共查询到20条相似文献,搜索用时 15 毫秒
1.
Various non-natural C(3)- and C(4)-symmetric alpha-amino acid derivatives have been synthesized via Suzuki-Miyaura cross-coupling reaction between aromatic iodides or bromide and a suitably protected DL-4-boronophenylalanine derivative. 相似文献
2.
Ab initio calculations have been performed using the complete basis set model (CBS-QB3) to study the reaction mechanism of
butane radical (C4H9•) with oxygen (O2). On the calculated potential energy surface, the addition of O2 to C4H9• forms three intermediates barrierlessly, which can undergo subsequent isomerization or decomposition reaction leading to
various products: HOO• + C4H8, C2H5• + CH2CHOOH, OH• + C3H7CHO, OH• + cycle-C4H8O, CH3• + CH3CHCHOOH, CH2OOH• + C3H6. Five pathways are supposed in this study. After taking into account the reaction barrier and enthalpy, the most possible
reaction pathway is C4H9• + O2 → IM1 → TS5 → IM3 → TS6 → IM4 → TS7 → OH• + cycle-C4H8O. 相似文献
3.
The susceptibility of Salmonella spp. to 15 fatty acids was determined in vitro in cultures grown on glucose. Antimicrobial activity was expressed as IC50 (a concentration at which only 50% of the initial glucose in cultures was utilized). Caprylic acid was the only acid inhibiting glucose utilization. In cultures of S. enteritidis, S. infantis and S. typhimurium, IC50 of caprylic acid ranged from 0.75 to 1.17 mg/mL. A moderate adaptation effect was observed as these values increased 1.5-1.8 times when bacteria were subcultured 10 times in media containing a low concentration of caprylic acid (1/3 IC50). No effect of calcium ions added in excess on antimicrobial activity of caprylic acid was observed. Incubation of salmonellas with caprylic acid (1 mg/mL; 30 min) at pH 5.2-5.3 led to a reduction in the concentration of viable cells below the detection limit; 2-6% of Salmonella cells survived at pH 6.3-6.6. 相似文献
4.
Z. F. Rakhmankulova E. V. Shuyskaya P. Yu. Voronin T. A. Velivetskaya A. V. Ignatiev I. Yu. Usmanov 《Russian Journal of Plant Physiology》2018,65(3):455-463
Plants from two Sedobassia sedoides (Pall.) Aschers populations (Makan and Valitovo) (Chenopodiaceae) with C2 photosynthesis (precursor of C4 photosynthesis in phylogenesis) and photorespiratory CO2-concentrating mechanism were studied. Genetic polymorphism and isotope discrimination (δ13С) levels of the plants were determined under natural conditions, and their morpho-physiological parameters such as fresh and dry biomass of the above ground parts of plants, functioning of photosystem I (PSI) and photosystem II (PSII), intensity of net photosynthesis (A), transpiration (E), photorespiration and water use efficiency (WUE) of plants were calculated under control and salinine conditions (0 and 200 mM NaCl). Results of the population-genetic analysis showed that the Makan population is polymorphic (plastic) and the Valitovo population is monomorphic (narrowly specialized). There were no significant differences between the populations based on δ13С values or growth parameters, PSII, A, E and WUE under control conditions. Under saline conditions, dry biomass accumulation decreased in the Makan population by 15% and by more than 2- fold in the Valitovo population. Population differences were revealed in terms of photorespiration intensity and P700 oxidation kinetics under control and saline conditions. Under control conditions, Makan plants were characterized by a higher photorespiration intensity, which decreased by 2-fold under saline conditions to the photorespiration level of Valitovo plants. Cyclic electron transport activity was minimal in the control Makan plants, and it increased by almost 2-fold under saline conditions to the level of that in Valitovo plants under control and saline conditions. Under control conditions, photosynthesis in Makan plants can be specified as the proto-Kranz type (transitional type from C3 to C2) and that in Valitovo plants can be specified as the C2 type (C4 photosynthesis with photorespiratory CO2-concentrating mechanism), based on their photorespiration level and cyclic electron transport activity. Under saline conditions, Makan plants exhibited features of C2 photosynthesis. Intraspecific functional differences of photosynthesis were revealed in different populations of intermediate C3–C4 plant species S. sedoides which reflect the initial stages of formation of a photorespiratory CO2-concentrating mechanism during C4 photosynthesis evolution, accompanied by decrease in salt tolerance. 相似文献
5.
Presence of Ornithine in the Urate-binding α<Subscript>1</Subscript>—<Subscript>2</Subscript>Globulin 总被引:1,自引:0,他引:1
THE urate-binding α1–α2 globulin has been isolated from human plasma in a highly purified state1. The protein was purified by DEAE-‘Sephadex’, ammonium sulphate precipitation and semi-preparative Polyacrylamide gel electrophoresis. The urate-binding α1–α2 globulin is a rod-shaped glycoprotein, containing 12.1% carbohydrate, with an isoelectric point of 4.6 and a molecular weight of 67,000 ± 4,000. Amino-acid analysis indicated an unknown basic compound which appeared as an extra peak just in front of lysine1. To identify this compound, high voltage paper electrophoresis has been carried out on a plate electrophoresis apparatus in pyridine-acetate buffer pH 3.5. A spot separated out corresponding to ornithine. Amino-acid analysis on a BC-200 automatic analyser (Bio-Cal Instruments Co., West Germany), with a 54 cm column at 55° C and with 0.35 M sodium citrate buffer, pH 5.28, as elution buffer at a flow-rate of 150 ml./h, showed that ornithine was present. The presence of ornithine in the protein hydrolysate was also verified by gas chromatography/mass spectrometry2. 相似文献
6.
7.
While ~30% of the human genome encodes membrane proteins, only a handful of structures of membrane proteins have been resolved to high resolution. Here, we studied the structure of a member of the Cys-loop ligand gated ion channel protein superfamily of receptors, human type A γ2α1β2α1β2 gamma amino butyric acid receptor complex in a lipid bilayer environment. Studying the correlation between the structure and function of the gamma amino butyric acid receptor may enhance our understanding of the molecular basis of ion channel dysfunctions linked with epilepsy, ataxia, migraine, schizophrenia and other neurodegenerative diseases. The structure of human γ2α1β2α1β2 has been modeled based on the X-ray structure of the Caenorhabditis elegans glutamate-gated chloride channel via homology modeling. The template provided the first inhibitory channel structure for the Cys-loop superfamily of ligand-gated ion channels. The only available template structure before this glutamate-gated chloride channel was a cation selective channel which had very low sequence identity with gamma aminobutyric acid receptor. Here, our aim was to study the effect of structural corrections originating from modeling on a more reliable template structure. The homology model was analyzed for structural properties via a 100 ns molecular dynamics (MD) study. Due to the structural shifts and the removal of an open channel potentiator molecule, ivermectin, from the template structure, helical packing changes were observed in the transmembrane segment. Namely removal of ivermectin molecule caused a closure around the Leu 9 position along the ion channel. In terms of the structural shifts, there are three potential disulfide bridges between the M1 and M3 helices of the γ2 and 2 α1 subunits in the model. The effect of these disulfide bridges was investigated via monitoring the differences in root mean square fluctuations (RMSF) of individual amino acids and principal component analysis of the MD trajectory of the two homology models—one with the disulfide bridge and one with protonated Cys residues. In all subunit types, RMSF of the transmembrane domain helices are reduced in the presence of disulfide bridges. Additionally, loop A, loop F and loop C fluctuations were affected in the extracellular domain. In cross-correlation analysis of the trajectory, the two model structures displayed different coupling in between the M2–M3 linker region, protruding from the membrane, and the β1-β2/D loop and cys-loop regions in the extracellular domain. Correlations of the C loop, which collapses directly over the bound ligand molecule, were also affected by differences in the packing of transmembrane helices. Finally, more localized correlations were observed in the transmembrane helices when disulfide bridges were present in the model. The differences observed in this study suggest that dynamic coupling at the interface of extracellular and ion channel domains differs from the coupling introduced by disulfide bridges in the transmembrane region. We hope that this hypothesis will be tested experimentally in the near future. 相似文献
8.
Similar to σ-hole interactions, the π-hole interaction has attracted much attention in recent years. According to the positive electrostatic potentials above and below the surface of inorganic heterocyclic compounds S2N2 and three SN2P2 isomers (heterocyclic compounds 1–4), and the negative electrostatic potential outside the X atom of XH3 (X = N, P, As), S2N2/SN2P2?XH3 (X = N, P, As) complexes were constructed and optimized at the MP2/aug-cc-pVTZ level. The X atom of XH3 (X = N, P, As) is almost perpendicular to the ring of the heterocyclic compounds. The π-hole interaction energy becomes greater as the trend goes from 1?XH3 to 4?XH3. These π-hole interactions are weak and belong to “closed-shell” noncovalent interactions. According to the energy decomposition analysis, of the three attractive terms, the dispersion energy contributes more than the electrostatic energy. The polarization effect also plays an important role in the formation of π-hole complexes, with the contrasting phenomena of decreasing electronic density in the π-hole region and increasing electric density outside the X atom of XH3 (X = N, P, As). 相似文献
9.
E. A. Kosenko I. N. Solomadin Yu. G. Kaminsky 《Russian Journal of Bioorganic Chemistry》2009,35(2):157-162
The effect of the β-amyloid peptide Aβ25–35 and fullerene C60 on the activity of the cytoplasmic enzymes lactate dehydrogenase (LDH) and glutathione peroxidase (GLP), and membrane-bound phosphofructokinase (PFK) and Na+,K+-ATPase in human erythrocytes has been studied. When used in combination, the cytotoxins decrease the activity of LDH and PFK in a nonadditive manner; in this case, Aβ25–35 protects PFK against the inhibitory effect of C60. The activity of LDH, GLP, and PFK decreases within the first 2–20 min of incubation of erythrocytes with Aβ25–35 in the absence of glucose. The addition of glucose sharply decreases the inhibitory action of Aβ25–35 on LDH and GLP but does not affect the fourfold decrease in activity of PFK; the activity of membrane-bound Na+,K+-ATPase does not depend on the presence of glucose. Possible mechanisms of interaction of Aβ25–35 and fullerene C60 with the erythrocyte membrane and enzymes are discussed. 相似文献
10.
Utilizing first-principles calculations, we studied the electronic and optical properties of C24, C12X6Y6, and X12Y12 fullerenes (X?=?B, Al; Y?=?N, P). These fullerenes are energetically stable, as demonstrated by their negative cohesive energies. The energy gap of C24 may be tuned by doping, and the B12N12 fullerene was found to have the largest energy gap. All of the fullerenes had finite optical gaps, suggesting that they are optical semiconductors, and they strongly absorb UV radiation, so they could be used in UV light protection devices. They could also be used in solar cells and LEDs due to their low reflectivities. 相似文献
11.
Tessari F Bortolami S Zoccarato F Alexandre A Cavallini L 《Journal of bioenergetics and biomembranes》2011,43(3):267-274
Sodium Nitroprusside (SNP) and S-Nitrosoglutathione (GSNO) differently affect mitochondrial H2O2 release at Complex-I. mM SNP increases while GSNO decreases the release induced by succinate alone or added on top of NAD-linked
substrates. Stimulation likely depends on Nitric Oxide (
.
NO) (released by SNP but not by GSNO) inhibiting cytochrome oxidase and mitochondrial respiration. Preincubations with SNP
or high GSNO (10 mM plus DTE to increases its
.
NO release) induces an inhibition of the succinate dependent H2O2 production consistent with a
.
NO dependent covalent modification. However maximal inhibition of the succinate dependent H2O2 release is obtained in the presence of low GSNO (20–100 μM), but not with SNP. This inhibition appears independent of
.
NO release since μM GSNO does not affect mitochondrial respiration, or the H2O2 detection systems and its effect is very rapid. Inhibition may be partly due to an increased removal of O2.− since GSNO chemically competes with NBT and cytochrome C in O2.− detection. 相似文献
12.
We present a theoretical study on the detailed mechanism and kinetics of the H+HCN →H+HNC process. The potential energy surface was calculated at the complete basis set quantum chemical method, CBS-QB3. The vibrational frequencies and geometries for four isomers (H2CN, cis-HCNH, trans-HCNH, CNH2), and seven saddle points (TSn where n = 1 ? 7) are very important and must be considered during the process of formation of the HNC in the reaction were calculated at the B3LYP/6-311G(2d,d,p) level, within CBS-QB3 method. Three different pathways (PW1, PW2, and PW3) were analyzed and the results from the potential energy surface calculations were used to solve the master equation. The results were employed to calculate the thermal rate constant and pathways branching ratio of the title reaction over the temperature range of 300 up to 3000 K. The rate constants for reaction H + HCN → H + HNC were fitted by the modified Arrhenius expressions. Our calculations indicate that the formation of the HNC preferentially occurs via formation of cis–HCNH, the fitted expression is k P W2(T) = 9.98 × 10?22 T 2.41 exp(?7.62 kcal.mol?1/R T) while the predicted overall rate constant k O v e r a l l (T) = 9.45 × 10?21 T 2.15 exp(?8.56 kcal.mol?1/R T) in cm 3 molecule ?1 s ?1. 相似文献
13.
Marcela Laukova Peter Vargovic Olga Krizanova Richard Kvetnansky 《Cellular and molecular neurobiology》2010,30(7):1077-1087
Catecholamines are among first compounds released during stress, and they regulate many functions of the organism, including
immune system, via adrenergic receptors (ARs). Spleen, as an immune organ with high number of macrophages, possesses various
ARs, from which β2-ARs are considered to be the most important for the modulation of immune functions. Nevertheless, little is known about the
regulation and involvement of ARs in the splenic function by stress. Therefore, the aim of this work was to measure the gene
expression of ARs and several cytokines in the spleen of rats exposed to a single and repeated (14×) immobilization stress
(IMO). We have found a significant increase in β2-AR mRNA after a single IMO, but a significant decrease in β2-AR mRNA and protein level after repeated (14×) IMO. The most prominent decrease was detected in the gene expression of the
α2A- and α2C-AR after repeated IMO. However, changes in mRNA were translated into protein levels only for the α2C-subtype. Other types of ARs remained unchanged during the stress situation. Since we proposed that these ARs might affect
production of cytokines, we measured gene expression of pro-inflammatory (TNF-α, IL-1β, IL-6 and IL-18) and anti-inflammatory
(IL-10 and TGF-β1) cytokines. We detected changes only in IL-6 and IL-10 mRNA levels. While IL-6 mRNA was increased, IL-10
mRNA dropped after repeated IMO. According to these results we suggest that changes of β2- and α2C-ARs participate in IL-6-mediated processes in the spleen, especially during chronic stress situations. 相似文献
14.
Nine minima were found on the intermolecular potential energy surface for the ternary system HNO3(CH3OH)2 at the MP2/aug-cc-pVDZ level of theory. The cooperative effect, which is a measure of the hydrogen-bonding strength, was probed in these nine conformations of HNO3…(CH3OH)2. The results are discussed here in terms of structures, energetics, infrared vibrational frequencies, and topological parameters. The cooperative effect was observed to be an important contributor to the total interaction energies of the cyclic conformers of HNO3…(CH3OH)2, meaning that it cannot be neglected in simulations in which the pair-additive potential is applied. 相似文献
15.
MHC class I molecules are heterotrimeric complexes composed of heavy chain, 2-microglobulin (2m) and short peptide. This trimeric complex is generated in the endoplasmic reticulum (ER), where a peptide loading complex (PLC) facilitates transport from the cytosol and binding of the peptide to the preassembled ER resident heavy chain/2m dimers. Association of mouse MHC class I heavy chain with 2m is characterized by allelic differences in the number and/or positions of amino acid interactions. It is unclear, however, whether all alleles follow common binding patterns with minimal contributions by allele-specific contacts, or whether essential contacts with 2m are different for each allele. While searching for the PLC binding site in the 3 domain of the mouse MHC class I molecule H-2Db, we unexpectedly discovered a site critical for binding mouse, but not human, 2m. Interestingly, amino acids in the corresponding region of another MHC class I heavy chain allele do not make contacts with the mouse 2m. Thus, there are allelic differences in the modes of binding of 2m to the heavy chain of MHC class I. 相似文献
16.
Liliya Vugmeyster Aaron Griffin Dmitry Ostrovsky Shibani Bhattacharya Parker J. Nichols C. James McKnight Beat Vögeli 《Journal of biomolecular NMR》2018,72(1-2):39-54
We investigated correlated µs-ms time scale motions of neighboring 13C′–15N and 13Cα–13Cβ nuclei in both protonated and perdeuterated samples of GB3. The techniques employed, NMR relaxation due to cross-correlated chemical shift modulations, specifically target concerted changes in the isotropic chemical shifts of the two nuclei associated with spatial fluctuations. Field-dependence of the relaxation rates permits identification of the parameters defining the chemical exchange rate constant under the assumption of a two-site exchange. The time scale of motions falls into the intermediate to fast regime (with respect to the chemical shift time scale, 100–400 s?1 range) for the 13C′–15N pairs and into the slow to intermediate regime for the 13Cα–13Cβ pairs (about 150 s?1). Comparison of the results obtained for protonated and deuterated GB3 suggests that deuteration has a tendency to reduce these slow scale correlated motions, especially for the 13Cα–13Cβ pairs. 相似文献
17.
Molecular docking simulations were performed in this study to investigate the importance of both structural and catalytic zinc ions in the human alcohol dehydrogenase beta(2)beta(2) on substrate binding. The structural zinc ion is not only important in maintaining the structural integrity of the enzyme, but also plays an important role in determining substrate binding. The replacement of the catalytic zinc ion or both catalytic and structural zinc ions with Cu(2+) results in better substrate binding affinity than with the wild-type enzyme. The width of the bottleneck formed by L116 and V294 in the substrate binding pocket plays an important role for substrate entrance. In addition, unfavorable contacts between the substrate and T48 and F93 prevent the substrate from moving too close to the metal ion. The optimal binding position occurs between 1.9 and 2.4 A from the catalytic metal ion. 相似文献
18.
The dissolved CO 2 concentration of stream waters is an important component of the terrestrial carbon cycle and an important pathway for release
of CO2 to the atmosphere. This study uses data from the UK's largest groundwater monitoring network to estimate the importance of
groundwater in contributing excess dissolved CO2 to the atmosphere. The study shows that:
If this were replicated across the UK then the flux of CO2 from rivers would be 0.65 Mt C/year. 相似文献
(i) | the arithmetic mean concentration of excess dissolved CO2 in the groundwater was 4.99 mg C/I with a standard deviation of 2.53 |
(ii) | for the groundwater composition of excess dissolved CO2 analysis shows no statistical difference between years but does show a significant intra-annual effect and a significant difference between aquifers |
(iii) | A weighted average of the estimate the areal export of excess dissolved CO2 from the groundwater of the catchment is between 1.4 and 2.9 t C/km2 |
(iv) | the flux of excess dissolved CO2 at the catchment outlet over the period between 1975 and 2002 averages 1.79 kt C/year. |
19.
Franco Zoccarato Lucia Cavallini Adolfo Alexandre 《Journal of bioenergetics and biomembranes》2009,41(4):387-393
Mitochondrial production of H2O2 is low with NAD substrates (glutamate/pyruvate, 3 and 2 mM) (G/P) and increases over ten times upon further addition of succinate,
with the formation of a sigmoidal curve (semimaximal value at 290 μM, maximal H2O2 production at 600 μM succinate). Malate counteracts rapidly the succinate induced increased H2O2 release and moves the succinate dependent H2O2 production curve to the right. Nitric oxide (NO) and carbon monoxide (CO) are cytochrome c oxidase inhibitors which increase
mitochondrial ROS production. Cyanide (CN−) was used to mimic NO and CO. In the presence of G/P and succinate (300 μM), CN− progressively increased the H2O2 release rate, starting at 1.5 μM. The succinate dependent H2O2 production curve was moved to the left by 30 μM CN−. The Vmax was little modified. We conclude that succinate is the controller of mitochondrial H2O2 production, modulated by malate and CN−. We propose that succinate promotes an interaction between Complex II and Complex I, which activates O2− production. 相似文献
20.
P. B. MARLEY 《Nature: New biology》1972,235(59):213-214
PROSTAGLANDIN (PG) F2αhas antifertility effects in many species1–3 but there are conflicting suggestions as to its mechanism of action. For example, it may cause the degeneration of the corpus luteum by decreasing blood flow in the uteroovarian vein4; alternatively, its action may be due to a hypersecretion of luteinizing hormone (LH) by the pituitary3,5. I have investigated the effects of PGF2α, E2 and E1 on pregnancy in mice and examined the mechanism of action of PGF2α. 相似文献