首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human complement factor H (FH), an abundant 155-kDa plasma glycoprotein with 40 disulphide bonds, regulates the alternative-pathway complement cascade. Mutations and single nucleotide polymorphisms in the FH gene predispose to development of age-related macular degeneration, atypical haemolytic uraemic syndrome and dense deposit disease. Supplementation with FH variants protective against disease is an enticing therapeutic prospect. Current sources of therapeutic FH are restricted to human blood plasma highlighting a need for recombinant material. Previously FH expression in cultured plant, mammalian or insect cells yielded protein amounts inadequate for full characterisation, and orders of magnitude below therapeutic usefulness. Here, the V62,Y402 variant of FH has been produced recombinantly (rFH) in Pichia pastoris cells. Codon-optimisation proved essential whilst exploitation of the yeast mating α-factor peptide ensured secretion. We thereby produced multiple 10s-of-milligram of rFH. Following endoglycosidase H digestion of N-linked glycans, rFH (with eight residual N-acetylglucosamine moieties) was purified on heparin-affinity resin and anion-exchange chromatography. Full-length rFH was verified by mass spectrometry and Western blot using monoclonal antibodies to the C-terminus. Recombinant FH is a single non-aggregated species (by dynamic light scattering) and fully functional in biochemical and biological assays. An additional version of rFH was produced in which eight N-glycosylation sequons were ablated by Asn-Gln substitutions resulting in a glycan-devoid product. Successful production of rFH in this potentially very highly expressing system makes production of therapeutically useful quantities economically viable. Furthermore, ease of genetic manipulation in P. pastoris would allow production of engineered FH versions with enhanced pharmacokinetic and pharmacodynamic properties.  相似文献   

2.
The alternative pathway of complement is an important part of the innate immunity response against foreign particles invading the human body. To avoid damage to host cells, it needs to be efficiently down-regulated by plasma factor H (FH) as exemplified by various diseases caused by mutations in its domains 19–20 (FH19–20) and 5–7 (FH5–7). These regions are also the main interaction sites for microbial pathogens that bind host FH to evade complement attack. We previously showed that inhibition of FH binding by a recombinant FH5–7 construct impairs survival of FH binding pathogens in human blood. In this study we found that upon exposure to full blood, the addition of FH5–7 reduces survival of, surprisingly, also those microbes that are not able to bind FH. This effect was mediated by inhibition of complement regulation and subsequently enhanced neutrophil phagocytosis by FH5–7. We found that although FH5–7 does not reduce complement regulation in the actual fluid phase of plasma, it reduces regulation on HDL particles in plasma. Using affinity chromatography and mass spectrometry we revealed that FH interacts with serum apolipoprotein E (apoE) via FH5–7 domains. Furthermore, binding of FH5–7 to HDL was dependent on the concentration of apoE on the HDL particles. These findings explain why the addition of FH5–7 to plasma leads to excessive complement activation and phagocytosis of microbes in full anticoagulated blood. In conclusion, our data show how FH interacts with apoE molecules via domains 5–7 and regulates alternative pathway activation on plasma HDL particles.  相似文献   

3.
4.
A partial cDNA encoding an Arabidopsis thaliana FH (Formin Homology) protein (AFH1) was used as a probe to clone a full length AFH1 cDNA. The deduced protein encoded by the cDNA contains a FH1 domain rich in proline residues and a C-terminal FH2 domain which is highly conserved amongst FH proteins. In contrast to FH proteins of other organisms, the predicted AFH1 protein also contains a putative signal peptide and a transmembrane domain suggesting its association with membrane. Cell fractionation by differential centrifugation demonstrated the presence of AFH1 in the Triton X-100 insoluble microsomal fraction. An Arabidopsis cDNA library was screened to identify proteins that interact with the C-terminal region of AFH1 using yeast two-hybrid assays, and one of the isolated cDNAs encoded a novel protein, FIP2. Experiments using recombinant proteins expressed in E. coli demonstrated that FIP2 interacted directly with AFH1. The amino acid sequence of FIP2 has partial homology to bacterial putative membrane proteins and animal A-type K+ ATPases. AFH1 may form a membrane anchored complex with FIP2, which might be involved in the organization of the actin cytoskeleton.  相似文献   

5.
The group B streptococcus (GBS) is the most important cause of life-threatening bacterial infections in newborn infants. Protective immunity to GBS infection is elicited by several surface proteins, one of which, the beta protein, is known to bind human IgA-Fc. Here, we show that the beta protein also binds human factor H (FH), a negative regulator of complement activation. Absorption experiments with whole human plasma demonstrated binding of FH to a GBS strain expressing beta protein but not to an isogenic beta-negative mutant. This binding was due to a direct interaction between beta and FH, as shown by experiments with purified proteins. Inhibition tests and studies with beta fragments demonstrated that FH and IgA-Fc bind to separate and nonoverlapping regions in beta. Heparin, a known ligand for FH, specifically inhibited the binding between beta and FH, suggesting that FH has overlapping binding sites for beta and heparin. Bacteria-bound FH retained its complement regulatory activity, implying that beta-expressing GBS may use bound FH to evade complement attack. The finding that beta protein binds FH adds to a growing list of interactions between human pathogens and complement regulatory proteins, supporting the notion that these interactions are of general importance in bacterial pathogenesis.  相似文献   

6.
The acquisition of regulatory proteins is a means of blood‐borne pathogens to avoid destruction by the human complement. We recently showed that the gametes of the human malaria parasite Plasmodium falciparum bind factor H (FH) from the blood meal of the mosquito vector to assure successful sexual reproduction, which takes places in the mosquito midgut. While these findings provided a first glimpse of a complex mechanism used by Plasmodium to control the host immune attack, it is hitherto not known, how the pathogenic blood stages of the malaria parasite evade destruction by the human complement. We now show that the human complement system represents a severe threat for the replicating blood stages, particularly for the reinvading merozoites, with complement factor C3b accumulating on the surfaces of the intraerythrocytic schizonts as well as of free merozoites. C3b accumulation initiates terminal complement complex formation, in consequence resulting in blood stage lysis. To inactivate C3b, the parasites bind FH as well as related proteins FHL‐1 and CFHR‐1 to their surface, and FH binding is trypsin‐resistant. Schizonts acquire FH via two contact sites, which involve CCP modules 5 and 20. Blockage of FH‐mediated protection via anti‐FH antibodies results in significantly impaired blood stage replication, pointing to the plasmodial complement evasion machinery as a promising malaria vaccine target.  相似文献   

7.
Factor H is a major regulatory protein of the complement system. The complete cDNA coding sequence has been derived from overlapping clones, and a polymorphism at base 1277 has been characterized. In four clones there is a T at nucleotide 1277 and in two others there is a C. This T/C change represents a tyrosine/histidine polymorphism at position 384 in the derived amino acid sequence. Protein sequence studies on peptides generated by trypsin digestion of factor H, purified from pooled plasma from 12 donors, confirmed the presence of both tyrosine and histidine at this position. Tyrosine and histidine were observed in a ratio of 2 : 1, respectively, and therefore this polymorphism is likely to represent a sequence difference between the two most abundant charge variants, FH1 and FH2, of factor H.  相似文献   

8.
9.
Cloning and expression of feline interleukin 15   总被引:3,自引:0,他引:3  
Dean GA  Barger A  Lavoy A 《Cytokine》2005,29(2):77-83
A cDNA encoding feline interleukin 15 (IL15) was cloned from the lymph node of a cat infected with feline infectious peritonitis virus. The cDNA is 486 bp in length and encodes a protein of 162 amino acids. Recombinant protein was readily expressed as a GST fusion in Escherichia coli and purified by glutathione affinity chromatography. Expression of recombinant protein in mammalian cells was only accomplished by eliminating the 5' and 3' UTR, replacing the IL15 signal peptide with the tissue plasminogen activator signal peptide, and adding 3' sequence to disrupt presumptive secondary structure of the mRNA. Biologically active feline IL15 was expressed in HEK293T cells and was shown to sustain primary feline lymphocytes, a feline T cell line, and mouse CTLL-2 cells. Proliferation of CTLL-2 cells was induced by the recombinant protein in a dose-dependent manner. Monoclonal and polyclonal antibodies against human IL15 recognized feline IL15 in immunofluorescence and Western blot assays. Additionally, feline IL15 was detectable using a commercially available human IL15 ELISA kit.  相似文献   

10.
11.
Factor H (FH) is one of the most important regulatory proteins of the alternative pathway of the complement system. Patients with FH deficiency have a higher risk for development of infections and kidney diseases because of the uncontrolled activation and subsequent depletion of the central regulatory component C3 of the complement system. In this study, we investigated the consequences of the Arg(127)His mutation in FH (FH(R127H)) previously described in an FH-deficient patient, on the secretion of this protein by skin fibroblasts in vitro. We observed that, although the patient cells stimulated with IFN-γ were able to synthesize FH(R127H), the mutant protein was largely retained within the endoplasmic reticulum (ER), whereas normal human fibroblasts stimulated with IFN-γ secrete FH without retention in the ER. Moreover, the retention of FH(R127H) provoked enlargement of ER cisterns after treatment with IFN-γ. A similar ER retention was observed in Cos-7 cells expressing the mutant FH(R127H) protein. Despite this deficiency in secretion, we show that the FH(R127H) mutant is capable of functioning as a cofactor in the Factor I-mediated cleavage of C3. We then evaluated whether a treatment could increase the secretion of FH, and observed that the patient's fibroblasts treated with the chemical chaperones 4-phenylbutiric acid or curcumin increased the secretion rate of FH. We propose that these chemical chaperones could be used as alternative therapeutic agents to increase FH plasma levels in FH-deficient patients caused by secretion delay of this regulatory protein.  相似文献   

12.
In the process of molecular cloning of cDNA for proteins associated with a purified human placental sialidase fraction, we discovered one of the proteins with apparent molecular weight of 46 kDa is in reality alpha-N-acetylgalactosaminidase. The full length cDNA, pcD-HS1204, codes for 358 amino acids with the first 17 residues representing a putative signal peptide. The predicted amino acid sequence shows striking homology with human alpha-galactosidase A and yeast alpha-galactosidase. The substrate specificities as well as the behavior of the 46 kDa protein on hydroxylapatite chromatography confirmed that the 46 kDa protein is in reality alpha-N-acetylgalactosaminidase.  相似文献   

13.
14.
Non-specific activation of the complement system is regulated by the plasma glycoprotein factor H (FH). Bacteria can avoid complement-mediated opsonization and phagocytosis through acquiring FH to the cell surface. Here, we characterize an interaction between the streptococcal collagen-like protein Scl1.6 of M6-type group A Streptococcus (GAS) and FH. Using affinity chromatography with immobilized recombinant Scl1.6 protein, we co-eluted human plasma proteins with molecular weight of 155 kDa, 43 kDa and 38 kDa. Mass spectrometry identified the 155 kDa band as FH and two other bands as isoforms of the FH-related protein-1. The identities of all three bands were confirmed by Western immunoblotting with specific antibodies. Structure-function relation studies determined that the globular domain of the Scl1.6 variant specifically binds FH while fused to collagenous tails of various lengths. This binding is not restricted to Scl1.6 as the phylogenetically linked Scl1.55 variant also binds FH. Functional analyses demonstrated the cofactor activity of the rScl1.6-bound FH for factor I-mediated cleavage of C3b. Finally, purified FH bound to the Scl1.6 protein present in the cell wall material obtained from M6-type GAS. In conclusion, we have identified a functional interaction between Scl1 and plasma FH, which may contribute to GAS evasion of complement-mediated opsonization and phagocytosis.  相似文献   

15.
Transfection of Chinese hamster ovary cells with an expression plasmid containing a full length human angiotensinogen cDNA has provided cell lines that secrete recombinant angiotensinogen in large quantities. This angiotensinogen is immunologically identical to plasma angiotensinogen and can be cleaved by human kidney renin (EC 3.4.23.15.). The peptide liberated by renin cleavage is immunologically identical to standard angiotensin I and shows a retention time on isocratic reversed-phase high-pressure liquid chromatography identical to that of standard angiotensin I. The heterogeneity of recombinant angiotensinogen on sodium dodecyl sulfate-polyacrylamide gel electrophoresis differs from that of plasma angiotensinogen. Treatment with endoglycosidases demonstrated that this difference is restricted to that of N-glycans and that N-glycans correspond to the quasi-totality of the carbohydrate content of both recombinant and plasma angiotensinogens. The development of a system capable of expressing human angiotensinogen cDNA in mammalian cells and the ability to obtain the corresponding angiotensinogen in large quantities will allow new studies on structure-function relationships of this protein.  相似文献   

16.
Recent studies indicate that defective activity of complement factor H (FH) is associated with several human diseases, suggesting that pure FH may be used for therapy. Here, we describe a simple method to isolate human FH, based on the specific interaction between FH and the hypervariable region (HVR) of certain Streptococcus pyogenes M proteins. Special interest was focused on the FH polymorphism Y402H, which is associated with the common eye disease age-related macular degeneration (AMD) and has also been implicated in the binding to M protein. Using a fusion protein containing two copies of the M5-HVR, we found that the Y402 and H402 variants of FH could be efficiently purified by single-step affinity chromatography from human serum containing the corresponding protein. Different M proteins vary in their binding properties, and the M6 and M5 proteins, but not the M18 protein, showed selective binding of the FH Y402 variant. Accordingly, chromatography on a fusion protein derived from the M6-HVR allowed enrichment of the Y402 protein from serum containing both variants. Thus, the exquisite binding specificity of a bacterial protein can be exploited to develop a simple and robust procedure to purify FH and to enrich for the FH variant that protects against AMD.  相似文献   

17.
Human alpha-fetoprotein (AFP) was expressed in Saccharomyces cerevisiae, with a plasmid containing the cDNA sequence for human AFP fused with the rat AFP signal peptide. The recombinant AFP was purified from the yeast lysate by DEAE-cellulose and immunoaffinity chromatography. The amino acid composition and the molecular weight of the recombinant AFP were similar to those of hepatoma AFP. N-terminal amino acids sequence analysis indicated that the signal peptide had been processed. The recombinant and hepatoma AFP reacted identically in Ouchterlony immunodiffusion and radioimmunoassay tests. These observations indicated that the yeast recombinant protein had the properties of native AFP.  相似文献   

18.
19.
A lambdaZAP II cDNA library was constructed from mRNA in immature seeds of the grass Job's tears. A cDNA clone for a cysteine proteinase inhibitor, cystatin, was isolated from the library. The cDNA clone spanned 757 base pairs and encoded 135 amino acid residues. The deduced amino acid sequence was similar to that of cystatins from the gramineous plants rice, sorghum, and corn. The central Gln-Val-Val-Ala-Gly sequence thought to be one of the binding sites of cystatins was found. A remarkable characteristic of the peptide sequence of Job's-tears cystatin was the putative signal peptide that has been found in sorghum and corn but not in rice. The cystatin cDNA was expressed in Escherichia coli as a His-tagged recombinant protein. The purified recombinant protein inhibited papain.  相似文献   

20.
We examined the feasibility of high-level production of recombinant human prolactin, a multifunctional protein hormone, in insect cells using a baculovirus expression system. The human prolactin cDNA with and without the secretory signal sequence was cloned into pFastBac1 baculovirus vector under the control of polyhedrin promoter. Prolactin was produced upon infection of either Sf9 or High-Five cells with the recombinant baculovirus containing the human prolactin cDNA. The production of recombinant prolactin varied from 20 to 40 mg/L of monolayer culture, depending on the cell types. The prolactin polypeptide with its own secretory signal was secreted into the medium. N-terminal amino acid sequence analysis of the recombinant polypeptide purified from the culture medium indicated that the protein was processed similar to human pituitary prolactin. Carbohydrate analysis of the purified protein indicated that a fraction of the recombinant prolactin made in insect cells appeared to be glycosylated. Also, both secreted and nonsecreted forms of the recombinant prolactin in insect cells were biologically equivalent to the native human prolactin (pituitary derived) in the Nb2 lymphoma cell proliferation assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号