首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The physicochemical and in vitro mechanism of immunologic tolerance of pepsin-soluble collagen and its peptide, CII-P, from blue shark cartilage were studied. Protein patterns showed three identical (α1)3 chains, suggesting that it was a type-II collagen (CII). CII-P had high antioxidant activity and low carbohydrate content. Collagens had better biocompatibility with decreased the viability of 6T-CEM cell compared to control cells (without collagen). Immunological indices such as FAS/APO-1, cytokine, and caspase levels were higher in CII-treated 6T-CEM cells. Collagen bound to 6T-CEM cell receptors in a dose-dependent manner, and an optimum effect was observed with 10 μg/mL collagen. The high carbohydrate content of CII could activate the FAS receptor, which led to increased apoptotic gene expression in 6T-CEM cells. Breakdown of 6T-CEM cell nuclei through the induction of apoptosis by CII was confirmed by fluorescence microscopy. Collagen molecular weight and glycosylation patterns were crucial factors for immunologic tolerance and 6T-CEM cellular apoptosis.  相似文献   

2.
The collagen fibrils in the rectal gland capsule of the coelacanth Latimeria chalumnae are c . 127 nm in diameter and resemble those fibrils that play an active mechanical role in trout skin. The fibrils having periodicity of about 54 nm and seven intrabands per period suggest that the collagen molecules in Latimeria are shorter, a feature they presumably share with lower tetrapods.  相似文献   

3.
Tendon and corneal decorins are differently iduronated dermatan sulphate/proteoglycan (DS/PG) and the biochemical parameter that differentiates type I collagens is the hydroxylysine glycoside content. We have examined the effect of tendon and corneal decorins on the individual phases (tlag, dA/dt) of differently glycosylated type I collagens fibril formation, at molar ratios PG:collagen monomer ranging from 0.15 : 1 to 0.45 : 1. The results obtained indicate that decorins exert a different effect on the individual phases of fibril formation, correlated to the degree of glycosylation of collagen: at the same PG:collagen ratio the fibril formation of highly glycosylated corneal collagen is more efficiently inhibited than that of the poorly glycosylated one (tendon). Moreover tendon and corneal decorins exert a higher control on the fibrillogenesis of homologous collagen with respect to the heterologous one. These data suggest a possible tissue-specificity of the interaction decorin/type I collagen correlated to the structure of the PG and collagen present in extracellular matrices. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

4.
Recent studies of the structure of Type I collagen fibrils (Piez and Trus,Biosci. Rep. 1:801–810, 1981; Fraser, MacRae, Miller and Suzuki,J. Mol. Biol. 167:497–521, 1983) suggest that the segments of the collagen molecule which comprise the gap region are more mobile than those which comprise the overlap region. We have analyzed the distribution of amino acid residues and triplet types between the two regions, and find significantly non-uniform distributions for Ala, Gln, His, Hyp, Leu, Phe, and Tyr, and for triplets containing two imino acid residues. Taken together with the lower packing density in the gap region these observations provide a basis for understanding the greater mobility of the molecular segments in the gap region. In addition, we have examined the linear distribution of residue types in the two regions and also the hydropathy profile (Kyte and Doolittle,J. Mol. Biol. 157: 105–113, 1982). These reveal a segment of the gap region comprising helical residues 165–173, 399–407, 633–641 and 867–975 which has the highest hydropathy index, is devoid of charged residues, and contains very high proportions of Ala, Hyp and Phe.  相似文献   

5.
It has proven challenging to obtain collagen‐mimetic fibrils by protein design. We recently reported the self‐assembly of a mini‐fibril showing a 35 nm, D‐period like, axially repeating structure using the designed triple helix Col108. Peptide Col108 was made by bacterial expression using a synthetic gene; its triple helix domain consists of three pseudo‐identical units of amino acid sequence arranged in tandem. It was postulated that the 35 nm d‐period of Col108 mini‐fibrils originates from the periodicity of the Col108 primary structure. A mutual staggering of one sequence unit of the associating Col108 triple helices can maximize the inter‐helical interactions and produce the observed 35 nm d‐period. Based on this unit‐staggered model, a triple helix consisting of only two sequence units is expected to have the potential to form the same d‐periodic mini‐fibrils. Indeed, when such a peptide, peptide 2U108, was made it was found to self‐assemble into mini‐fibrils having the same d‐period of 35 nm. In contrast, no d‐periodic mini‐fibrils were observed for peptide 1U108, which does not have long‐range repeating sequences in its primary structure. The findings of the periodic mini‐fibrils of Col108 and 2U108 suggest a way forward to create collagen‐mimetic fibrils for biomedical and industrial applications.  相似文献   

6.
Type V collagen (Col V) molecule, a minor component of kidney connective tissues, was found in adult cornea, and has been considered as a regulatory fibril-forming collagen that emerges into type I collagen to trigger the initiation of Col I fiber assembly. Col V was also found in injured, wound healing tissues or placenta, and was considered as a dysfunctional extracellular matrix (ECM). Reconstituted Col V fibril was characterized as an ECM to detach cells in vitro, and our previous study showed that the reconstituted Col V fibril facilitated the migration of glomerular endothelial cells and induced ECM remodeling, whereas Col V molecules stabilized cells. These facts suggest that not only the structure but also the function of Col V fibril are different from Col V molecule. Recently, Col V molecule has been reported existing in various developing tissues such as bone and lung, but Col V fibril has not been reported yet. In this study, we firstly explored the existence of Col V fibril in metanephroi, and found it distributed in the immature kidney tissues whereas disappeared when the tissues reached mature. It is likely that Col V fibril may form a prototype of pericellular microenvironment and the transient existence of Col V fibril may play a role as the pioneering ECM during metanephric tissue morphogenesis.  相似文献   

7.
Collagen fibrillogenesis is finely regulated during development of tissue-specific extracellular matrices. The role(s) of a leucine-rich repeat protein subfamily in the regulation of fibrillogenesis during tendon development were defined. Lumican-, fibromodulin-, and double-deficient mice demonstrated disruptions in fibrillogenesis. With development, the amount of lumican decreases to barely detectable levels while fibromodulin increases significantly, and these changing patterns may regulate this process. Electron microscopic analysis demonstrated structural abnormalities in the fibrils and alterations in the progression through different assembly steps. In lumican-deficient tendons, alterations were observed early and the mature tendon was nearly normal. Fibromodulin-deficient tendons were comparable with the lumican-null in early developmental periods and acquired a severe phenotype by maturation. The double-deficient mice had a phenotype that was additive early and comparable with the fibromodulin-deficient mice at maturation. Therefore, lumican and fibromodulin both influence initial assembly of intermediates and the entry into fibril growth, while fibromodulin facilitates the progression through growth steps leading to mature fibrils. The observed increased ratio of fibromodulin to lumican and a competition for the same binding site could mediate these transitions. These studies indicate that lumican and fibromodulin have different developmental stage and leucine-rich repeat protein specific functions in the regulation of fibrillogenesis.  相似文献   

8.
Decorin, fibromodulin and lumican are small leucine-rich repeat proteoglycans (SLRPs) which interact with the surface of collagen fibrils. Together with other molecules they form a coat on the fibril surface which could impede the access to collagenolytic proteinases. To address this hypothesis, fibrils of type I or type II collagen were formed in vitro and treated with either collagenase-1 (MMP1) or collagenase-3 (MMP13). The fibrils were either treated directly or following incubation in the presence of the recombinant SLRPs. The susceptibility of the uncoated and SLRP-coated fibrils to collagenase cleavage was assessed by SDS/PAGE. Interaction with either recombinant decorin, fibromodulin or lumican results in decreased collagenase cleavage of both fibril types. Thus SLRP interaction can help protect collagen fibrils from cleavage by collagenases.  相似文献   

9.
Nothing in biology stimulates the imagination like the development of a single fertilized egg into a newborn child. Consequently, a major focus of biomedical research is aimed at understanding cell differentiation, proliferation, and specialization during child health and human development. However, the fact that the increase in size and shape of the growing embryo has as much to do with the extracellular matrix (ECM) as with the cells themselves, is largely overlooked. Cells in developing tissues are surrounded by a fiber-composite ECM that transmits mechanical stimuli, maintains the shape of developing tissues, and functions as a scaffold for cell migration and attachment. The major structural element of the ECM is the collagen fibril. The fibrils, which are indeterminate in length, are arranged in different tissues in exquisite supramolecular architectures, including parallel bundles, orthogonal lamellae, and concentric weaves. This article reviews our current understanding of the synthesis and assembly of collagen fibrils, and discusses challenging questions about how cells assemble an organized ECM during embryogenesis.  相似文献   

10.
Summary— Snail muscles were extracted by a solution of EDTA and electron microscopy showed that the extract contained dispersed, depolymerized collagen fibrils and cross-shaped laminin-like structures. The extracts were purified by ultracentrifugation followed by two different procedures which enriched the content of laminin-like structures. The laminin-related molecules displayed unique properties when analyzed by biochemical, immunological and morphological methods. Electrophoretic patterns of the molecular form purified primarily by ion exchange chromatography, resembled EHS-tumor laminin and displayed a cruciform shape when viewed by electron microscopy. Immunohistology, using antiserum obtained against the agarose gel-purified protein, showed that this laminin was primarily located in the extracellular matrix surrounding muscle fibers. Western blots using anti-EHS laminin antibody showed reaction of a 300 kDa subunit of this snail laminin. The protein obtained by another procedure, initially using gel filtration, followed by ion exchange chromatography, also appeared to be a laminin. It had a collapsed cruciform appearance when viewed by electron microscopy. It contained several different subunits, one of which, ca 300 kDa, reacted with anti-EHS-laminin antibody and with anti-snail laminin antibody. In contrast, EHS laminin did not react with the anti-snail laminin antibody. The composite results suggest that at least two different forms of laminin are extractable from snail muscle and that they share molecular properties and immune determinants with mouse tumor laminin.  相似文献   

11.
In an attempt to determine whether phagocytosis of collagen by fibroblasts involves binding of the fibril to the plasma membrane, the effect of the lectin concanavalin A (Con A) was studied in an in vitro model system. Metacarpal bone rudiments from 19-day-old mouse fetuses were incubated with varying concentrations of the lectin. Quantitative electron microscopic analysis indicated that Con A caused a dose-related increase in the amount of phagocytosed collagen fibrils in periosteal fibroblasts, suggesting either an enhanced uptake or a decreased intracellular breakdown of fibrils. Since a Con A-inducible increase was not seen in the combined presence of both the lectin and the proteinase inhibitor leupeptin, which is known to inhibit the intracellular digestion of phagocytosed fibrillar collagen, it is unlikely that Con A stimulated phagocytosis. Based on the finding that Con A interfered with the digestion of a synthetic substrate by the collagenolytic lysosomal enzyme cathepsin B it is suggested that the augmentation of intracellular fibrillar collagen under the influence of the lectin was due to a decreased intracellular digestion. Since Con A did not inhibit the uptake of collagen fibrils by the fibroblasts it is concluded that Con A-inhibitable binding sites for collagen molecules are unlikely to be involved in phagocytosis of collagen fibrils by fibroblasts.  相似文献   

12.
Transverse sections of the skin in the dorsal fin of the white shark, Carcharodon carcharias, tiger shark, Galeocerdo cuvier, and spotted raggedtooth shark, Carcharias taurus, show large numbers of dermal fiber bundles, which extend from the body into the fin. The bundles are tightly grouped together in staggered formation (not arranged in a straight line or in rows). This arrangement of dermal fibers gives tensile strength without impeding fiber movement. Tangential sections indicate that the fibers in all three species are strained and lie at angles in excess of 60 degrees . Of the three species investigated the dermal fibers in C. carcharias are the most densely concentrated and extend furthest distally along the dorsal fin. The overall results indicate that the dorsal fin of C. carcharias functions as a dynamic stabilizer and that the dermal fibers are crucial to this role. The fibers work like riggings that stabilize a ship's mast. During fast swimming, when the problems of yaw and roll are greatest, hydrostatic pressure within the shark increases and the fibers around the body, including in the dorsal fin, become taut, thereby stiffening the fin. During slow swimming and feeding the hydrostatic pressure is reduced, the fibers are slackened, and the muscles are able to exert greater bending forces on the fin via the radials and ceratotrichia. In C. carcharias there is a trade-off for greater stiffness of the dorsal fin against flexibility.  相似文献   

13.
Myogenic satellite cells are essential for postnatal muscle growth and the regeneration of muscle in response to injury. An understanding of how the extracellular matrix affects satellite cell activity, and the temporal and spatial expression of extracellular matrix macromolecules is largely unknown. In the avian genetic muscle weakness, low score normal (LSN), satellite cell proliferation and differentiation rates are significantly lower than that observed in normal chicken satellite cells, which may be attributed to a late embryonic increase in the expression of decorin. Satellite cell-derived morphological properties, collagen type I expression, and the spatial distribution of collagen type I were investigated during normal and LSN satellite cell proliferation and differentiation. These studies showed a decrease in LSN myotube length and the number of nuclei per myotube. Collagen type I expression was similar between the LSN and normal satellite cell cultures during the course of proliferation and differentiation. However, the spatial distribution of collagen type I was altered in the LSN cultures 48 h after the initiation of fusion. The LSN cultures exhibited a premature extracellular distribution of collagen type I compared to the normal satellite cells.  相似文献   

14.
Collagen II fibrils are a critical structural component of the extracellular matrix of cartilage providing the tissue with its unique biomechanical properties. The self-assembly of collagen molecules into fibrils is a spontaneous process that depends on site-specific binding between specific domains belonging to interacting molecules. These interactions can be altered by mutations in the COL2A1 gene found in patients with a variety of heritable cartilage disorders known as chondrodysplasias. Employing recombinant procollagen II, we studied the effects of R75C or R789C mutations on fibril formation. We determined that both R75C and R789C mutants were incorporated into collagen assemblies. The effects of the R75C and R789C substitutions on fibril formation differed significantly. The R75C substitution located in the thermolabile region of collagen II had no major effect on the fibril formation process or the morphology of fibrils. In contrast, the R789C substitution located in the thermostable region of collagen II caused profound changes in the morphology of collagen assemblies. These results provide a basis for identifying pathways leading from single amino acid substitutions in collagen II to changes in the structure of individual fibrils and in the organization of collagenous matrices.  相似文献   

15.
The appearance in the electron microscope of mechanically-dispersed corneal collagen has been observed after positive staining with phosphotungstic acid and/or uranyl acetate and after negative staining with phosphotungstate ions. The distributions of positive stains (both cationic and anionic) were similar to those observed in other type I collagens (e.g. skin, tendon). A high correlation was found between charge density in the fibril and the distribution of charged amino acids predicted from the sequence of calf skin collagen. This correlation could be improved by including type III sequence data, suggesting the presence of 20% type III collagen within each fibril. Negative staining showed the usual collagen D-periodicity but without a clear gap/overlap structure. Detailed analysis revealed at least six sites where stain penetration was inhibited. Specific staining of glycosides using N,N,N′,N′-tetramethylethylenediamine(TEMED)-osmate suggested that these sites identify the covalent attachment of disaccharides to the collagen. Using synchroton X-ray diffraction from TEMED-osmate stained corneas we have determined the locations of the stain ions (and hence the glycosides) in the moist tissue. The results demonstrate that even though the detailed charge distribution and axial molecular packing in corneal collagen are similar to other type I collalgens, carbohydrate material, probably disaccharide, is attached at fairly regular intervals. This does not occur in other type I collagens. In particular, the presence of glycoside in the overlap region may play a role in producing the narrow uniform fibrils which are essential for the transparency of the cornea.  相似文献   

16.
Skeletal muscle fibers are surrounded by an extracellular matrix. The extracellular matrix is composed of glycoproteins, collagen, and proteoglycans. Proteoglycans have been suggested to play an important functional role in tissue differentiation. However, an understanding of how the extracellular matrix affects skeletal muscle development and function is largely unknown. In the avian genetic muscle weakness, low score normal (LSN), a late embryonic increase in the expression of decorin is followed by a subsequent increase in collagen crosslinking. The sarcomere organization, collagen fibril diameter and organization were investigated using transmission electron microscopy. Measurements were made at 20 days of embryonic development and 6 weeks posthatch. These studies showed changes in sarcomere organization and deterioration of muscle fibril structure in the LSN pectoral muscle. In vitro satellite cell cultures were developed and assayed for mitochondrial activity, and protein synthesis and degradation. In these analyses, mitochondrial activity from LSN satellite cells was significantly higher than those from normal pectoral muscle satellite cells. Protein synthesis rates between the normal and LSN satellite cell-derived myotubes were similar, but protein degradation rates were higher in the LSN cultures. Based on the reported functions of decorin as a regulator of cell proliferation and collagen fibril organization, it is possible that the late embryonic increase in decorin may be influencing the alterations in LSN sarcomere and collagen organization.  相似文献   

17.
Extracts from the human dermis were prepared and evaluated with respect to their ability to influence fibroblasts to contract collagen gels in vitro. The extract which had the most inhibitory effect on fibroblasts to cause contraction of collagen gels was extract D. It also inhibited fibroblast growth. Inhibition of contraction was not simply related to fibroblast cell numbers and the data suggests a specific effect upon the ability of fibroblasts to cause contraction. Other extracts were without significant effect.  相似文献   

18.
Collagen fibrils in the corneal stroma have been recognised to have a high degree of uniformity of diameter and spatial arrangement compared with those in other mature connective tissues. The precision of this lateral size control has been determined in this study by mass per unit length measurements on fibrils isolated from adult bovine corneal stroma. At the molecular level, however, there are substantial variations in lateral size, both between fibrils and along individual fibrils. The mean mass per unit length was measured to be 304 kDa nm(-1), equivalent to 347 collagen molecules in transverse section and had a standard deviation of 8.3%. The variation of lateral size along individual fibrils was measured as a mass slope over approximately 7 microm lengths (100 D-periods) and had a mean mass slope equivalent to 0.56 molecules per D-period. Smoothly tapered tips of length approximately 7 microm were also observed with a mass slope of about approximately three molecules per D-period. The frequency of these tips was used to estimate a mean fibril length of approximately 940 microm in the sample tissue. Observations of molecular polarity within the fibril shafts and tips were used to consider possible models of fibril assembly.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号