首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparison of the Leishmania infantum genome with Leishmania braziliensis and Leishmania major genomes has identified 25 L. infantum species‐specific genes that are absent or pseudogenes in L. major and L. braziliensis. To determine whether these L. infantum species‐specific genes are involved in visceral Leishmania infection, we cloned the orthologues of 14 L. infantum species‐specific genes from the genetically closely related Leishmania donovani and introduced them into L. major. Two of these L. donovani species‐specific genes were found to significantly increase L. major survival in visceral organs in BALB/c mice. One (orthologue of LinJ28_V3.0340; Ld2834) of these two genes was further investigated. The L. donovani Ld2834 null mutants displayed dramatically reduced virulence in BALB/c mice and were unable to survive in axenic amastigote culture conditions arguing that Ld2834 plays a crucial role in enabling L. donovani survive at the increased temperature typically associated with visceral organs. Ld2834 encodes a 50 kDa protein that is localized in the cytoplasma and has no significant sequence similarity with other known genes. This study validates the importance of comparative genomics for understanding Leishmania species pathology and argues that Leishmania species‐specific genes play important roles in tissue tropism and virulence.  相似文献   

2.
Leishmania donovani and Leishmaniainfantum infections cause fatal visceral leishmaniasis, and Leishmaniamajor causes self healing cutaneous lesions. It is poorly understood what genetic differences between these Leishmania species are responsible for the different pathologies of infection. To investigate whether L.donovani species-specific genes are involved in visceral Leishmania infection, we have examined a L.donovani species-specific gene Ld1590 (ortholog of LinJ15_V3.0900) that is a pseudogene in L.major. We have previously shown that transgenic expression of L.donovani Ld1590 in L.major significantly increased the liver and spleen parasite burdens in infected BALB/c mice. In this study we report that Ld1590 potentially encodes a nucleotide sugar transporter (NST) which localizes in the L.donovani Golgi apparatus. Surprisingly, although transgenic expression of the Ld1590 NST increased L.major survival in visceral organs, deletion of Ld1590 NST in L.donovani had no significant effect on L.donovani survival in mice. These observations suggest that loss of the functional Ld1590 gene in L.major may have been associated with reduced virulence in visceral organs in its animal reservoir and could have contributed to L.major’s tropism for cutaneous infections.  相似文献   

3.
Thirteen sets of polymerase chain reaction (PCR) primers were designed to amplify microsatellite loci identified in the genome sequence of Leishmania major. Polymorphisms were detected in L. major at all loci. In Leishmania donovani only two of these loci were informative for classification purposes with this data set. The PCR products of all loci from one L. donovani strain were sequenced and it was found that the number of repeats in the microsatellite loci were either substantially reduced with respect to L. major or absent altogether. Consequently it is unlikely to be possible to use the genome sequence of L. major to identify polymorphic microsatellite loci in other Leishmania species.  相似文献   

4.
Reporter genes have proved to be an excellent tool for studying disease progression. Recently, the green fluorescent protein (GFP) ability to quantitatively monitor gene expression has been demonstrated in different organisms. This report describes the use of Leishmania tarentolae (L. tarentolae) expression system (LEXSY) for high and stable levels of GFP production in different Leishmania species including L. tarentolae, L. major and L. infantum. The DNA expression cassette (pLEXSY-EGFP) was integrated into the chromosomal ssu locus of Leishmania strains through homologous recombination. Fluorescent microscopic image showed that GFP transgenes can be abundantly and stably expressed in promastigote and amastigote stages of parasites. Furthermore, flow cytometry analysis indicated a clear quantitative distinction between wild type and transgenic Leishmania strains at both promastigote and amastigote forms. Our data showed that the footpad lesions with GFP-transfected L. major are progressive over time by using fluorescence small-animal imaging system. Consequently, the utilization of stable GFP-transfected Leishmania species will be appropriate for in vitro and in vivo screening of anti-leishmanial drugs and vaccine development as well as understanding the biology of the host–parasite interactions at the cellular level.  相似文献   

5.
Leishmaniasis is a vector‐borne infectious disease with a wide range of pathologies depending on the species of Leishmania. Leishmania parasites are transmitted by the sand fly vector as promastigotes; within the mammalian host, Leishmania parasites differentiate into amastigotes and replicate in macrophages. The A2 protein from Leishmania donovani is expressed predominantly in amastigotes and therefore likely plays a role in survival in the mammalian host. In the present study, we have determined that the A2 protein colocalized with the Leishmania endoplasmic reticulum binding protein, BiP, was induced by stress and complexed with BiP following heat shock. The A2 gene in Leishmania major is a non‐expressed pseudogene, and we present evidence that ectopic expression of a transfected A2 gene in L. major enhanced its viability following heat shock. A2 may therefore play a role in protecting L. donovani from stress associated with infection in visceral organs, including the fever typically associated with visceral leishmaniasis. Interestingly, when comparing A2 protein localization, we also observed that the Leishmania secreted acid phosphatase SAcP protein was transported out of the parasite‐containing phagolysosome and was located throughout the macrophage cytoplasm in vesicles, providing the first example of a secreted Leishmania‐derived protein exiting the parasite‐containing phagolysosome.  相似文献   

6.
Leishmania parasites use polymorphonuclear neutrophils as intermediate hosts before their ultimate delivery to macrophages following engulfment of parasite-infected neutrophils. This leads to a silent and unrecognized entry of Leishmania into the macrophage host cell. Neutrophil function depends on its cytoplasmic granules, but their mobilization and role in how Leishmania parasites evade intracellular killing in neutrophils remain undetermined. Here, we have found by ultrastructural approaches that neutrophils ingested Leishmania major promastigotes, and azurophilic granules fused in a preferential way with parasite-containing phagosomes, without promoting parasite killing. Azurophilic granules, identified by the granule marker myeloperoxidase, also fused with Leishmania donovani-engulfed vacuoles in human neutrophils. In addition, the azurophilic membrane marker CD63 was also detected in the vacuole surrounding the parasite, and in the fusion of azurophilic granules with the parasite-engulfed phagosome. Tertiary and specific granules, involved in vacuole acidification and superoxide anion generation, hardly fused with Leishmania-containing phagosomes. L. major interaction with neutrophils did not elicit production of reactive oxygen species or mobilization of tertiary and specific granules. By using immunogold electron microscopy approaches in the engulfment of L. major and L. donovani by human neutrophils, we did not find a significant contribution of endoplasmic reticulum to the formation of Leishmania-containing vacuoles. Live Leishmania parasites were required to be optimally internalized by neutrophils. Our data suggest that Leishmania promastigotes modulate their uptake by neutrophils, and regulate granule fusion processes in a rather selective way to favor parasite survival in human neutrophils.  相似文献   

7.
8.
PCR has proved useful for rapid diagnosis and typing of Leishmania. Lack of specificity to discriminate between species and/or sensitivity to detect from clinical samples has always been an issue. Previously developed primers either require PCR–RFLP analysis for Leishmania aethiopica discrimination or lack sensitivity to detect L. aethiopica from clinical samples. Here we report the development and validation of L. aethiopica specific PCR primers (V5F/V10R) based on cysteine protease B (cpb), a multicopy and polymorphic gene of Leishmania. V5F/V10R primers differentiate L. aethiopica from Leishmania tropica, Leishmania major, Leishmania donovani and Leishmania infantum by direct PCR. In addition, they are sensitive enough to detect L. aethiopica from biopsy samples. The primers can be very useful for epidemiological studies, species typing and diagnosis of L. aethiopica directly from clinical samples. Implementation of these primers in routine L. aethiopica diagnosis can improve detection rate, save time, money and labor required for culturing Leishmania.  相似文献   

9.
Surface phosophoglycans such as lipophosphoglycan (LPG) or proteophosphoglycan (PPG) and glycosylinositol phospholipids (GIPLs) modulate essential interactions between Leishmania and mammalian macrophages. Phosphoglycan synthesis depends on the Golgi GDP-mannose transporter encoded by LPG2. LPG2-null (lpg2) Leishmania major cannot establish macrophage infections or induce acute pathology, whereas lpg2Leishmania mexicana retain virulence. lpg2Leishmaniadonovani has been reported to survive poorly in cultured macrophages but in vivo survival has not been explored. Herein we discovered that, similar to lpg2L. major, lpg2L. donovani promastigotes exhibited diminished virulence in mice, but persisted at consistently low levels. lpg2L. donovani promastigotes could not establish infection in macrophages and could not transiently inhibit phagolysosomal fusion. Furthermore, lpg2 promastigotes of L. major, L. donovani and L. mexicana were highly susceptible to complement-mediated lysis. We conclude that phosphoglycan assembly and expression mediated by L. donovani LPG2 are important for promastigote and amastigote virulence, unlike L. mexicana but similar to L. major.  相似文献   

10.
Leishmania/L. major was identified as the etiological agent of human localized cutaneous leishmaniasis. L. major metacyclic promastigotes/MP – the infectious form transmitted by sand flies – were enriched from axenically-derived cultures and inoculated into the dermis of mice (103 or 104 luciferase-expressing L. major MP inoculated into the C57BL/6 mouse ear pinna). Quantitative readout assays were then combined with imaging of this L. major-hosting skin site and established i) that a specific period of time – depending upon the L. major load used for the inoculation – is required for the L. major-hosting ear pinna to be continuously populated by a balanced population of functional regulatory and effector T lymphocytes, and that ii) this balance coincides with persisting low numbers of amastigotes in more or less rapidly healing skin. This approach also established that, whatever the MP inoculum load delivered to the primary site, the immune processes that reduce the L. major amastigote population also account for concomitant immunity, namely remodelling of the secondary site – where 104 MP were delivered – as a clinically silent niche hosting a small L. major population.  相似文献   

11.

Background  

Leishmania represent a complex of important human pathogens that belong to the systematic order of the kinetoplastida. They are transmitted between their human and mammalian hosts by different bloodsucking sandfly vectors. In their hosts, the Leishmania undergo several differentiation steps, and their coordination and optimization crucially depend on numerous interactions between the parasites and the physiological environment presented by the fly and human hosts. Little is still known about the signalling networks involved in these functions. In an attempt to better understand the role of cyclic nucleotide signalling in Leishmania differentiation and host-parasite interaction, we here present an initial study on the cyclic nucleotide-specific phosphodiesterases of Leishmania major.  相似文献   

12.
Recently, we described the existence of the ubiquitin fold modifier 1 (Ufm1) and its conjugation pathway in Leishmania donovani. We demonstrated the conjugation of Ufm1 to proteins such as mitochondrial trifunctional protein (MTP) that catalyses β‐oxidation of fatty acids in L. donovani. To elucidate the biological roles of the Ufm1‐mediated modifications, we made an L. donovani Ufm1 null mutant (Ufm1?/?). Loss of Ufm1 and consequently absence of Ufm1 conjugation with MTP resulted in diminished acetyl‐CoA, the end‐product of the β‐oxidation in the Ufm1?/? amastigote stage. The Ufm1?/? mutants showed reduced survival in the amastigote stage in vitro and ex vivo in human macrophages. This survival was restored by re‐expression of wild‐type Ufm1 with concomitant induction of acetyl‐CoA but not by re‐expressing the non‐conjugatable Ufm1, indicating the essential nature of Ufm1 conjugation and β‐oxidation. Both cell cycle analysis and ultrastructural studies of Ufm1?/? parasites confirmed the role of Ufm1 in amastigote growth. The defect in vitro growth of amastigotes in human macrophages was further substantiated by reduced survival. Therefore, these studies suggest the importance of Ufm1 in Leishmania pathogenesis with larger impact on other organisms and further provide an opportunity to test Ufm1?/? parasites as drug and vaccine targets.  相似文献   

13.
Parasitic protozoa, such as Leishmania species, are thought to express a number of surface and secreted nucleoside triphosphate diphosphohydrolases (NTPDases) which hydrolyze a broad range of nucleoside tri- and diphosphates. However, the functional significance of NTPDases in parasite virulence is poorly defined. The Leishmania major genome was found to contain two putative NTPDases, termed LmNTPDase1 and 2, with predicted NTPDase catalytic domains and either an N-terminal signal sequence and/or transmembrane domain, respectively. Expression of both proteins as C-terminal GFP fusion proteins revealed that LmNTPDase1 was exclusively targeted to the Golgi apparatus, while LmNTPDase2 was predominantly secreted. An L. major LmNTPDase1 null mutant displayed increased sensitivity to serum complement lysis and exhibited a lag in lesion development when infections in susceptible BALB/c mice were initiated with promastigotes, but not with the obligate intracellular amastigote stage. This phenotype is characteristic of L. major strains lacking lipophosphoglycan (LPG), the major surface glycoconjugate of promastigote stages. Biochemical studies showed that the L. major NTPDase1 null mutant synthesized normal levels of LPG that was structurally identical to wild type LPG, with the exception of having shorter phosphoglycan chains. These data suggest that the Golgi-localized NTPase1 is involved in regulating the normal sugar-nucleotide dependent elongation of LPG and assembly of protective surface glycocalyx. In contrast, deletion of the gene encoding LmNTPDase2 had no measurable impact on parasite virulence in BALB/c mice. These data suggest that the Leishmania major NTPDase enzymes have potentially important roles in the insect stage, but only play a transient or non-major role in pathogenesis in the mammalian host.  相似文献   

14.
An intercellular spreading strategy using herpes simplex virus type 1 (HSV-1) VP22 protein is employed to enhance DNA vaccine potency of Leishmania major amastin antigen in BALB/c mice model. We evaluated the immunogenicity and protective efficacy of plasmid DNA vaccines encoding amastin-enhanced green fluorescent protein (EGFP) and VP22-amastin-EGFP. Optimal cell-mediated immune responses were observed in BALB/c mice immunized with VP22-amastin-EGFP as assessed by cytokine gene expression analysis using real time RT-PCR. Vaccination with the VP22-amastin-EGFP fusion construct elicited significantly higher IFN-gamma response upon antigen stimulation of splenocytes from immunized mice compared to amastin as a sole antigen. Mice immunized by VP22-amastin-EGFP showed partial protection following infectious challenge with L. major, as measured by parasite load in spleens. These results suggest that the development of DNA vaccines encoding VP22 fused to a target Leishmania antigen would be a promising strategy to improve immunogenicity and DNA vaccine potency.  相似文献   

15.
In Iran, three species of Leishmania have been incriminated as the causative agents of human leishmaniasis, Leishmania (L.) major, Leishmania tropica, and Leishmania infantum.Rhombomis opimus have been incriminated as a principal reservoirs of the parasitic protozoan Leishmania major, the causative agent of rural zoonotic cutaneous leishmaniasis (ZCL) in Iran. Rodents captured and examined to find Leishmania species using conventional methods including direct impression smear and microscopic observation inoculation samples to Balb/c and culture in NNN medium. Also molecular method was employed to detect Leishmania in rodents by amplifying a region of the ribosomal RNA amplicon of Leishmania (ITS1-5.8S rRNA–ITS2) using Nested PCR. Leshmania species were specified by DNA sequences. 36 (38.3%) of R. opimus were Leishmania positive using at least one conventional methods. Many more ITS-rDNA fragments were amplified from R. opimus but only 65 out of 74 PCR products contained enough DNA for direct sequencing or readable sequences. The PCR assays detected in Iranian R. opimus not only Leishmania major in 59 (79.7%) rodents but also Leishmania turanica in 6 (8.1%) rodents, another parasite of the great gerbil. These parasites were found in Turkemen Sahara, North East of Iran, in a focus of rural (ZCL). L. major and L. turanica in R. opimus firmly identified from Turkemen Sahara. Nine rodents with Leishmania infections unidentified which some were unreadable sequences, these could be mixed infections of L. major, L. turanica, Leishmania gerbillisensu lato and Leishmania close to L. gerbilli or a related species reported in sandflies previously from this location. The haplotypes of L. major and L. turanica were found to be identical to that of isolates of L. major and L. turanica from Iran and in GenBank elsewhere. R. opimus is probably the key reservoir in this ZCL focus because of its abundance and its infection rates with both L. major and L. turanica.  相似文献   

16.
Leishmaniasis is a family of diseases caused by protozoan parasites of the genus Leishmania. Various Leishmania species can cause human infection, producing a spectrum of clinical manifestations. The current treatments are unsatisfactory, and in absence of a vaccine, there is an urgent need for effective drugs to replace/supplement those currently in use. Recent studies have shown that the antineoplastic drug, tamoxifen, had direct leishmanicidal effect on several Leishmania species in vitro. Moreover, in vivo testing was carried out on some of the species and showed promising results. The authors have carried out the present work to complement previous published studies by investigating in vivo activity of tamoxifen in an experimental model of cutaneous leishmaniasis (CL) caused by Leishmania major. Groups of infected mice were given tamoxifen, orally, at a dose of 20 mg/kg/day for 15 days. Efficacy was assessed clinically, parasitologically, histopathologically by light and transmission electron microscope (TEM). Results showed that untreated infected mice suffered from autoamputation of the inoculated foot pad. However, those which received tamoxifen showed marked improvement of the cutaneous lesions and reduction of parasite burden. TEM of the cutaneous lesions from infected mice revealed the fine structure of normal Leishmania amastigotes, whereas those from infected mice treated with tamoxifen showed considerable changes. All male mice that received tamoxifen showed scrotal swelling with evident histopathological changes in the testes that could seriously compromise fertility of male mice. In conclusion, although tamoxifen causes significant side effects to the male reproductive system in the mouse model, it could provide an alternative to current agents. Results of this study demonstrated in vivo activity of tamoxifen against Leishmania major, thus, suggesting that tamoxifen is a suitable lead for the synthesis of more effective and less toxic antileishmanial derivatives.  相似文献   

17.

Background

Three major forms of human disease, cutaneous leishmaniasis, visceral leishmaniasis and mucocutaneous leishmaniasis, are caused by several leishmanial species whose geographic distribution frequently overlaps. These Leishmania species have diverse reservoir hosts, sand fly vectors and transmission patterns. In the Old World, the main parasite species responsible for leishmaniasis are Leishmania infantum, L. donovani, L. tropica, L. aethiopica and L. major. Accurate, rapid and sensitive diagnostic and identification procedures are crucial for the detection of infection and characterization of the causative leishmanial species, in order to provide accurate treatment, precise prognosis and appropriate public health control measures.

Methods/Principal Findings

High resolution melt analysis of a real time PCR product from the Internal Transcribed Spacer-1 rRNA region was used to identify and quantify Old World Leishmania in 300 samples from human patients, reservoir hosts and sand flies. Different characteristic high resolution melt analysis patterns were exhibited by L. major, L. tropica, L. aethiopica, and L. infantum. Genotyping by high resolution melt analysis was verified by DNA sequencing or restriction fragment length polymorphism. This new assay was able to detect as little as 2-4 ITS1 gene copies in a 5 µl DNA sample, i.e., less than a single parasite per reaction.

Conclusions/Significance

This new technique is useful for rapid diagnosis of leishmaniasis and simultaneous identification and quantification of the infecting Leishmania species. It can be used for diagnostic purposes directly from clinical samples, as well as epidemiological studies, reservoir host investigations and vector surveys.  相似文献   

18.
Visceral leishmaniasis is a vector-borne disease caused by an obligate intracellular protozoan parasite Leishmania donovani. The molecular mechanism involved in internalization of Leishmania is poorly understood. The entry of Leishmania involves interaction with the plasma membrane of host cells. We have previously demonstrated the requirement of host membrane cholesterol in the binding and internalization of L. donovani into macrophages. In the present work, we explored the role of the host actin cytoskeleton in leishmanial infection. We observed a dose-dependent reduction in the attachment of Leishmania promastigotes to host macrophages upon destabilization of the actin cytoskeleton by cytochalasin D. This is accompanied by a concomitant reduction in the intracellular amastigote load. We utilized a recently developed high resolution microscopy-based method to quantitate cellular F-actin content upon treatment with cytochalasin D. A striking feature of our results is that binding of Leishmania promastigotes and intracellular amastigote load show close correlation with cellular F-actin level. Importantly, the binding of Escherichia coli remained invariant upon actin destabilization of host cells, thereby implying specific involvement of the actin cytoskeleton in Leishmania infection. To the best of our knowledge, these novel results constitute the first comprehensive demonstration on the specific role of the host actin cytoskeleton in Leishmania infection. Our results could be significant in developing future therapeutic strategies to tackle leishmaniasis.  相似文献   

19.
20.
The initial 7 steps of the glycolytic pathway from glucose to 3-phosphoglycerate are localized in the glycosomes in Leishmania, including step 6, catalyzed by the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In L. donovani and L. mexicana, there exists a second GAPDH enzyme present in the cytosol that is absent in L. braziliensis and that has become a pseudogene in L. major. To investigate the role of the cytosolic GAPDH (cGAPDH), an L. donovani cGAPDH-null mutant was generated, and conversely, the functional L. donovani cGAPDH was introduced into L. major and the resulting engineered parasites were characterized. The L. donovani cGAPDH-null mutant was able to proliferate at the same rate as the wild-type parasite in glucose-deficient medium. However, in the presence of glucose, the L. donovani cGAPDH-null mutant consumed less glucose and proliferated more slowly than the wild-type parasite and displayed reduced infectivity in visceral organs of experimentally infected mice. This demonstrates that cGAPDH is functional in L. donovani and is required for survival in visceral organs. Restoration of cGAPDH activity in L. major, in contrast, had an adverse effect on L. major proliferation in glucose-containing medium, providing a possible explanation of why it has evolved into a pseudogene in L. major. This study indicates that there is a difference in glucose metabolism between L. donovani and L. major, and this may represent an important factor in the ability of L. donovani to cause visceral disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号