued through up to 20 years after isolation, and to examine fragment size and landscape effects on extinction. Location Biological Dynamics of Forest Fragments Project, near Manaus, Brazil. Methods Through 1992, birds were surveyed with standardized mist net sampling in ten 1‐ to 100‐ha fragments. We repeated the mist net protocol in 2000–01. We also added remote taping of the dawn chorus and tape playback surveys for species captured in 1991–92 but not in 2000–01. Results Between 1992 and 2001, 37 species went extinct in at least one fragment. As expected, extinction rate decreased with increasing fragment size. Over 30% of species went extinct in 1‐ha fragments, compared to about 5% in 100‐ha fragments. Extinction followed a predictable pattern: most species lost from 100‐ha fragments between 1992 and 2001 had already gone extinct in smaller fragments before 1992. Despite extinctions, fragments gained species between 1992 and 2001, apparently due to species moving through the developing second growth matrix. Fragments surrounded by old second growth had lower extinction rates than predicted based on fragment size alone. Main conclusions Sequential extinctions occurred for at least 20 years. Some additional species previously lost from smaller fragments may continue to go extinct in 100‐ha fragments. At the same time, species assemblages in 1‐ and 10‐ha fragments mostly reflect second‐growth dynamics by 20 years after isolation. High species loss predicted from the first few years after isolation has not occurred, almost certainly because of recolonization.  相似文献   

20.
As human population size increases and cities become denser, several urban‐related selection pressures increasingly affect species composition in both terrestrial and aquatic habitats. Yet, it is not well known whether and how urbanization influences other facets of biodiversity, such as the functional and evolutionary composition of communities, and at what spatial scale urbanization acts. Here we used a hierarchical sampling design in which urbanization levels were quantified at seven spatial scales (ranging from 50 to 3200 m radii). We found that urbanization gradients are associated with a strong shift in cladoceran zooplankton species traits, which in turn affected phylogenetic composition of the entire metacommunity, but only when considering urbanization at the smallest spatial scale (50 m radius). Specifically, small cladoceran species dominated in more urbanized ponds whereas large‐bodied, strong competitors prevailed in less urbanized systems. We also show that trait and phylogenetic metrics strongly increase the amount of variation in β‐diversity that can be explained by degree of urbanization, environmental and spatial factors. This suggests that the mechanisms shaping β‐diversity in our study system are mediated by traits and phylogenetic relatedness rather than species identities. Our study indicates that accounting for traits and phylogeny in metacommunity analyses helps to explain seemingly idiosyncratic patterns of variation in zooplankton species composition along urbanization gradients. The fact that urbanization acts only at the smallest spatial scale suggests that correctly managing environmental conditions locally has the power to counteract the effects of urbanization on biodiversity patterns. The multidimensional approach we applied here can be applied to other systems and organism groups and seems to be key in understanding how overall biodiversity changes in response to anthropogenic pressures and how this scales up to affect ecosystem functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号